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Summary

Large biobanks, such as the UK Biobank (UKB), enable massive phenome by genome-wide

association studies that elucidate genetic etiology of complex traits. However, individuals from diverse genetic

ancestry groups are often excluded from association analyses due to concerns about population structure

introducing false positive associations. Here, we generate mixed model associations and meta-analyses

across genetic ancestry groups, inclusive of a larger fraction of the UKB than previous efforts, to produce

freely-available summary statistics for 7,266 traits. We build a quality control and analysis framework informed

by genetic architecture. Overall, we identify 14,676 significant loci (p < 5 x 10-8) in the meta-analysis that were

not found in the EUR genetic ancestry group alone, including novel associations for example between

CAMK2D and triglycerides. We also highlight associations from ancestry-enriched variation, including a known

pleiotropic missense variant in G6PD associated with several biomarker traits. We release these results

publicly alongside FAQs that describe caveats for interpretation of results, enhancing available resources for

interpretation of risk variants across diverse populations.
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Introduction

Paired genetic and phenotypic data have grown explosively over the last decade, particularly with the

maturity of massive global biobank efforts1,2. These data have led to the identification of over 275,000

associations between genetic loci and human traits and diseases to date3. However, genome-wide association

studies (GWAS) tend to be vastly Eurocentric, limiting their generalizability to ancestrally and globally diverse

populations4,5. Imbalanced data generation is the primary cause of this issue, but a secondary contributor is

that GWAS tend to analyze the largest ancestry group in a dataset and exclude underrepresented groups to

avoid potential false positives arising due to population stratification. Using the ancestrally diverse data already

available is critical for several reasons, including increasing the applicability of genetic findings across

populations, as well as increasing power for gene discovery due to increased genetic diversity.

Underrepresented populations also disproportionately contribute to genomic discoveries: for example, African

ancestry and Hispanic/Latin American groups only comprise 2.4% and 1.3% of individuals represented in the

GWAS catalog, respectively, but contribute 7% and 4.3% of associations overall6. In comparison, 78% of

individuals have primarily European ancestry but contribute only 54% of associations.

Box 1 | Genetic ancestry in the Pan-UKB

At its core, a GWAS tests whether differences in allele frequencies correlate with trait variation. Differences
in allele frequencies have arisen throughout human history, mainly driven by genetic drift (i.e., random
changes in frequency over time). Failure to control for these differences (i.e. population stratification) can
induce confounding, where mean differences in traits spuriously correlate with differences in allele
frequencies, resulting in false associations. We evaluated two approaches to include as many individuals as
possible into the GWAS: splitting based on genetic similarity (estimated by principal component analysis)
then meta-analyzing, versus mega-analyzing all individuals in one model. We found that meta-analyzing
genetic ancestry groups showed less evidence of cryptic stratification, reducing false positives and improving
the robustness of associations. However, these groups are ultimately pragmatic, based on a variety of
historical factors in how reference data were collected and analysis conventions were set; they do not imply
the existence of discrete, biological ancestral populations (Discussion). We emphasize that genetic ancestry
is a continuum with more genetic variation within these ancestry groups than differences between them.7
Interpreting genetic ancestry groups as monikers of race or ethnicity is unwarranted as it grossly
oversimplifies the complexities of human demographic history and the diversity in ethnicity and identity
present worldwide.8 The genetic ancestry groups used in this study were defined using a pair of well-known
reference panels (HGDP+1kGP, see Supplementary Information). Throughout this manuscript, we refer to
UK Biobank ancestry assignments using the ancestry labels provided by HGDP+1kGP: EUR (European),
CSA (Central/South Asian), AFR (African), EAS (East Asian), MID (Middle Eastern), and AMR (Admixed
American - an imprecise label introduced by the 1kGP to describe individuals with recent admixture from
multiple continents including Amerindigenous ancestry), describing genetic similarity in accordance with
recent reports that explored population descriptors in much greater detail9,10, e.g. HGDP+1kGP-AFR-like,
which we shorten throughout the rest of the text to the three-letter population codes, e.g. AFR. More details
on these and related points can be found in the Frequently Asked Questions (Supplementary Information).
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Many trait- and disease-specific consortia have conducted multi-ancestry GWAS to increase sample

sizes and investigate generalizability, which have yielded deep insights into biology11. For most traits and

diseases, a large number of variants--each with a small effect size--contribute to phenotypic variation. As a

general rule, causal variant effect sizes tend to be largely consistent across populations12–14, showing very low

evidence of heterogeneity when accounting for differences in allele frequency and linkage disequilibrium (LD)

across populations. Multi-ancestry studies, however, have highlighted some clear examples where

ancestry-enriched variants (e.g. variants at 10-fold higher frequency in an ancestry group compared to others)

provide power for genetic discovery that would not be readily identified only in European ancestry studies.

Some examples include associations between HNF1A and type 2 diabetes identified in Latin American

populations15; loss-of-function variant associations in PCSK9 and low LDL cholesterol identified in African

Americans16; associations between inflammatory bowel disease and variants enriched in East Asian

ancestries17; associations between the Duffy-null allele and malaria identified in sub-Saharan African

populations18; and associations between APOL1 and resistance to trypanosomes but also chronic kidney

disease in African and African diaspora populations19–21. Several of these associations have clinical

implications that benefit individuals from all backgrounds, such as the PCSK9 association which led to one of

the first genetically informed therapies to prevent heart disease.

