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Abstract: Tremor, defined as an “involuntary, rhythmic, oscillatory movement of a body part,” is 1

a key feature of many neurological conditions, but is still clinically assessed by visual observation. 2

Methodologies for objectively quantifying tremor are promising but remain non-standardized across 3

centers. Our center performs full-body behavioral testing with 3D motion capture for clinical and 4

research purposes for patients with Parkinson’s disease, essential tremor, and other conditions. The 5

objective of this study was to assess the ability of several candidate processing pipelines to identify 6

the presence or absence of tremor in kinematic data from movement disorders patients compared 7

to expert ratings from movement disorders specialists. We curated a database of 2,272 separate 8

kinematic data recordings from our center, each of which was contemporaneously annotated as 9

tremor present or absent by a clinical provider. We compared the ability of six separate processing 10

pipelines to recreate clinician ratings based on F1 score, in addition to accuracy, precision, and recall. 11

We found generally comparable performance across algorithms. The average F1 score was 0.84 ± 0.02 12

(Mean ±SD; range 0.81 − 0.87), with all F1 confidence intervals overlapping. The highest performing 13

algorithm (cross-validated F1 = 0.87) was a hybrid that used engineered features adapted from 14

an algorithm in longstanding clinical use with a modern Support Vector Machine classifier. Taken 15

together, our results suggest the potential to update legacy clinical decision support systems to 16

incorporate modern machine learning classifiers in order to create better performing tools. 17

Keywords: Motion Capture; Parkinson’s Disease; Essential Tremor; Machine Learning, Support 18

Vector Machines, XGBoost 19

1. Introduction 20

Tremor, defined as an “involuntary, rhythmic, oscillatory movement of a body part,” 21

is a key feature of many neurological conditions, and has been called the most frequent 22

human movement disorder [1]. In Parkinson’s disease (PD), the second most common 23

neurodegenerative disorder worldwide [2], tremor that appears while at rest (often a “pill- 24

rolling” tremor of the thumb and forefinger) is considered a characteristic sign [3]. However, 25

tremor is a feature of many neurological conditions [3], and can also result from various 26

causes such as trauma or side effects of medications [4]. Furthermore, some oscillatory 27

movements occur that are not tremor; myoclonus and dystonia can produce involuntary, 28

jerking movements that may be rhythmic, but that are not considered to be tremor [5]. 29

Tremor disorders currently require expert diagnosis based on skilled observation using 30

standardized clinical scales, with quantitative measurements approximated by eye and 31

with no automated clinical decision support. Clinicians characterize the features of the 32

tremor, including body distribution, provocative factors, frequency, and gross amplitude 33

and aggregate this information with other medical testing results to identify underlying 34

causes and to evaluate potential treatment plans[2]. In PD and Essential Tremor (ET), 35
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overall tremor severity is measured using standardized clinical scales like the Movement 36

Disorder Society-Unified Parkinson’s Disease Rating Scale Part III (MDS-UPDRS-III) [6], 37

the Fahn-Tolosa-Marin Tremor Rating Scale (FTM) [5] and The Essential Tremor Rating 38

Scale (TETRAS) [7]. These give general guidelines for tremor amplitude assessment by 39

eye, but are not intended to be used with actual measurements (e.g., with calipers or an 40

anthropometer). 41

Recent progress in human activity recognition and edge computing suggests signifi- 42

cant potential for automated clinical decision support tools in tremor measurement. Despite 43

this, technologies for identifying tremor have progressed towards standardization and 44

clinical uptake very slowly [1]. In the research domain, various technologies measure 45

human motion, including body-worn sensors [3,7,8], 3D motion capture [9,10], and – most 46

recently – pose recognition from monocular video [11–13]. Digitizing tablets are often 47

used for assessing tremor during tasks like spiral drawing [14,15] and for discriminating 48

tremor from bradykinesia during finger tapping [16]. In fact, recognition of the potential 49

for spectral analysis in assessing tremor dates back to the mid-1960s [17], and differences 50

in tremor frequencies across disorders have been acknowledged for over two decades [3]. 51

Substantial domain knowledge (and in some cases, cultural) gaps between clinicians and 52

engineers further hampers widespread adoption. This is in contrast to fields like cardiology, 53

where automated clinical decision support systems thrive due to large public datasets 54

enabling annual improvements in anomaly detection [18,19]. 55

In our center, we perform comprehensive behavioral testing using 3D kinematic mo- 56

tion capture to objectively evaluate abnormal movements in patients with PD, ET, and 57

other conditions [20]. Indications for this procedure include diagnosis adjudication and 58

evaluation for functional neurosurgery, among others. Our behavioral testing paradigm 59

involves multiple standardized upper limb tasks designed to elicit tremor under provoking 60

conditions of rest, posture, and action. Since 2014, we have performed >1500 behavioral 61

tests, using analysis pipelines that were developed organically based on clinician domain 62

knowledge without formal evaluation. A challenge encountered in evaluating tremor anal- 63

ysis algorithms is imprecision in the “ground truth” criteria for tremor presence outlined in 64

clinical scales [5–7]. For instance, the MDS-UPDRS-III criterion that “tremor is present but 65

less than 1 cm in amplitude” (corresponding to a score of 1) is clear for a human rater but 66

poses ambiguity for a machine. Questions arise in implementation, such as along which 67

biomechanical axis or axes the amplitude should be measured and what size tremor meets 68

the threshold for being considered “present.” 69

The objective of this study is to compare tremor identification algorithms from our 70

clinic for identifying tremors in 3D kinematic data of movement disorder patients. Ground 71

truth labels, recorded in contemporaneous notes by clinicians, are straightforward: tremor 72

present or absent. The main goal is to identify the most accurate algorithm for detecting 73

tremor presence or absence in individual body parts during testing sessions. 74

2. Materials and Methods 75

2.1. Data sources 76

We compared algorithm performance using a database of 2,272 recordings made 77

during standard clinical exams of N = 50 arbitrarily selected clinic patients. Aspects of the 78

testing paradigm have been described previously [9,20,21]; more detail is provided below. 79

