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Abstract 

Artificial intelligence and machine learning are powerful tools in analyzing electronic health 

records (EHRs) for healthcare research. Despite the recognized importance of family health 

history, in healthcare research individual patients are often treated as independent samples, 

overlooking family relations. To address this gap, we present ALIGATEHR, which models 

predicted family relations in a graph attention network and integrates this information with a 

medical ontology representation. Taking disease risk prediction as a use case, we demonstrate that 

explicitly modeling family relations significantly improves predictions across the disease 

spectrum. We then show how ALIGATEHR’s attention mechanism, which links patients’ disease 

risk to their relatives’ clinical profiles, successfully captures genetic aspects of diseases using only 

EHR diagnosis data. Finally, we use ALIGATHER to successfully distinguish the two main 

inflammatory bowel disease subtypes (Crohn’s disease and ulcerative colitis), illustrating its great 

potential for improving patient representation learning for predictive and descriptive modeling of 

EHRs. 
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Introduction 

Recent years have seen a surge of interest in utilizing electronic health records (EHRs) for 

healthcare research1,2, including modeling disease risk, onset, and progression3-6. EHR databases 

store data routinely collected in a primary and/or secondary care setting and are a comprehensive 

resource of a patient’s disease history, by providing historical information on diagnoses, 

prescriptions, laboratory tests, (surgical) procedures, and doctor’s notes. 

Understanding an individual’s family health history is critical in healthcare and medicine, 

for example, assessing patients’ risk of common and rare diseases such as heart disease, type 2 

diabetes, and cancer. This is because families share genetic variations, environmental exposures, 

and social determinants of health7,8. However, EHR research so far has adopted a limited view of 

family relations at best, essentially treating individual patients as independent samples. One reason 

for this is that family histories are not systematically recorded in EHR databases. Family-related 

information is largely captured via survey or active questioning by healthcare professionals9 and 

stored in EHRs as free text or scanned documents, limiting its usability in healthcare research10. 

For this reason, several rule-based algorithms have recently been developed for inferring electronic 

family pedigrees (e-pedigrees) from EHR data11-13. These methods use basic demographic and/or 

emergency contact information readily available in most EHRs, and their application across a wide 

spectrum of diseases have provided strong evidence for the general usability of e-pedigrees in 

genetic and epidemiological research. Meanwhile, their results show that a dataset with more than 

one million individuals can be adequately used to infer entire families12,14. 

Due to their ability to extract patterns from large and complex datasets such as EHR 

databases, artificial intelligence and machine learning have shown great promise in modeling EHR 

data as well15,16. In one of the earliest attempts, “Doctor AI” used recurrent neural networks to 
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predict medical events such as diagnoses, medications, and procedures, from historical EHR 

data17. Since then, deep learning methods such as word embedding18, graph machine learning19-21, 

graph-based attention models19,22, and patient representation learning23-25 have demonstrated great 

potential for a variety of healthcare-related tasks. Despite the significant advancements in the 

analysis of EHRs using machine learning, all existing methods still treat individual patients as 

independent samples without considering family relations. Explicitly incorporating family health 

history could benefit a wide range of tasks, including modeling disease risk, onset, and 

progression, as well as patient segmentation. For example, much like a physician leveraging 

knowledge of family health history to assess a patient’s risk of cardiovascular disease, an explicit 

representation of family health history could enhance the predictive accuracy of a machine learning 

model in forecasting such risks. 

In this work, we address this critical limitation in the current utilization of EHRs for 

healthcare research by integrating the recent progress in family pedigree prediction with the 

parallel progress in using machine learning for analyzing EHR data. We present ALIGATEHR 

(ALIgning Graph Attention neTworks for EHR), a generic framework for learning patient 

representations, which models predicted family pedigrees using a graph attention network of long 

short-term memory (LSTM) nodes26. To further enhance the quality of the learned representations, 

we additionally integrate a medical ontology of diagnosis codes into the attention mechanism. 

Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family 

relations markedly improves performance across thousands of diagnosis codes, as compared to 

state-of-the-art baseline methods. We then demonstrate the interpretability of our model using an 

attention-based feature importance score27, allowing us to quantitatively assess the impact of the 

health history of family members on the disease risk of a patient. The pedigree-based attention 
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mechanism enables ALIGATEHR to capture genetic aspects of diseases using only EHR data as 

input. Finally, we show that the patient representations learned by ALIGATEHR can successfully 

distinguish between two major subtypes of inflammatory bowel diseases (IBD), Crohn’s disease 

(CD) and ulcerative colitis (UC), using only EHR data as input. Our results demonstrate that the 

importance of explicitly incorporating family relations in EHR modeling should not be overlooked, 

and that ALIGATEHR can serve as a powerful tool for improving the quality of patient 

representations in a variety of downstream predictive and descriptive tasks. 

 

Results 

Overview of ALIGATEHR 

Our proposed model, ALIGATEHR, aims to explicitly capture dependencies between 

related patients and diseases from EHRs and medical ontologies, to learn more informative patient 

representations that can be utilized for a variety of downstream tasks. ALIGATEHR, by design, 

focuses on the sequential order of visits for each patient, without considering the temporal intervals 

between visits. In ALIGATEHR, a patient’s EHR trajectory is modeled using a recurrent neural 

network. Related patients are identified via the E-Pedigrees software11 and connected via an 

attention mechanism28 into a patient-level graph attention network (GAT). An attention 

mechanism is also used to connect the patient-level GAT to a medical ontology, to allow for 

capturing dependencies between diseases. Details of the architecture of ALIGATHER are 

provided in Fig. 1 and the Methods section. 

ALIGATEHR outperforms baseline models on risk prediction across the disease spectrum 

We evaluated the performance of ALIGATEHR in a risk prediction setting, using data from 

the Merative™ MarketScan® Research Databases, which include longitudinal medical records of 
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over 660,000 individuals involved in predicted families with an average family size of 2.4 

(Extended Data Fig. 1 and Extended Data Table 1). Our prior studies have validated that E-

Pedigrees construct family pedigrees with high probability, resulting in a very low false positive 

rate11,14. This is primarily attributed to the conservative nature of the E-Pedigrees algorithm, 

ensuring the construction of family relations with high confidence. This conservative approach 

enhances reliability and precision for downstream analysis. The predicted families have 

demonstrated substantial utility in disease risk prediction and genetic research. To construct 

pedigree networks, we captured first-degree relatives for each person in the pedigree. In our 

analysis, we included all patients with at least 2 visits, and the average number of visits per patient 

was 7.9. The dataset contained 13,097 unique ICD-9 codes, but a significant portion of these were 

infrequently used for clinical diagnosis, either due to redundancy or the low prevalence of the 

corresponding diseases. This dataset also contained ICD-9 codes unrelated to diseases, as well as 

those beginning with the letters ‘E’ or ‘V’. E-codes detail the external factors leading to diseases 

or injuries, whereas V-codes serve purposes unrelated to diseases or injuries, instead providing 

supplementary documentation information. We excluded ICD-9 codes of low prevalence, E-codes, 

V-codes, and ICD-9 procedure codes from consideration. After data processing, we treated risk 

prediction as a binary classification problem to predict whether a given patient would receive a 

specific diagnosis during the next clinical visit. We constructed a total of 1,886 predictive models, 

each corresponding to a specific diagnosis code. It is worth noting that a family member was 

considered positive for a diagnosis code only if that code appeared two or more times in that family 

member’s health record, following the “rule of two”29. 

We then compared ALIGATEHR with state-of-the-art models, including: 
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1) Classical machine learning models: Logistic Regression (LR) and eXtreme Gradient 

Boosting (XGBoost)30, 

2) Recurrent neural networks: Long Short-Term Memory (LSTM), 

3) Skip-gram based Models31: Med2Vec18, 

4) Attention-based models: GRAM22 and Dipole32. 

Averaged across all diseases, ALIGATEHR showed superior performance compared to all 

baseline models (Table 1a). The average area under the curve (AUC) of ALIGATEHR over all 

1,886 diseases was 0.843, significantly higher than the second-largest average AUC of 0.809 

among all methods applied (Wilcoxon signed-rank test, P=1.95E-303). ALIGATEHR 

outperformed classical machine learning by more than 30% and other neural network-based 

models by at least 5%. Moreover, ALIGATEHR outperformed all other methods for almost all 

individual diseases (Fig. 2a). The most substantial improvements were observed for diseases in 

the ICD diagnosis groups of “Neoplasms”, “Endocrine, nutritional and metabolic diseases”, 