In addition to genomic discovery, multi-ancestry genetic analyses are also critical for resolving,

interpreting, generalizing, and translating GWAS results. For example, diverse GWAS provide greater

resolution into the identification of putative causal variation via fine-mapping due to: 1) a joint analysis of

different patterns of LD across diverse populations22,23, and 2) larger sample sizes with more diverse ancestral

recombination history24–28, improving identification of actionable targets using GWAS results. Another key

application of GWAS is the construction of polygenic risk scores, with numerous potential clinical implications

including disease risk stratification29. Genetic prediction accuracy closely reflects the composition of the study

cohorts from which such models are derived, leading to the widely-replicated observation that Eurocentric

discovery GWAS produce polygenic scores whose predictive powers are reduced by several fold in poorly
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represented genetic ancestry groups5,30–33. Multi-ancestry studies have already begun improving genetic

prediction accuracy in underrepresented populations for some phenotypes2,12,13,34,35. Biobank-scale genetic

correlation analyses and phenome-wide association studies are additional approaches that have aided our

understanding of molecular and epidemiological relationships across a wide variety of traits; however, these

have also tended to be Eurocentric in representation due to imbalances in GWAS36–39 and more diverse

representation is needed particularly to disentangle ancestry-enriched genetic and environmental factors that

contribute to disease risk.

The UK Biobank (UKB)40,41 is one of the most impactful biobanks to date, due to its large number of

participants, depth and breadth of phenotyping, consistency in data generation, and uniquely open and

straightforward access model; despite this, analyses have largely focused on only European ancestry

participants. While most (95%) UKB participants fall into the EUR group (the genetic ancestry group with

predominantly European ancestries), more than 20,000 participants have primarily non-European ancestries

(Box 1). The UKB therefore provides opportunities to conduct some of the largest genetic studies to date of

thousands of phenotypes in diverse continental ancestries.

Here, we describe the Pan-UK Biobank Project (https://pan.ukbb.broadinstitute.org/), a multi-ancestry

genetic analysis of thousands of phenotypes. We extend previous phenome-wide association resources,

adding 14,676 independent associations using meta-analysis of multiple ancestry groups rather than only the

EUR subset. We highlight discoveries enabled by multi-ancestry analysis, including an association between

CAMK2D and triglycerides. We also show how ancestry-enriched variation highlights interesting biology,

including a pleiotropic association between G6PD and a number of biomarker traits, primarily accessible in the

AFR genetic ancestry group. We describe and release pipelines for a robust analytic framework to facilitate

future multi-phenotype multi-ancestry genetic analyses to improve gene discovery.

Results

A resource of multi-ancestry association results from 7,266 phenotypes in the UKB

To maximize genomic discovery in the UKB, we performed a multi-ancestry analysis of 7,266

phenotypes, with analysis of up to 441,331 total individuals from up to 6 genetic ancestry groups followed by

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.03.13.24303864doi: medRxiv preprint 

https://paperpile.com/c/LGEnhI/1sgS+23fO+NjoX+zc1S+zF9w
https://paperpile.com/c/LGEnhI/TsRQ+nG3G+vKmF+NTp2+0zr5
https://paperpile.com/c/LGEnhI/seHz+NBgb+ar8P+T8hi
https://paperpile.com/c/LGEnhI/O41H+O0j8
https://pan.ukbb.broadinstitute.org/
https://doi.org/10.1101/2024.03.13.24303864
http://creativecommons.org/licenses/by/4.0/


meta-analysis. We assigned each individual to a genetic ancestry group by conducting principal components

analysis (PCA) on a diverse reference panel consisting of the Human Genome Diversity Panel (HGDP) and

1000 Genomes Project genotype data42,43 (Supplementary Table 1), then projected UKB individuals into this

space using their genotype data using a random forest (probability > 0.5) to partition the dataset into six

genetic ancestry groups (Extended Data Fig. 1, Supplementary Figs. 1-13, Supplementary Tables 2-5).

After initial assignments, to further reduce stratification, we removed ancestry outliers based on

multidimensional centroid distances from average PC values (Supplementary Information). The ancestry

groups follow broad expected trends based on self-reported ethnicity (as defined by the UK), continental

birthplaces, and country of birth although there is notably still considerable within-group diversity

(Supplementary Tables 6-7, Supplementary Fig. 14); while principle components correlate with these

concepts, correlations deviating from 1 reflect the fact that genetic ancestry is a distinct concept from these

other identity- and geography-based descriptors (see Box 1 and Supplementary Information, FAQ). For

example, a person assigned to some genetic ancestry group may or may not report having a corresponding

ethnic identity44–46. From these data, we performed sample and variant quality control (QC) to remove sample

outliers and low-quality and ultra-rare variants (Methods). This resulted in 20,800 individuals assigned to

non-EUR ancestry groups with 42,535 remaining unclassified, most of whom were preliminarily assigned with

similarity to EUR and then subsequently removed as outliers (Supplementary Tables 2 and 4).

We used a two-step approach for genetic association testing, first performing GWAS within each

genetic ancestry group for a given trait using a generalized mixed model approach (SAIGE47), and then

performing fixed-effect inverse-variance weighted meta-analysis across all within-ancestry GWAS performed

for that trait. Consistent with previous studies48, we observed similar results between mega- and

meta-analyses, with the meta-analysis approach reducing stratification and type 1 error rate compared to an

alternative single-step "mega-analysis" approach that included all individuals in a single mixed model

(Extended Data Table 1). Specifically, we observed genomic control statistics closer to 1 using our approach,

as well as comparable and in some cases improved statistical power with discovery of additional genome-wide

significant loci using our approach.
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Using this two-step approach, we performed association testing across 10-23 million SNPs

(Supplementary Table 8) for all ancestry-trait pairs for quantitative phenotypes, and all binary traits with at

least 50 cases observed in an ancestry group (except EUR, 100 cases, given the larger sample size; Fig. 1a;

Supplementary Fig. 15). Altogether, this resulted in an analysis of 16,528 ancestry-trait pairs across 7,266

traits, of which 922 were run in all six genetic ancestry groups (Fig. 1b). These traits include thousands of

newly-analyzed phenotypes, including aggregate disease combinations (i.e., phecodes37), prescription drug

status, and continuous updates to the COVID-19 phenotypes49. We developed a summary statistics QC

protocol to remove low-confidence variants and associations (Supplementary Figs. 16-19).