In 42 patients (84%) the primary diagnosis was either Parkinson’s disease or essential 80

tremor. Detailed demographic and clinical characteristics are shown in Table 1. 81

2.2. Behavioral testing paradigm 82

Behavioral testing was captured through 3D optical motion capture with 60 reflective 83

markers on standardized bony landmarks during a 1-hour clinical assessment in our facility 84

(Figure 1). Assessments were billed under Current Procedural Terminology (CPT [22]) 85

codes 96000 and 96004. All patients with Parkinson’s disease were asked to hold their 86

antiparkinsonian medications for at least 12 hours prior to the study visit (the practically- 87
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Table 1. Clinical and demographic characteristics of the study sample.

Variable Value

N 50
Sex

Male 32 (64%)
Female 18 (36%)

Age, years
Mean (SD) 65 (12)
Range 36 - 83

Primary Diagnosis
Parkinson’s disease 29 (58%)
Essential tremor 13 (26%)
Dystonia 6 (12%)
Essential tremor + Parkinson’s disease 1 (2%)
Unspecified tremor 1 (2%)

Figure 1. Clinical motion capture facility. Our center uses a custom set of 60 retroreflective kinematic
markers for most cases. Markers on the hands (arrows) enable tremor measurement. From top
to bottom, the markers highlighted are R.Wrist, R.Thumb.M3, and R.Finger3.M3 (A). After data
collection, analysis is performed using a deidentified wire frame or representation of the individual,
preserving privacy (B). Our 650 square feet center is used for both clinical and research applications
(C). The origin of the kinematic coordinate system is superimposed.

defined OFF state [23]). At the time of testing, the average time since the last medication 88

dose was 13±5 hours. Tasks included goal-directed upper limb movements, static postures, 89

and walking, and were designed to provoke various tremors [2]. For instance, seated 90

finger-to-nose pointing with the right arm (coded sit-point-right or sit-point-1 in data files) 91

aimed to elicit action-provoked tremor in the right upper extremity and rest or postural 92

tremor in the legs, left upper extremity, torso, head, and neck (Table B.2). On average, 93

kinematic data recordings were 27 ± 9 seconds long and ranged from 3 to 92 seconds. 94

2.3. Kinematic data recording, processing, and export 95

Data were captured using a 3D motion capture system (Motion Analysis Corporation, 96

Rohnert Park, CA, USA) with 10 cameras recording at 120 Hz. Following testing completion, 97

clinic staff manually postprocessed kinematic data using standard interpolation features 98

in Motion Analysis Cortex software for quality control. Occasional low-pass or similar 99

filters were applied on an as-needed basis to address noise in individual markers, but no 100

consistent additional filtering occurred. Each recording’s kinematic data was exported 101

into standard *.trc tabular format. A typical .trc file for a 30-second recording at 120 Hz 102

comprises 3600 rows (30 seconds × 120 Hz) and 180 columns (60 markers × 3 axes) of 103

kinematic data. Due to changes in marker labels and occasional missing data, each .trc file 104

was divided into separate .csv files for each body extremity in the accompanying dataset. 105

These files are compatible with standard Python, R, Matlab, or similar software libraries. 106

Summaries of the contents of example files are provided in Table B.1. 107
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Table 2. Comparison of tremor identification algorithms. All algorithms operate on spectral features
of kinematic data.

Algorithm Kinematic Data Features Aggregation Classifier

A1r Velocity Engineered Winner-take-all Rule-Based
A1s SVM
A2r Position Engineered Average Rule-Based
A2s SVM
B1 Position Data-driven Average SVM
B2 Position Data-driven Average XGBoost

2.4. Annotations 108

Annotations were taken contemporaneously during the exam for the clinicians’ own 109

use while preparing exam notes. Because tremor is intermittent in nature and typically does 110

not appear across more than a few isolated body regions, annotations typically included 111

separate entries for particular body parts during each particular recording. For example, 112

the annotation “Left hand: present, F3 and thumb” was used to indicate that tremor was 113

present on the third finger (F3) and thumb of a particular trial. Therefore, the annotations 114

were converted by the study team into separate annotations for each body extremity during 115

each recording. For example, “mild bilateral rest hand tremor” was converted into the 116

annotation “tremor present” for each of the left and right hands. As the presence or absence 117

of tremor in other body extremities was ambiguous in this case, no annotations were 118

provided for other body extremities. In cases where the absence of tremor was described in 119

the original notes (“this gentleman does not have tremor”) tremor was labeled as “tremor 120

absent” for all extremities. Cases in which dyskinesia or dystonic posturing was present 121

were labeled as “tremor absent.” 122

2.5. Spectral composition of kinematic data 123

All algorithms used initial preprocessing to isolate spectral (or “frequency-domain”) 124

features of recorded data based on the substantial amount of established research in 125

this area. Tremor frequencies vary from 0.5 Hz for palatal tremor to 18 Hz for primary 126

orthostatic tremor, [2] with the majority of parkinsonian and essential tremor typically 127

occurring between 4-12 Hz. [3] Volitional movements during behavioral testing typically 128

occur primarily at lower frequencies, while higher frequency ranges are prone to artifacts 129

related to aliasing or electrical or other noise. For this reason, tremor data are typically 130

processed by band-pass filtering. Typical ranges include 1 to 16, 0.5 to 15, or 2 to 30 Hz [1]. 131

All of the tremor detection algorithms examined employed some initial band-pass or other 132

filtering, described below. 133

2.6. Algorithms 134

Identifying tremor is a process that uses the rich information embedded within motion 135

data from kinematic markers on each extremity during to determine whether tremor is 136

present or absent in a particular testing session. Although this use case is unique, like many 137

general machine learning problems, this process can be broken down into two basic steps. 138

The first step is feature engineering: extracting information (“features“) from raw kinematic 139

marker data. The second step is classifier development: creating a classifier based on the 140

extracted features that determines whether tremor is present or absent. During classifier 141

development, in particular, it is important to perform some hyperparameter optimization 142

to identify the optimal operating point for a given algorithm. 143

In this study, we compare six algorithms for identifying tremor (Table 2). The first two 144

(A1r and A2r) were developed organically over several years based on clinical expertise 145

and signal processing heuristics. As implemented in our clinic, both algorithms derive 146

engineered spectral features from the kinematic data which are then input into simple 147
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rule-based classifiers to determine whether tremor is present or absent. While these algo- 148

rithms were developed iteratively over several years with access to the clinical dataset, no 149

comprehensive hyperparameter tuning was performed, potentially leading to suboptimal 150

parameter settings. 151

To create a more fair comparison with the modern machine learning algorithms (B1 and 152

B2), we also examined the performance of these algorithms when the features identified by 153

each (summarized in Table 3) were used as inputs to a well-established machine learning 154

model (Support Vector Machines, SVMs [24]) trained and evaluated with 5-fold cross- 155

validation. To distinguish these algorithms from the related algorithms with rule-based 156

classifiers,these implementations are referred to as A1s and A2s. 157

The final two algorithms (B1 and B2) were developed specifically for this study 158

based on standard modern machine learning best practices. Both B1 and B2 use basic 159

preprocessing and spectral features together with well-established machine learning models 160

to identify optimal operating points. The details of each algorithm are described below. 161

2.6.1. Velocity Spectral Peak Detection (Algorithm A1r) 162

The oldest algorithm in use in our center was developed iteratively between 2014 and 163

2020. The key feature of this algorithm is that it performs numerical differentiation on 164

kinematic data prior to feature identification in the frequency domain. It uses a winner-take- 165

all approach to aggregate tremor features across kinematic markers on a given extremity 166

(described below). An example of tremor identification using Algorithm A1r is presented 167

in Figure 2. This algorithm was implemented in Matlab (Version R2022b; The Mathworks, 168

Natick, MA, USA). 169

Feature extraction. 170

Raw kinematic displacement data for each marker of a given extremity are zero-phase 171

lowpass filtered (20 Hz), centered, and passed through a Savitzky-Golay derivative filter to 172

obtain smooth velocity estimates in each of the x, y, and z dimensions. The power spectral 173

densities (PSDs) of the velocity components for each marker are obtained using Welch’s 174

method and combined using the Euclidean norm. The combined PSD of each marker is 175

then converted to log scale, smoothed using a Savitzky-Golay filter, and converted back 176

to a linear scale for spectral analysis. Spectral features are summarized in Table 3. More 177

details on feature calculation are available in the documentation for powerbw.m. 178

Rule-based classification. 179

To detect a peak that would indicate the presence of tremor, the peak power and 180

the corresponding center frequency were first detected for each kinematic marker using 181

functionality integrated in the Matlab function powerbw.m. A significant peak should be 182

narrow and symmetric about the center frequency, so any peak with a bandwidth greater 183

than 2 Hz or nonsymmetric power to the left and right of the peak would cast doubt on 184

the presence of a physiological tremor. Indicators of bandwidth and symmetry are derived 185

using powerbw.m and subjected to threshold rules to determine the presence or absence of 186

tremor. Peaks with center frequencies above 10 Hz would also be deemed unreasonable; 187

therefore, central frequencies above 10 Hz are also interpreted as tremor absence. To 188

aggregate features across markers of a given extremity, the algorithm proceeds to detect a 189

tremor on each marker independently. The tremor features for the marker with the largest 190

tremor amplitude on a given recording are used as representative of the entire extremity. 191

2.6.2. Amplitude Spectral Peak Detection (Algorithm A2r) 192

The amplitude spectral peak detection was established in our center primarily to 193

provide tremor identification in the amplitude, rather than velocity domain, in order to 194

enable direct comparison with clinical magnitude cutoffs. The key feature of this algorithm 195

is that it converts all kinematic data from kinematic markers on a given extremity to the 196

frequency domain prior to aggregation with a max procedure. Therefore, the spectral 197

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.13.24304101doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24304101
http://creativecommons.org/licenses/by/4.0/


Version March 13, 2024 submitted to Sensors 6 of 22

Table 3. Spectral features calculated by clinical algorithms A12r/s and A2r/s.