Figure 1 | Pan-UK Biobank GWAS resource facilitates multi-ancestry multi-trait analyses a-b, The
number of phenotypes with GWAS computed across: a, genetic ancestry groups and b, number of genetic
ancestry groups stratified by trait type; within each bar, trait types are ordered by total number of traits. A full
list of phenotypes can be found in Supplementary Dataset 2. c, A cumulative distribution function showing the
number of independent genome-wide significant (p < 5 x 10-8) associations across all phenotypes analyzed
within each genetic ancestry group. Independence was defined using clumping in plink50, including an r2

threshold of 0.1 for ancestry-matched reference panels (Supplementary Information). Colors are consistent in a
and c.

To avoid double counting variants in LD, we determined a set of LD-independent loci within each

ancestry-trait pair using in-sample reference panels (Supplementary Figure 20). We extended this to our

meta-analysis by constructing reference panels of 5,000 individuals matched by genetic ancestry proportions.

For 922 traits for which association analysis was performed for all six ancestry groups, we discovered a mean

of 2.26 independent loci in non-EUR genetic ancestry groups, demonstrating that we have sufficient power for

novel discovery in these understudied groups for which GWAS have not previously been run at scale in the
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UKB. Owing to the substantially larger sample size in EUR, we find more genome-wide significant associations

per phenotype in EUR: 25% of phenotypes have >18 associated loci in EUR while fewer than 10% of

phenotypes have 3 or more associated loci across all non-EUR populations (Fig. 1c). Despite the lower

sample size but consistent with previous GWAS catalog summaries6, we find a higher mean number of

significant regionally-independent associations in AFR compared to CSA, potentially suggesting increased

power from higher heterozygosity (Extended Data Table 2).

A framework for identifying high-quality phenotypes in diverse ancestries with massively imbalanced
sample sizes

Previous phenome-wide studies of the UK Biobank have performed association testing of thousands of

traits; however, these have used linear models51 and/or only analyzed a single ancestry group47,51. In our

analysis of data from multiple ancestry groups, we identified extensive challenges due to extreme imbalances

of sample sizes, leading to unreliability of some association tests. Here, we propose a framework for testing

the reliability of GWAS of multiple ancestries.

Specifically, we summarized properties of genotype-phenotype associations, including genomic control

(λGC), heritability, and residual population stratification. We estimated SNP-heritability ( ) for eachℎ
𝑆𝑁𝑃
2

ancestry-trait pair through several strategies. For a set of pilot phenotypes in EUR (Supplementary Table 9),

we confirmed a high concordance for two methods (Extended Data Fig. 2; S-LDSC52,53 and RHE-mc54), as

well as between our results and previously reported results (Supplementary Figs. 21-24). To balance

computational considerations with power gains, we used S-LDSC for all traits in EUR, and RHE-mc for all other

genetic ancestry groups (Extended Data Fig. 2b; Supplementary Information). Across groups, the number

of traits with significant heritability (z ≥ 4) correlates with sample size of genetic ancestry group (Extended

Data Fig. 3a; Supplementary Fig. 25). We identified traits with significant out-of-bounds (i.e. outside 0-1)

heritability point estimates, deflated λGC estimates, and/or elevated S-LDSC ratio statistics, particularly in traits

that are prone to population stratification (e.g. country of birth, dietary preferences; Supplementary Fig. 26).

To increase confidence in analyses across traits and ancestries, we devised a quality control strategy to

systematically flag traits with potentially problematic GWAS results while retaining GWAS of heritable traits
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passing QC in two or more populations (Fig. 2a, Supplementary Figs. 27-29, and Supplementary

Information). Overall, we pruned 16,528 ancestry-trait pairs with available GWAS to 1,091 ancestry-trait pairs

that passed all filters spanning 452 traits (Fig. 2a). Of the ancestry-trait GWAS pairs that passed, the majority

were shared between the two largest ancestry groups (EUR and CSA), with 147 phenotypes found in three or

more genetic ancestry groups (Supplementary Fig. 29). As many phenotypes in the biobank are correlated

with each other, we pruned to a maximal set of independent phenotypes with pairwise r2 < 0.1, resulting in a

set of 151 phenotypes (Supplementary Fig. 30), and computed polygenicity estimates for all high quality traits

(Supplementary Fig. 31). We note that these genome-wide summaries aid in prioritizing phenotypes with

broad heritable components, although the failure of a phenotype in this framework does not necessarily

preclude true individual SNP-level associations.

Figure 2 | Heritability informs robustness of GWAS across ancestry-trait pairs. a, To balance large
differences in sample size across genetic ancestry groups, we developed a stepwise series of phenotype QC
filters applied based on heritability estimates, genomic control (λGC), evidence of residual stratification (S-LDSC
ratio), and high-quality data in multiple ancestry groups (see also Supplementary Figs. 25-27 for more detail).
b, Comparison of heritability estimates across EUR and CSA genetic ancestry groups. Note that two different
heritability estimation methods are used to balance computational efficiency (S-LDSC in EUR) versus precision
in small sample sizes (RHE-mc in CSA). Binary phenotype heritability estimates are reported on the observed
scale due to highly variable prevalences and liability scaling at smaller sample sizes. Error bars indicate
standard errors. The dotted line shows y=x, while the dashed line is a fitted York regression (slope = 0.49,
intercept = 0.21, p = 5 x 10-12). A version with less filtering is shown in Extended Data Fig. 2c. c, The number of
traits passing final QC filters by trait type. Colors are consistent in b, c.

Among high-quality GWAS results that passed our broad-scale QC of GWAS results, we identified

consistency in the relative magnitude of heritability estimates among populations. For example, 113
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independent phenotypes passed QC in both EUR and CSA genetic ancestry groups, and the heritability

estimates for these traits had a significant positive correlation (York regression p = 5 x 10-12; Fig. 2b, Extended

Data Fig. 2c); the heritability estimates in this set were systematically higher in the CSA, likely reflecting a

combination of winner’s curse from selection of phenotypes with significant estimates in CSA and of residual

population stratification. Biomarkers and continuous phenotypes tended to have the highest heritability

estimates (EUR average h2= 0.19 and 0.16), whereas disease and prescription phenotypes tended to have the

lowest heritability estimates (EUR average h2= 0.021 and 0.016, Extended Data Fig. 3b).

Genomic discoveries powered by Pan-UK Biobank analysis

We next investigated the extent to which broader inclusion of ancestrally diverse participants identifies

specific biological signals through meta-analysis, compared to EUR-only analysis. In particular, for 452

high-quality phenotypes, we compared p-values for the multi-ancestry meta-analysis to those from the EUR

GWAS, which were overall highly correlated (Fig. 3a; Supplementary Fig. 32; r2 = 0.999; p < 10-100). We

identified 237,360 significant (p < 5 x 10-8), LD-independent associations in the largest meta-analysis available

across 431 phenotypes, with LD defined as above (and Supplementary Figure 20). Of these, 14,676 (6.2%)

were not significant in EUR, representing new biology discovered solely by analyzing already-available data

from diverse populations.
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Figure 3 | Biobank-wide analysis improves genetic
discovery. a, Comparison of GWAS significance in EUR GWAS
only versus meta-analysis across ancestries. Variants with p <
10-10 in either analysis are shown. Colors highlight that variants
with higher non-EUR allele frequencies (teal) are more likely to
be identified in the meta-analysis. Dashed gray line shows y=x,
and the scale is logarithmic for p from 1 to 10-10, and log-log for
p < 10-10. Dotted lines indicate variants suggestive in EUR (5 x
10-8 < p < 10-6), but significant in meta-analysis (p < 5 x 10-8; see
Fig. 3b). b, Summary of regionally-independent genome-wide
significant associations. The total number, number of novel
associations (at the EFO term and category level), excluding
and not excluding previous UK Biobank multi-phenotype
analyses47,51. The final category shows the number of
associations that are suggestive in EUR alone (p < 10-6), and
where the frequency of the variant is enriched in a non-EUR
genetic ancestry group by at least 10-fold (247 that were both
suggestive and enriched). c-d, Locuszoom plots of (c) CAMK2D
(rs193059864) and triglycerides (p = 1.5 x 10-8; N = 416,764;
allele frequency in AFR = 0.016, EUR = 1.4 x 10-4) and (d)
PITX2 (rs77767351) of keratometry (3mm weak meridian - right;
p = 1.2 x 10-10; N = 89,664), with lead variants indicated by the
purple diamond and LD (r2) for neighboring variants derived
from a weighted reference panel (see Supplementary
Information). Both lead variants (c-d) have info score > 0.9 and
heterogeneity p-value > 0.1.

In order to compare to prior trait-specific and systematic

analyses in the UK Biobank47,51 and other datasets, we created

a framework to quantify associations added by the Pan-UK

Biobank analysis compared to existing associations in Open

Targets Genetics55. Two challenges with phenome-wide

comparisons is the pervasiveness of pleiotropy coupled with

mapping phenotypes across GWAS, which may be coded

slightly differently and have subtle differences in phenotype

definitions56. Through semi-manual curation, we mapped 3,047

(42%) of our traits to terms in the Experimental Factor Ontology

(EFO), of which 2,566 matched a study in the GWAS Catalog;
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our ability to cross-reference phenotypes varied by trait type (Supplementary Table 10). Furthermore, as

LD-independent associations are challenging (e.g. even r2 < 0.1 can result in spurious “independent” signals

when in LD with extremely significant signals with ꭓ2 > 300), we computed distance-based independent

associations in order to assess novelty conservatively, and compared to known associations accordingly.

Specifically, we defined a variant as novel only if no known associations for the same EFO broad category are

present within 1 Mb. We identified 71,372 regionally-independent associations that mapped to an EFO

category, of which 68,260 (96%) were previously reported for the same EFO category. 3,112 (4%) were not

previously identified (Fig. 3b), with this rate varying by EFO category (Extended Data Fig. 4). The X

chromosome contributes an outsized proportion of this novelty, with 573 of 2,448 (23%) associations not

previously reported for the same EFO category. This disproportionate contribution is likely due to exclusion of

the X chromosome in many previous GWAS57.

Newly-significant associations arise due to a combination of factors: bolstered associations that

crossed the genome-wide significance threshold with mixed models from previously sub-threshold associations

in standard regression, increased sample size of EUR participants, and inclusion of participants with non-EUR

ancestries that either added support or contributed outsized significance due to ancestry-enriched variation. Of

the 3,112 novel meta-analysis associations, 3,092 show suggestive signals (e.g. 5 x 10-8 < p < 10-6) in

EUR-only analyses where the multi-ancestry meta-analysis results in genome-wide significance (p < 5 x 10-8).

Allele frequencies were enriched by at least 10-fold in at least one genetic ancestry group over EUR in at least

one genetic ancestry group for 260 associations (247 both suggestive in EUR and enriched outside EUR; Fig.