Algorithm Feature Description

A1r F_CENTER Tremor frequency (Hz)
AMPLITUDE_MM_P_S Tremor amplitude (mm/s)
BW 3 dB bandwidth (Hz)
HI_F Left frequency border (Hz)
LO_F Right frequency border (Hz)
MAX_POWER Maximum power level of the

power spectrum (dB/Hz)
HI_POWER Power level at right frequency

border (dB/Hz)
LO_POWER Power level at left frequency bor-

der (dB/Hz)
RELATIVE_POWER Proportion of total power

A2r F_CENTER Tremor frequency (Hz)
AMPLITUDE_MM Tremor amplitude (mm)
PROMINENCE Peak prominence (mm)
WIDTH Peak width (Hz)

features identified for a given extremity reflect a combination of kinematic markers, rather 198

those of a single dominant markers. An example of tremor identification using Algorithm 199

A2r is presented in Figure 3. This algorithm was implemented in Matlab (Version R2022b; 200

The Mathworks, Natick, MA, USA). 201

Feature extraction. 202

Raw kinematic data of all markers on a given extremity are high-pass filtered with a 203

4th order Butterworth filter with corner frequency 2 Hz using filtfilt.m in Matlab. The two- 204

sided frequency spectrum is calculated using the fast Fourier transform and converted into 205

the single-sided frequency spectrum of each axis of each kinematic marker. The single-sided 206

frequency spectra of each x, y, z component of all markers on each extremity are combined 207

using a max procedure to create an aggregate spectrum for the extremity that represents the 208

most severe tremor at each frequency. The aggregate spectrum is subsequently smoothed 209

with a Savitsky-Golay 3rd-order polynomial smoothing filter.’Frequency peaks in the 210

smoothed spectrum are then identified with the heuristic-based findpeaks.m method in 211

Matlab software using default arguments. 212

Rule-based classification. 213

Classification proceeds in two steps. First, the central frequency of the dominant fre- 214

quency peak identified by findpeaks.m is compared to maximum and minimum threshold 215

values. Peaks with central frequency < 3.5 Hz or > 10 Hz are considered non-physiological 216

and are discarded. If these conditions are met, the amplitude of the peak is compared to 217

the a simple threshold value (0.1 mm) to determine tremor presence. This threshold value 218

was determined over trial and error. 219

2.6.3. Support Vector Machines with Engineered Spectral Features (Algorithms A1s and 220

A2s) 221

We also examined the performance of Algorithms A1r and A2r when the final classifi- 222

cation steps were altered from the heuristic rule-based implementations to Support Vector 223

Machines (SVMs). Support vector machines (SVM) are a widely recognized approach for 224

classification tasks [25]. An SVM is a supervised machine learning algorithm that works by 225

identifying an optimal hyperplane in an augmented feature domain that separates obser- 226

vations into distinct classes. In this case, observations that fall on one or other side of the 227

hyperplane are classified as tremor present or absent. Importantly, the feature domain can 228
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be augmented with features derived via nonlinear functions (here, radial basis functions) 229

in order to accommodate linearly-non separable classes in the original data. Here, we 230

extracted the spectral features identified by each algorithm (summarized in Table 3) and 231

used them as inputs to two separate SVMs with 5-fold cross-validation and radial basis 232

function kernels. 233

2.6.4. Modern Classifiers (Algorithms B1 and B2) 234

The final two algorithms (B1 and B2) were developed specifically for this study. They 235

use basic preprocessing and spectral features together with well-established machine 236

learning models to identify tremor in kinematic data. 237

Feature extraction. 238

In order to decouple tremulous movements from slow body movements due to sub- 239

jects’ displacements and non-tremulous activities, the vector position of each kinematic 240

marker on a given extremity is initially calculated as a measure of its instantaneous distance 241

from the origin of the kinematic reference frame. This is done by calculating the Euclidean 242

norm of the x, y, and z coordinates at all time instants, resulting in a single signal per sensor, 243

as a function of time. The resulting signals are bandpass filtered between 1 Hz and 20 Hz 244

with a linear-phase finite impulse response (FIR) filter design using a hamming window 245

of order 80. The signals are next decimated from 120 Hz to 40 Hz to further focus on the 246

spectral range of interest. Next, the spectra of each sensor’s signal is estimated by using 247

sliding windows of 3 s and 2.75 s overlap with a 120-point discrete Fourier transform (DFT). 248

The Welch power spectral density (PSD) estimation method with a Hamming window of 249

120 samples is used for PSD estimation, followed by a Gaussian-shaped moving average 250

with a standard deviation of 1 Hz, to further smooth the spectra, sharpening the dominant 251

frequencies and making them more distinguishable for the classifier. This results in 120 252

points of two-sided PSD with a spectral resolution of 0.33 Hz (40 Hz/120). The first 61 253

PSD values (corresponding to the DC component and one-sided spectrum) are used as 254

the spectral feature vector of each sensor. The average feature vector calculated across all 255

kinematic markers on a given extremity are then used as inputs to each of the classifiers 256

described below. 257

B1: SVM classification. 258

In algorithm B1, the 61-point one-sided average spectral features were directly pro- 259

vided to an SVM as feature vectors. We considered SVM models with both linear and 260

radial basis function (RBF) kernels. A standard stratified 5-fold cross validation scheme 261

was performed, by splitting the data into 5 nonoverlapping splits, using 4 splits for training 262

and the left-out split for validation. The stratification ensured that each fold retained 263

approximately equal proportions of the two class labels. 264

B2: XGBoost classification. 265

In algorithm B2, the 61-point one-sided average spectral features were directly pro- 266

vided to XGBoost as feature vectors. XGBoost is also a widely recognized approach for 267

classification tasks [26]. The XGBoost classifier operates by iteratively constructing an 268

ensemble of decision trees and refining them based on a specified loss function. The pro- 269

cedure for loading the features was analogous to the SVM process, again using stratified 270

5-Fold cross-validation to ensure balanced representation across data splits. The classifier 271

was configured to bypass label encoding, opting instead for the ‘logloss’ evaluation metric. 272

This probability-centric metric enables the future extension of the proposed scheme for 273

estimating probabilities of tremulous events, instead of a binary decision. 274
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2.7. Performance Metrics 275

We compared the ability of six separate processing to recreate clinician ratings of 276

tremor presence/absence based on F1 score, which is a harmonic mean of precision and 277

recall [9]: 278

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 score = 2 × Precision × Recall
Precision + Recall

(3)

TP is a true positive that represents the total of successfully classified tremor-positive 279

records, FP is a false positive that represents the total number of misclassified tremor- 280

negative records,total misclassified class windows, and FN is a false negative that repre- 281

sents the total number of misclassified tremor-positive records. 282

We compared performance across classifiers using a confidence interval (CI) approach. 283

For each of classifiers A1s, A2s, B1, and B2, we calculated the average (µ) and standard 284

deviation (σ) of F1 scores observed across each of n = 5 folds during cross-validation. We 285

then used the sample standard deviations to estimate 95% CIs as µ ± 1.96× σ√
n . We applied 286

similar analyses to secondary outcomes including Accuracy, Precision, Recall, and AUC. 287

For classifiers A1r and A2r, we were only able to calculate point estimates of F1 and other 288

outcomes as these classifiers were developed manually with access to the entire dataset. 289

Finally, we characterized the contributions of different frequency bands to classification 290

with SHAP (SHapley Additive exPlanations) [27] plots. SHAP plots visually represent how 291

much each feature contributes to the classification of each observation as one class or the 292

other. This is analogous to the visual representation of factor loadings in familiar techniques 293

like principal components analysis (PCA) but is adapted for nonlinear techniques like 294

XGBoost. 295

3. Results 296

3.1. Characteristics of annotations 297

The most frequent clinical annotation was “present.” Clinicians used a wide range 298

of qualitative labels for tremor size. A description of the mapping between raw clinician 299

provided labels and dichotomized dataset labels is provided in Table 4. Annotations 300

most frequently referred to the hands (37%), although annotations for all extremities were 301

present. The frequencies of appearance of various body extremities are described in Table 5. 302

Chi-squared tests identified significant differences in reporting frequencies between the 303

arms and legs (P≪0.001) and between the arms and head/torso (P≪0.001). 304

3.2. Model performance 305

Classification performance metrics for all models are reported in Table 6. The overall 306

highest performance, as assessed with average F1 score across five cross-validation folds, 307

was observed in algorithm A1s. However, all classifiers performed well. Across models, the 308

average F1 score was 0.84 ± 0.02 (range [0.81 − 0.87]), and all F1 confidence intervals were 309

overlapping. Figure 4 compares the performance of Algorithms B1 and B2 with operating 310

point information superimposed for the other algorithms. 311

We further performed feature importance using SHAP values, for all spectral features 312

used as inputs to algorithms B1 and B2. The SHAP plots are shown in Figure 5. Unlike 313

typical SHAP plots that are oriented vertically, in Figure 5 the feature importance is shown 314

on the y axis and the features - characteristic frequencies within the kinematic data - are 315

shown on the x axis, which allows visualization of the SHAP plots as a kind of spectrum. 316

We noted that high activation of features in the frequency range between 4.3 Hz and 7.0 Hz 317

were identified as significant for identifying tremor presence vs. absence (red), while high 318
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Table 4. Mapping between clinician-provided labels and training labels in training data. The “Other”
label aggregates annotations with fewer than 10 observations and annotations for which no indicator
of size was provided (e.g., “RH tremor”).

Label in Dataset
Raw Label Absent Present

Absent 1476 0
Dystonia, dyskinesia, or other abnormal posture or movement 68 0
Present 0 288
Not much 0 24
Very slight or very trace 0 10
Slight or trace 0 78
Intermittent 0 10
Mild 0 121
Mild to moderate 0 34
Moderate 0 55
Moderate to severe 0 17
Significant 0 32
Severe 0 17
Other, or no indicator of size 0 42

activation of features in the frequency range between 0.7Hz and 1.3Hz were identifying 319

tremor absence vs. presence (blue). 320

4. Discussion and Conclusion 321

The objective of this study was to assess the ability of several candidate processing 322

pipelines to identify the presence or absence of tremor in kinematic data from movement 323

disorders patients compared to expert ratings from movement disorders specialists. We 324

found generally comparable performance across algorithms; the average F1 score was 325

0.84 ± 0.02 (Mean ±SD; range 0.81 − 0.87), with all F1 confidence intervals overlapping. 326

Notably, the highest performing algorithm (cross-validated F1 = 0.87) was Algorithms 327

A1s, which was a version of the oldest algorithm in clinical use in our center that had been 328

modified such that the manually-engineered features were used as inputs to a modern 329

SVM with radial basis function kernels to accommodate linearly non-separable data. 330

These results suggest some points that may be generally useful in settings with site- 331

specific, legacy clinical decision support systems. In particular, in our clinic’s implemen- 332

tation, the existing algorithms A1r and A2r lacked a clear separation between feature 333

identification and classification steps. We anticipate that this may be the case in other 334

centers with site-specific, legacy systems. Refactoring legacy code to separate these two 335

separate steps may provide an important opportunity to introduce updated classifier archi- 336

tectures into these systems without discarding the rich domain knowledge that is embedded 337

in the derivation of engineered features. In our case, although some of the engineered 338

features (e.g., dominant frequency) could be trivially discovered by classifiers with generic 339

spectral features (like B1 and B2), other features (e.g., symmetry of the dominant spectral 340

peak) reflect clinical domain expertise that automated searches could miss given limited 341

training data. We anticipate this as a common issue and recommend that centers utilizing 342

legacy data processing routines refactor their algorithms to distinguish between feature 343

extraction and classification to address this potential limitation and enhance algorithm 344

performance. 345

Further, when we visualized the Receiver-Operator Characteristic curves (Figure 4), 346

we found that the clinical algorithms A1r and A2r were tuned to penalize false positive rate 347

at the expense of some sensitivity in clinical use. Because these algorithms were originally 348

without hyperparameter tuning, this was not done intentionally on the part of the clinicians 349

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.13.24304101doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24304101
http://creativecommons.org/licenses/by/4.0/


Version March 13, 2024 submitted to Sensors 10 of 22

Table 5. Frequency table of tremor annotations.