3b). For instance, we find a significant association between triglycerides and CAMK2D (meta-analysis p = 1.5 x

10-8; EUR p = 0.0017; Fig. 3c), at a variant (rs193059864) that is 114-fold enriched in AFR (AFR frequency

1.6%, EUR frequency 1.4 x 10-4). Another variant in this gene has recently been implicated in heart failure58;

however, rs193059864 is in low LD with the variant identified in this study (rs17620390; r2 = 0.001), indicating

that these likely represent independent associations.

We investigated broad patterns of gene function closest to each association to assess biological

relevance. We find that 66% (124/187) of haploinsufficient genes are near a novel significant association
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(Extended Data Fig. 5a; all hits shown in Supplementary Fig. 33), compared to 34% of all genes

(5,969/17,428). The associations near haploinsufficient genes often correspond to broadly similar phenotype

categories as the OMIM annotation of the gene. For instance, we find associations between SNP rs77767351

(near PITX2) and several keratometry measurements, including 3mm weak meridian-right (meta-analysis

p-value = 1.2 x 10-10; Fig. 3d). Previous studies have identified a crucial role for PITX2 in embryonic

development and tissue formation59 and implicated mutations in this gene with rare Mendelian eye-related

diseases, such as Axenfeld-Rieger syndrome60,61. To our knowledge, this SNP has not been significantly

associated in any GWAS, and indicates a potential allelic series, in which the intermediate eye phenotype

associated with the common variant can provide context for the molecular mechanisms underlying the

dominant condition caused by high-impact variants in PITX2.

Inclusion of multiple genetic ancestries improves genetic discovery

To further explore potential reasons for associations only significant in the meta-analysis, we compared

effect sizes to allele frequencies by ancestry. For quantitative traits where effect sizes are directly comparable,

we broadly observed the characteristic inverse relationship between minor allele frequency (MAF) and effect

size, in which rarer variants tend to have larger effect sizes than common variants62,63 (Fig. 4a). We identified

genome-wide significant associations through meta-analysis and not in the EUR GWAS in some cases due to

higher ancestry-specific MAFs, which rendered some variants with larger effect sizes accessible to discovery

despite the smaller sample size (Fig. 4b), although winner’s curse may inflate some effect size estimates64.
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Figure 4 | Differences in allele frequencies across ancestries yield novel genetic discoveries. a,
Significantly associated variants for a set of 140 quantitative traits identified in the EUR genetic ancestry group
(blue) versus those discovered only in the meta-analysis (black), with allele frequencies and effect sizes in
EUR shown. b, The same significantly associated variants as shown in a, but with ancestry-specific
frequencies and effect sizes estimated from the multi-ancestry meta-analysis. Associations on the X
chromosome (e.g. G6PD) are denoted with triangles. Contrasting a-b highlights the importance of higher allele
frequencies in underrepresented ancestry groups for empowering associations.

We thus investigated the most extreme differences (i.e. associations significant in the meta-analysis,

but not in the EUR GWAS, i.e. those in the upper left quadrant of Fig. 3a). We find that these associations

were more likely to be found at high-quality variants (Supplementary Information) and were 6-fold enriched

for variants more common in AFR (4-fold in any non-EUR ancestry; Extended Data Fig. 6), indicating that

these associations are likely enriched for universally tagging or putatively causal variants in multiple

populations. The most extreme differences in p-values stemmed from extreme frequency differences, such as

between variants in/near G6PD and a number of traits (Fig. 5), where a higher frequency in AFR increased

power for association. However, perhaps paradoxically, variants with p-values more significant in EUR-only

GWAS compared to meta-analysis were also 2.4-fold enriched for those with higher AFR frequencies

(Extended Data Fig. 6). These variants are most likely not causal, but tagging variants with differential LD

patterns across ancestries leading to apparent heterogeneity in meta-analysis. For instance, a variant in LD
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with a causal variant in EUR, but only partial LD in AFR with increased frequency will be identified as

heterogeneous with little or no effect in AFR. Indeed, heterogeneity (Cochran’s Q p < 0.01) was 2.5-fold

enriched for variants with reduced significance in the meta-analysis compared to the EUR GWAS alone

(Extended Data Fig. 6; Supplementary Fig. 32).

Refining biological signals through ancestry enriched variation

Among the most extreme differences we identified between the meta-analysis and EUR-only results

was a missense variant (rs1050828) in G6PD, which had significant associations with five phenotypes in the

AFR group (allele frequency = 16%; Fig. 5a) but not in EUR (allele frequency = 1.5 x 10-4), including glycated

hemoglobin (HbA1c; Fig. 5b), high light scatter reticulocyte count, red blood cell count, red blood cell

distribution width, and mean sphered cell volume (Fig. 5c, Supplementary Fig. 34, Supplementary Table

11). Our results replicate previous associations between variants in/near G6PD and HbA1c65, and further

validate the pleiotropic effect of this missense variant. We performed ancestry-specific fine-mapping of these

signals (Extended Data Fig. 7a), which confirm the likely functional nature of this variant; however,

fine-mapping of meta-analyzed summary statistics presented a significant challenge (Extended Data Fig. 7b),

particularly due to highly imbalanced sample sizes.