Extremity Absent Present Total
Head/Torso 296 56 352

Head 76 52
Shoulders 71 2
Thorax 78 1
Pelvis 71 1

Arms 767 569 1336
L_Dist_Arm 73 5
R_Dist_Arm 72 1
L_Hand 237 280
R_Hand 242 279
L_Prox_Arm 71 3
R_Prox_Arm 72 1

Legs 481 103 584
L_Dist_Leg 81 21
R_Dist_Leg 81 8
L_Foot 76 30
R_Foot 81 15
L_Prox_Leg 81 21
R_Prox_Leg 81 8

Table 6. Algorithm performance comparison. Performance for hand-tuned algorithms A1r and A2r
is reported across the entire dataset. Performance for other numerically optimized algorithms is
reported across 5 separate data folds (Mean [95% CI]).

Metric A1r A2r A1s A2s B1 B2

F1-score 0.81 0.85 0.87 0.85 0.82 0.82
[0.85 − 0.89] [0.82 − 0.88] [0.78 − 0.86] [0.76 − 0.88]

Accuracy 0.89 0.91 0.92 0.91 0.89 0.92
[0.91 − 0.93] [0.89 − 0.93] [0.87 − 0.91] [0.89 − 0.95]

Precision 0.87 0.93 0.93 0.89 0.91 0.85
[0.90 − 0.96] [0.86 − 0.92] [0.89 − 0.93] [0.80 − 0.90]

Recall 0.75 0.78 0.81 0.80 0.78 0.80
[0.79 − 0.83] [0.77 − 0.83] [0.73 − 0.83] [0.70 − 0.90]

using these tools. Refactoring code could give clinicians the opportunity to tailor the 350

balance of precision and recall to the clinical task at hand. 351

Analysis of SHAP plots revealed interesting information about the spectral composi- 352

tion of tremor. We noted that high activation of features in the frequency range between 353

4.3 Hz and 7.0 Hz were identified as significant for identifying tremor presence vs. absence 354

(red), while high activation of features in the frequency range between 0.7Hz and 1.3Hz 355

were identifying tremor absence vs. presence (blue) (Figure 5). This is consistent with 356

literature using various sensing modalities that have described tremor [2] as producing 357

frequency band activity around 5Hz, with voluntary movement producing lower frequency 358

band activity below 3Hz. In particular, these results show that low frequency movement is 359

not informative for detecting tremor; in fact, these frequencies have negative predictive 360

value, suggesting that voluntary movements have the potential to be interpreted as false 361

positives. 362

This was an informative result, as both clinical algorithms A1r and A2r were designed 363

with features engineered to capture spectral information that was informative about tremor 364

presence (presumably around 5Hz), but imposed no penalties on low frequency information 365

that indicated that it was absent. This could be interpreted to mean that the original 366

developers of these algorithms exhibited some cognitive confirmation or similar bias when 367
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Figure 2. Example of tremor identification with algorithm A1r. Algorithm A1r operates on each
kinematic marker on a given extremity, and estimates the central frequency (Hz) and spectral power
density (db/Hz) of the highest-amplitude tremor observed across markers.

designing the features to represent the aspects of the behavior they “knew about,” while 368

neglecting equivalent kinematic information that was informative about the absence of 369

tremor. The ability of modern ML to discover features may provide a unique opportunity 370

to complement engineered features created with domain expertise. 371

4.1. Limitations 372

Our primary aim was to develop a generic tremor identification algorithm that could be 373

used across extremities, behavioral tasks, and diagnoses. Although the resulting algorithm 374

is almost certainly not optimal in all settings, this approach generally aligns with clinical 375

best practices and represents an important first step in the development of a comprehensive 376

clinical decision support tool for tremor. However, this necessarily comes with the limitation 377

that this tool may not be appropriate for all tremor identification tasks. 378

Further, our tremor assessment approach does not use scripted voluntary movements 379

and weight application in order to isolate mechanical, volitional, and pathophysiological 380

causes of tremor [28]. 381

4.2. Unique contributions 382

Our method assesses tremor across the body, a unique capability. In a recent machine 383

learning review on tremor applications, only 14% (5/37) explored body parts beyond 384

hands or distal arms [1]. This instrumentation is certainly convenient and almost certainly 385

sufficient for tremor characterization with frequency [2] or amplitude [29,30]. However, 386

we know that signal processing approaches like correlation across body regions provide 387

additional diagnostic insight for discriminating, for example, parkinsonian from orthostatic 388

tremors [28]. With full body data, end-to-end machine learning approaches (e.g., [9]) have 389

significant potential to discover these and other features automatically. Other more subtle 390

tremor features like distractibility [28] seem more likely to be characterized in full body 391

data. Further, our testing approach imposes few, if any constraints on the participants’ 392
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Figure 3. Example of tremor identification with algorithm A2r. Algorithm A2r operates simultane-
ously on all kinematic markers on a given extremity, and estimates the central frequency (Hz) and
amplitude (mm) of the highest-amplitude tremor present.