To further explore the influence of ancestral haplotypes on trait associations, we performed a pilot study

running Tractor66 for a subset of traits on a similar set of individuals to the AFR SAIGE tests. We find further

improved false positive control and accurate group-level effect size estimation compared to SAIGE (Extended

Data Fig. 8; Supplementary Dataset 7; Supplementary Information), highlighting the utility of further

refining ancestry to more robustly evaluate genetic associations with traits
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Figure 5 | Meta-analysis identifies pleiotropic signals from non-European populations. a, Correlation
matrix of the top five phenotypes significantly (meta-analysis p < 5 x 10-8) associated with rs1050828
(chrX:153764217), a missense variant in G6PD (all p-values are shown in Supplementary Table 11). The upper
and lower triangles of the matrix represent the genetic and phenotypic correlations, respectively. (RET: High
light scatter reticulocyte count; RDW: Red blood cell (erythrocyte) distribution width; RBC: Red blood cell
(erythrocyte) count; MSCV: Mean sphered cell volume; HbA1c: Glycated hemoglobin) b, Locuszoom plot of a
1Mb region around the lead SNP rs1050828 (purple diamond) for the meta-analysis result of glycated
hemoglobin (p = 1.1 x 10-299; N = 408,539), as in Fig. 3c-d. c, Forest plot showing association beta for each
phenotype for rs1050828, including a meta-analysis across all available ancestry groups (full results shown in
Supplementary Fig. 34). rs1050828 was low-frequency in CSA and EAS and thus, association statistics were
not computed. Error bars correspond to 95% confidence intervals.

Discussion

We present a multi-ancestry genetic study and resource that extends previous analyses focused only

on EUR participants to a wider set of UKB participants from understudied genetic ancestry groups. Here, we

build a new framework, including pipelines and best practices for multi-phenotype multi-ancestry analysis, that

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.03.13.24303864doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24303864
http://creativecommons.org/licenses/by/4.0/


we recommend be adopted by groups performing similar analyses for the UK Biobank and other diverse

biobanks, such as the All of Us project. Our quality control framework provides a blueprint to identify

phenotypes with robust GWAS, particularly when sample sizes are imbalanced and/or with stratification. Our

results show that diverse analysis is critical for maximizing biological discovery even with imbalanced sample

sizes, and that full data release is critical to broad comparisons across datasets. We provide summary

statistics for 16,528 GWAS in scalable and per-phenotype form, as well as reference data (including LD

scores/matrices and sample metadata returned to the UK Biobank) to reduce the barrier for future

multi-ancestry analyses of these existing and new phenotypes, respectively. Indeed, this work contributed

continuously updated summary statistics to the COVID-19 host genetics initiative49, as well as broader efforts

such as the Global Biobank Meta-analysis Initiative67.

In this work, we highlight challenges in performing multi-phenotype analyses of thousands of

phenotypes, particularly around quantifying novelty and fine-mapping in the presence of imbalanced sample

sizes. We identify 3,112 genome-wide significant associations that were not previously found in Open Targets

Genetics55. These discoveries arise from ancestry-enriched variants (e.g. CAMK2D rs193059864 with

frequency enriched in AFR) as well as previously sub-significant signals (5 x 10-8 < p < 10-6; e.g. rs77767351 in

PITX2), which are significantly associated here due to a combination of larger sample sizes in the European

ancestry group, inclusion of participants with primarily non-European ancestries, and use of more advanced

mixed models that increase statistical power for discovery. Some associations demonstrate allelic series, in

which variants in the same gene have different levels of effects on related phenotypes: common variants in

PITX2 are associated with variation in traits (keratometry traits), whereas rare pLoF variants in ClinVar are

related to severe diseases (e.g. Axenfeld-Rieger syndrome).

We additionally highlight a set of pleiotropic associations for a common missense variant in G6PD in

the AFR genetic ancestry group that is rare and thus inaccessible in other genetic ancestry groups. While

some of these phenotypes were filtered out by our QC pipeline in AFR, we note that these broad filters do not

preclude individual true associations. Fine-mapping of this locus in AFR shows sensible credible sets, whereas

fine-mapping across a meta-analyzed cohort leads to instability, particularly in this case where a smaller
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ancestry group contributes an outsized fraction of the variance explained (i.e. 2pq*β2). These results

demonstrate a clear need for cohorts with more balanced sample sizes across ancestry groups, such as the

burgeoning All of Us Research Program cohort68. More diverse cohorts will require care when running GWAS

to retain high quality association data, particularly as statistical methods often assume homogeneity that can

be easily violated when analyzing genomes with high degrees of recent admixture. Scaling methods that

consider recent admixture66 may improve these analyses further. Additionally, diverse cohorts provide new

opportunities to understand heterogeneity in effects, to characterize the influence of variable allele frequency,

LD patterns, and environmental factors. While analyzing increasingly diverse GWAS data can be challenging, it

is scientifically imperative to accurately identify novel associations, resolve which variants are most likely to be

causal, and increase accuracy in polygenic score analysis for all.

In our study, we assigned individuals into distinct ancestry groups. This is a pragmatic approach for

statistical analysis that reflects legitimate tradeoffs between controlling type 1 error due to population

stratification using meta-analysis versus enhancing statistical power in mega-analyses, which we evaluated

empirically. The ideal strategy has not been fully adjudicated in the field, as it is rare that both approaches are

equally feasible. Previous studies have shown that results from both approaches are highly comparable.69,70

We find outsized benefits to meta-analysis in controlling type 1 error which is especially important when

analyzing thousands of traits with widely varying degrees of stratification, and an added benefit is providing

ancestry-specific effect size estimates from GWAS that enables more straightforward downstream comparative

analyses of genetic effects with datasets from different ancestries. However, this approach simplifies the

complex and continuous concept of ancestry into discrete categories and thus risks reifying incorrect

assumptions about biological essentialism to racial and ethnic groupings. Readers should be cautious not to

infer that these ancestry groups reflect rigid or discrete biological entities; the boundaries between assigned

population identifiers are arbitrary and do not necessarily align with biological realities. As such, our use of

population grouping should be viewed simply as a methodological convenience. In the future, methods that use

continuous measures of genetic diversity or more nuanced approaches to ancestry may provide additional
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insights and avoid oversimplification. Please refer to our supplementary FAQ for additional context; especially

the section ‘Why do you analyze ancestry groups separately?’.

Moreover, the biology of causal variants is mostly shared across populations14. In GWAS, differences in

MAF and LD due to distinct demographic histories across populations will drive differences in statistical power

for discovery, given that the vast majority of GWAS top loci are tagging variants rather than causal. Our

detection of GWAS loci unique to particular populations are thus most likely due to improved statistical power

for detection in that population, rather than a true causal variant that has distinct effects across ancestry

backgrounds. GWAS associations identified only in one ancestry group should thus not be taken as evidence

of biological differences between groups. By including multiple ancestral populations in our analyses, we

empower identification of loci meaningful to everyone’s health, regardless of ancestry.

Conducting systematic analyses across a massive range of traits raises sensitivities that users of this

resource will attempt to make inappropriate comparisons across ancestry groups. Previous work has shown

that comparing polygenic score distributions across ancestries is not scientifically meaningful, and we

discourage use of this resource to make trait comparisons on the basis of race or ethnicity. We encourage

consulting a resource of FAQs we carefully developed as part of this project

(https://pan.ukbb.broadinstitute.org/) when using this resource to make any population-based comparisons and

evaluating risks versus benefits.
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Data availability

All data are available at https://pan.ukbb.broadinstitute.org/, and sample metadata is available in the

UK Biobank showcase under return number 2442: https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=2442.
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Extended Data Figures

Extended Data Figure 1 | Global and subcontinental PCA. a, Global PCA projection of UKBB into PCs 1-2
defined by HGDP and 1000 Genomes Project reference panel, which are shown in colored dots on top of
UKBB in black. b, Global PCA density plot of UKBB points only, excluding reference panel. c, Map of HGDP,
1000 Genomes Project, and AGVP reference used to define AFR PC space. d, PCs 1-2 within AFR, reference
panel colored, UKBB in grey. Inset shows density of UKBB samples assigned to AFR using a random forest.
c-d, colors and shapes are consistent across panels. e, Map of HGDP and 1000 Genomes Project reference
used to define CSA PC space. f, PCs 1-2 within CSA, reference panel colored, UKBB in grey. Inset shows
density of UKBB samples assigned to CSA using a random forest. e-f, colors and shapes are consistent
across panels. g, Map of HGDP and 1000 Genomes Project reference used to define EAS PC space. h, PCs
1-2 within EAS, reference panel colored, UKBB in grey. Inset shows density of UKBB samples assigned to
EAS using a random forest. g-h, colors and shapes are consistent across panels. i, Map of HGDP and 1000
Genomes Project reference used to define EUR PC space. j, PCs 1-2 within EUR, reference panel colored,
UKBB in grey. Inset shows density of UKBB samples assigned to EUR using a random forest. i-j, colors and
shapes are consistent across panels. k, Map of HGDP and 1000 Genomes Project reference used to define
MID PC space. l, PCs 1-2 within MID, reference panel colored, UKBB in grey. Inset shows density of UKBB
samples assigned to MID using a random forest. k-l, colors and shapes are consistent across panels.

21

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 1, 2024. ; https://doi.org/10.1101/2024.03.13.24303864doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24303864
http://creativecommons.org/licenses/by/4.0/


Extended Data Table 1 | Comparison of λ1000 and λGC for five phenotypes across three association study
paradigms. λGC is the genomic inflation factor, which is a measure used to assess the extent of inflation in
association test statistics by measuring the median of the observed chi-square test statistics divided by the
expected chi-square distribution under the null hypothesis. Similarly, λ1000 is the genomic inflation factor
adjusted for sample size to match the scale of a study of 1,000 cases and 1,000 controls with equivalent
inflation. For both metrics, values > 1 indicate inflation from polygenic signal, population stratification, or other
confounding. We show these metrics for EUR (the European genetic ancestry group alone), mega-analysis (a
single association test across all samples), and meta-analysis (across all available population-specific
association results). We show comparisons at full sample sizes as well as an equivalent sample size to EUR,
with an equivalent number of EUR individuals removed to assess the effect of sample size. λ1000 values are all
very close to 1, consistent with no significant inflation indicating that our test statistics are in line with the null
hypothesis. λGC values are systematically lower for the meta-analysis versus mega-analysis; since the power of
these two approaches should be nearly identical at a given sample size, the lower λGC indicates that we have
likely controlled for population stratification better in the meta-analysis. The number of independent
genome-wide significant loci for a range of traits is similar in the meta-analysis versus mega-analysis,
indicating that we are not losing appreciable power to identify significant associations. As expected, we are
gaining power in the multi-ancestry meta-analysis compared to the EUR-only GWAS, as evidenced by the
increase in new loci identified, due to larger sample size and increased diversity. The number of independent
GWAS significant loci is computed with an LD r2 cutoff of 0.1 and a GWAS significance threshold of 5 x 10-8.