natural movements. This complicates data analysis compared to methods that confine 393

movements to a single plane, (e.g., [13]) but may improve external validity. 394

4.3. Conclusion 395

Here, we sought to assess the ability of several candidate processing pipelines to 396

identify the presence or absence of tremor in kinematic data from movement disorders 397

patients compared to expert ratings from movement disorders specialists. We found 398

that many solutions offered acceptable performance. The best individual-performing 399

algorithm was a modernization of one of the oldest algorithms in constant clinical use in 400

our center. In general, updating legacy clinical decision support systems to incorporate 401

modern machine learning classifiers may result in better performing tools and associated 402

decreases in provider time and improved outcomes. 403
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The following abbreviations are used in this manuscript: 414
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(a) ROC (b) PRC
Figure 4. The average receiver operating characteristic (ROC) and precision-recall (PRC) curves for
the SVM and XGBoost classifiers using spectral features of the spatial positions of the sensors. The
shades correspond to ±1 standard deviations of each curve across the five fold cross-validation. Refer
to text for details.

Figure 5. SHAP (SHapley Additive exPlanations) plot illustrating the contribution of each spectral
feature across the Nyquist band, to the tremor prediction results. Each column on the plot repre-
sents a specific feature’s contribution to the prediction. Positive SHAP values drive the model’s
output towards the tremor class, while negative values drive towards the non-tremor class. The
color intensity indicates the magnitude of the feature value, with red denoting high values and
blue indicating low values. Notice the significance of the frequency range between 4.3 Hz–7 Hz in
identifying tremor. Frequencies below 3 Hz (corresponding to slow motions of the subject) are not
informative for detecting tremor.
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CPT Current Procedural Terminology
ET Essential tremor
FTM Fahn-Tolosa-Marin Tremor Rating Scale
MDS-UPDRS-III Movement Disorder Society-Unified Parkinson’s Disease Rating Scale Part III
PD Parkinson’s disease
SHAP SHapley Additive exPlanations
SVM Support vector machine
TETRAS The Essential Tremor Rating Scale

416
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Appendix A Comparison of tremor features identified by algorithms A1r and A2r 494

We performed some additional analyses to compare the tremor features identified by 495

clinical algorithms A1r and A2r. We compared tremor frequencies identified by clinical 496

algorithms A1r and A2r using a Bland-Altman approach [31]. Because each of the clinical 497

algorithms produced an estimate of tremor amplitude whether or not a tremor was detected, 498

we compared the ranges of amplitudes obtained when tremor was present or absent 499

according to ground-truth labels with two-sample Kolmogorov-Smirnov tests. 500

Overall, algorithms A1r and A2r identified very similar central tremor frequency 501

estimates, with average values 4.8 ± 1.0 Hz and 4.7 ± 0.6 Hz, respectively. Bland-Altman 502

analysis between the results of the two algorithms identified a bias of −0.1 Hz between the 503

two algorithms, with 95% limits of agreement (−9.0, 0.7) Hz (Figure A.1). 504

With both algorithms, the range of identified amplitudes for which tremor was rated 505

present according to expert labels had some overlap with the range of amplitudes for which 506

tremor was rated absent. This suggests that a simple amplitude-based threshold would be 507

insufficient to discriminate tremor presence using either approach. With algorithm A1r, the 508

average amplitude when tremor was present was [102.2 ± 13.40, 1.9 − 944.7] mm/s ([Mean 509

± SD, range]) compared to [26.4 ± 35.1, 0.4 − 199.0] mm/s when tremor was absent. With 510

algorithm A2r, the average amplitude when tremor was present was [3.07± 3.00, 0.3− 24.3] 511

mm compared to [0.13 ± 0.12, 0.01 − 0.59] mm when tremor was absent. The cumulative 512

densities identified by both algorithms showed separation between cases labeled as tremor 513

absent and present and highly significant (P≪0.001) two-sample Kolmogorov-Smirnov 514

tests. Visual inspection of cumulative amplitude distributions (Figure A.2) for the two 515

algorithms suggested that A2r provided better separation, although this could not be 516

compared directly due to the different units used by the algorithms. 517
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Figure A.1. Comparison of tremor frequencies identified by clinical algorithms A1r and A2r.

Figure A.2. Comparison of tremor amplitudes identified by clinical algorithms A1r and A2r, stratified
by ground-truth labels of tremor presence or absence.
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Appendix B Additional dataset details 518

This section provides some additional details on the data format and coding scheme. 519

During each individual behavioral test, the laboratory 3D motion capture system records 520

the instantaneous position of all kinematic markers on the body (typically 60) and exports 521

these data to a standard *.trc tabular data format with some minimal header information. A 522

typical .trc file for a 30-second recording at 120 Hz comprises 3600 rows (30 seconds × 120 523

Hz) and 180 columns (60 markers × 3 axes) of kinematic data. Because each file includes 524

data from markers on different extremities, for which tremor may be absent or present on a 525

give trial, the columns of the *.trc file corresponding to markers on each extremity must be 526

separated prior to analysis. Our clinical data processing pipeline maintains the mappings 527

between kinematic markers and extremities in an *.xml file (markers.xml). To avoid the 528

burden of parsing these files, the data supplied with the paper are provided in two different 529

formats. Each deidentified .trc file is provided as originally exported, as well as divided 530

into separate .csv files for each body extremity in the accompanying dataset. These files are 531

compatible with standard Python, R, Matlab, or similar software libraries. Summaries of 532

the contents of example files are provided in Table B.1. Descriptions of kinematic marker 533

locations are provided in Tables B.3 through B.5. 534

Information about the testing condition used during each recording is provided as part 535

of the individual file names, using the nomenclature provided in Table B.2. For example, 536

the file data/HH/std-arms-extended1-TP.trc designates participant HH standing with arms 537

extended forward along the X axis of the laboratory 1. In pointing and spiral movement 538

tasks, the suffix right or left, or 1 or 2, are appended to the filename denoting the extremity 539

involved. In some cases, extra motor or cognitive tasks were introduced to intensify tremor 540

provocation, with supplementary information appended to the base task codes. 541
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Table B.1. Example file descriptions and load methods. In some cases .trc files contain additional
columns with derived variables that should be ignored.