Phenocode 30000 30060 250.2 411 495

Phenotype
White

blood cell
count

Mean
corpuscular
haemoglobin
concentration

Type 2
Diabetes

Ischemic
Heart Disease Asthma

λ1000

EUR (full) 1.0016 1.0010 1.0038 1.0018 1.0025

Mega-analysis
(EUR equivalent sample size)

1.0016 1.0014 1.0031 1.0022 1.0023

Meta-analysis
(EUR equivalent sample size)

1.0012 1.0006 1.0022 1.0014 1.0014

Mega-analysis (full) 1.0016 1.0014 1.0028 1.0023 1.0021

Meta-analysis (full) 1.0012 1.0006 1.0019 1.0012 1.0014

λGC

EUR (full) 1.3360 1.2037 1.1655 1.1225 1.1414
Mega-analysis

(EUR equivalent sample size)
1.3316 1.2841 1.1403 1.1508 1.1341

Meta-analysis
(EUR equivalent sample size)

1.2495 1.1245 1.1027 1.0976 1.0802

Mega-analysis (full) 1.3368 1.3009 1.1337 1.1650 1.1318

Meta-analysis (full) 1.2582 1.1327 1.0896 1.0867 1.0837

Number of
independent
genome-wide

significant
loci

EUR (full) 1,375 393 107 74 111
Mega-analysis

(EUR equivalent sample size) 1,477 470 121 84 112

Meta-analysis
(EUR equivalent sample size) 1,442 440 116 79 112

Mega-analysis (full) 1,580 523 128 86 116

Meta-analysis (full) 1,551 469 124 82 125
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Extended Data Table 2 | Number of significant associations for height in AFR and CSA. The number of
variants associated with height at p < 10-4 for AFR and CSA are shown (Total), as well as filtered to
independent SNPs based on distance-based windows (1 Mb). Despite the smaller sample size, the AFR
ancestry group identified 15% more significant associations than CSA (1,261 vs 1,089).

AFR (N: 6,556) CSA (N: 8,657)

Total Regionally-
independent Total Regionally-

independent

Significant variants 4,682 1,380 4,284 1,212

High-quality
significant variants 3,016 1,261 2,695 1,089
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Extended Data Figure 2 | Heritability informs the robustness of GWAS across ancestry-trait pairs. a,
heritability estimates are generally concordant in the EUR genetic ancestry group across 64 pilot phenotypes
(Supplementary Table 9) and two statistical methods. RHE-mc uses a randomized multi-component version
of classical Haseman-Elston regression with a genetic relatedness matrix54, whereas S-LDSC uses GWAS
summary statistics53. For binary phenotypes, heritability estimates are reported on the liability scale. All pilot
phenotypes are shown, except for sepsis which had negative heritability estimates by both methods. The
dotted line shows y=x, while the dashed line is a fitted linear regression (slope = 0.87, intercept = 0.05, p = 7 x
10-13). b, Across the same non-EUR ancestry-trait pairs, heritability estimated with RHE-mc have higher
z-scores due to the smaller standard errors compared to S-LDSC. Dashed line at Z=4 was used as a QC filter.
c, As in Fig. 2b, without filtering to phenotypes passing QC, but instead only filtering to EUR z > 4 and defined
heritability in both genetic ancestry groups. Dotted line shows y = x and dashed line shows York regression fit
(slope = 0.66, intercept = 0.17, p < 10-100).
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Extended Data Figure 3 |
Heritability summaries across
trait types and genetic
ancestry groups. (a) The
confidence metrics (heritability z
score) across traits (columns)
and ancestry groups (rows) are
shown for the final heritability
metrics used (S-LDSC for EUR,
otherwise RHE-mc). Dashed
line indicates inclusion criteria (z
≥ 4). (b) The mean observed
heritability (h2) is plotted by
ancestry group and trait type.
For ancestry groups with smaller
sample sizes, heritabilities are
likely inflated due to a
combination of residual
stratification and winner’s curse,
as only significantly heritable
phenotypes in each ancestry
group are shown. Error bars are
standard deviations of the
distribution of the heritability
point estimates.
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Extended Data Figure 4 | Improved identification of associations by EFO category. Number (left) and
percentage (right) of known and novel variants identified in this study compared to the GWAS catalog across
EFO categories.
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Extended Data Figure 5 | GWAS hits near haploinsufficient genes. a, The percentage of novel
associations by gene category. 66% of haploinsufficient genes have a novel significant hit nearby, compared to
34% of all genes. b, Locuszoom plots of a 1Mb region around rs1379871 (purple diamond; DMD), for whole
body fat mass (p = 1.84 x 10-41; N = 431,792). The -log10(p-value) is plotted along chromosomal position, with
neighboring variants colored by sample-size weighted LD (with lead SNP) for ancestries included in
meta-analysis (gray: LD not defined for at least one ancestry group). This variant has recently been identified
in a larger study of BMI71.
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Extended Data Figure 6 | Comparison of meta-analysis and EUR summary statistics. a, As in Fig. 3c, the
p-value in EUR is plotted compared to the p-value in the meta-analysis, as a density plot to indicate the relative
number of points in each region of the plot. Three quadrants are highlighted for significant in meta-analysis
only (green), both meta-analysis and EUR (purple), and EUR-only (blue). b, Summaries and meta-data of the
variants in each of these three quadrants are shown. Heterogeneous is defined as Cochran’s Q p < 0.01, low
INFO score is defined as INFO < 0.9, and low quality is defined as failing quality filters from gnomAD or allele
frequency significantly differing between gnomAD and Pan-UKB in at least one ancestry group (see
Supplementary Information, QC of summary statistics). Common is defined as frequency > 1%.
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Extended Data Figure 7 | Fine-mapping of the G6PD locus. Fine-mapping results for rs1050828 (G6PD) in
(a) AFR and (b) meta-analysis. a, AFR fine-mapping results highlight the missense variant (rs1050828) in a
credible set, with a second independent signal for some phenotypes. b, Meta-analysis fine-mapped results
show instability as the major signal at rs1050828 is discovered in a group with a relatively small sample size,
which results in a small contribution to the LD panel and thus, poor performance in fine-mapping.
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Extended Data Figure 8 | Manhattan and QQ plot comparison for SAIGE and Tractor GWAS for mean
corpuscular hemoglobin concentration. a-b, Original GWAS performed using SAIGE for AFR. c-f, Among
AFR individuals, Tractor GWAS results are shown for AFR haplotypes (c, d) and EUR haplotypes (e, f).
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