Example file std-arms-extended1-
TP.trc

std-arms-extended1-
TP/R_Hand.csv

Description Tabular data with
header exported by
motion capture soft-
ware

Portion of .trc file cor-
responding to extrem-
ity R_Hand

Columns
Number 182 Variable
Contents Index Index

Time (seconds) Time (seconds)
Whole-body kinematic
marker data arranged
as x, y, z

Extremity kinematic
marker data from
R_Hand arranged as x,
y, z

Load methods loadTrc.m readtable.m
pandas.read_csv
readr::read_csv

Table B.2. Nomenclature for behavioral tasks employed in testing.

Code Task

sit-rest Seated with arms at sides
sit-arms-extended Seated, with arms extended anteriorly and

parallel to the floor
sit-UEopp Seated, with arms in a “T” pose parallel to the

ground with fingers of each hand opposed
sit-point Seated, performing a finger-to-nose pointing

task with the indicated extremity (right/1 or
left/2)

sit-spiral Seated, performing a spiral movement with
the indicated extremity (right/1 or left/2)

std-rest Standing with arms at sides
std-arms-extended Standing, with arms extended out parallel to

the ground
std-UEopp Standing, with arms in a “T” pose parallel to

the ground with fingers of each hand opposed
walk-thru Comfortable walking from one end to the

other of the motion capture space
TUG Sequential “timed up and go” walking tasks
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Table B.3. Kinematic marker descriptions for markers on the trunk. Markers that appear on both
sides of the body are listed for the right side only and are coded beginning with “R.” Replacing this
character with “L” will designate the corresponding marker on the left side of the body.

Extremity Marker Code Description

Head Front_Head Center of forehead, on cap
JAW Mental protuberance
Jaw Mental protuberance
RBHD Right back head, on cap
RFHD Right front head, on cap
Rear_Head Rear of head, on cap
TopHead Top of head
Top_Head Top of head

Shoulders C7 Seventh cervical vertebra
RBAK Right scapula (asymmetry marker)
RSHO Right acromioclavicular joint
R_Shoulder Right acromion process
STRN Xiphoid process

Pelvis LASI Left anterior superior iliac spine
RASI Right anterior superior iliac spine
RIC Right iliac crest
RPSI Right posterior superior iliac spine
R_ASIS Right anterior superior iliac spine
V_Sacral Sacrum

Thorax CLAV Clavicular notch
R_Clavicle Right clavicle
R_Scap_Inf Right scapula inferior angle
R_Scapula Right supraspinous fossa
T10 10th thoracic vertebra
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Table B.4. Kinematic marker descriptions for markers on the arms. Markers that appear on both
sides of the body are listed for the right side only and are coded beginning with “R.” Replacing this
character with “L” will designate the corresponding marker on the left side of the body.

Extremity Marker Code Description

R_Dist_Arm RFRM Lateral surface of forearm
RWRA Radial side of wrist
RWRB Ulnar side of wrist
R_Forearm Lateral surface of forearm
R_Radius Right styloid process of radius
R_Ulna Mid region of ulna

R_Hand RFIN Third finger, first metacarpal joint
RFINGM2 Third finger, second metacarpal joint
RFINGM3 Third finger, most distal segment
RTHM1 Thumb, first metacarpal
RTHM2 Thumb, second metacarpal
RTHM3 Thumb, most distal segment
R_Finger3_M1 Third finger, first metacarpal joint
R_Finger3_M2 Third finger, second metacarpal joint
R_Finger3_M3 Third finger, most distal segment
R_Hand Radial surface of wrist
R_Thumb_M1 Thumb, first metacarpal
R_Thumb_M2 Thumb, second metacarpal
R_Thumb_M3 Thumb, most distal segment
R_Wrist Radial surface of wrist

R_Prox_Arm RELB Right lateral epicondyle
R_BicepsLateral Lateral surface of upper arm
R_Biceps_Lateral Lateral surface of upper arm
R_Elbow Right lateral epicondyle
R_Elbow_Medial Right medial epicondyle
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Table B.5. Kinematic marker descriptions for markers on the legs. Markers that appear on both
sides of the body are listed for the right side only and are coded beginning with “R.” Replacing this
character with “L” will designate the corresponding marker on the left side of the body.

Extremity Marker Code Description

R_Dist_Leg RANK Lateral aspect of ankle
RANKM Medial aspect of ankle
RTIB Midpoint of tibia
R_Ankle Lateral aspect of ankle
R_Ankle_Medial Medial aspect of ankle
R_Shank Midpoint of tibia

R_Foot RFTM Dorsal/medial surface of foot midway
between ankle and toe

RHEE Distal surface of heel
RTOE Third metatarsal
R_Hallux Dorsal surface of big toe
R_Heel Distal surface of heel
R_MedFoot Dorsal/medial surface of foot midway

between ankle and toe
R_Toe Third metatarsal

R_Prox_Leg RKNE Lateral aspect of flexion-extension axis
of knee

RKNEM Medial aspect of flexion-extension axis
of knee

RTHI Upper lateral 1/3 surface of thigh
R_Knee Lateral aspect of flexion-extension axis

of knee
R_Knee_Medial Medial aspect of flexion-extension axis

of knee
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