“Diseases of the genitourinary system” and “Diseases of the respiratory system” (Fig. 2b), 

suggesting that family health history and relations play an important role in conferring disease risk 

in these four diagnosis groups. As an example, many diagnoses in the “Neoplasms” group are 

known to exhibit significant familial clustering33, which explains the substantial improvement 

observed when integrating family health history into risk prediction modeling. Specifically, within 

the “Neoplasms” group, the five most significantly improved diseases compared to the baselines 

are “Nodular lymphoma”, “Malignant neoplasm of brain”, “Malignant neoplasm of thyroid gland”, 

“Malignant neoplasm without specification of site”, and “Multiple myeloma”. This observation 

can be attributed to the heightened risk of developing these diseases when there is a first-degree 

relative with a similar medical history34-37. Interestingly, the smallest improvement was observed 
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in the diagnosis group of “Injury and Poisoning”. Although overall, ALIGATEHR still 

significantly outperformed all other methods in this group, there are individual diagnoses where 

the difference was less clear: Dipole achieved marginally better performance than ALIGATEHR 

for 26 individual codes (such as “Injury of chest wall”, “Fracture of ankle” and “Contusion of 

thigh”) out of the 273 codes, and GRAM for 5 individual codes (such as “Acute myocardial 

infarction of anterolateral wall” and “Lung contusion”) out of 273 codes. Likely, ALIGATEHR 

loses some of its competitive advantage in settings where family relations (and the genetic 

heritability that these capture) are less important, such as accidents, environmental hazards, and 

lifestyle choices, all typical diagnoses in the “Injury and Poisoning” group. These results highlight 

the substantial impact that modeling family health history and relations can have on tasks such as 

disease risk prediction. 

ALIGATEHR relies on all model components for achieving its superior performance 

To gain insights into how its individual components contribute to the performance of 

ALIGATEHR, we performed an ablation study, sequentially removing or disabling its individual 

components. Most importantly, we observed that the removal of any individual component 

significantly affected the performance of ALIGATEHR (Table 1b). Of all individual ablations, 

removing the e-pedigree attention mechanism from ALIGATEHR degraded performance the most, 

again highlighting the importance of incorporating family relations in risk prediction models. As 

expected, this led to a performance (AUC = 0.764) that was very close to that of GRAM (AUC = 

0.762), given that ALIGATEHR without e-pedigrees is architecturally highly similar to GRAM. 

Interestingly, removing the e-pedigree attention mechanism altogether led to worse performance 

than using constant e-pedigree attention weights (in essence a graph convolutional network). This 

means that just connecting patients with their relatives in a graph is insufficient for achieving 
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optimal performance (constant e-pedigree attention weights). Optimal performance is only 

achieved when we enable selecting the right family members from among all relatives (trained e-

pedigree attention weights). 

ALIGATEHR is highly interpretable and captures genetic aspects of diseases 

Having assessed the performance of ALIGATEHR in a risk prediction setting, we then 

wanted to assess its interpretability using an attention-based feature importance score. Attention-

based feature importance allows us to quantify the impact of family members’ diagnosis histories 

on a patient’s risk prediction outcome. For this purpose, we employed GNNExplainer27, which 

was designed to provide interpretable explanations for predictions in graph neural networks and 

has robust performance in examining attention-based graph neural networks through producing 

scores that highlight the significance of features. Fig. 3a shows the ranking of features, based on 

their feature importance scores averaged across all diseases, thus representing the importance of 

features to general human health. As expected, we found many common diseases associated with 

general human health among the top 200 features, such as “Pure hypercholesterolemia”, “Obesity”, 

“Hyperlipidemia”, “Essential hypertension”, “Hyperosmolality and/or hypernatremia” and 

“Anemia”. Interestingly, we also found several mental health disorders, including “Anxiety”, 

Depressive disorder”, “Dysthymic disorder” and “Bipolar I disorder”, were ranked among the top 

200 features. This indicates that having a family history, particularly with first-degree relatives 

affected by mental health disorders, is associated with an increased risk for an individual’s general 

health. 

To investigate to what extent ALIGATEHR’s attention mechanism captured information 

relevant to disease biology, we curated a set of 30 prevalent diseases with known genetic 

correlations with each other, sourced from LD Hub38, following the exclusion of traits without 
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corresponding ICD codes or those not present in EHRs such as “Height” and “Educational 

attainment”. For each disease outcome, we retrieved the importance scores of features associated 

with the outcome, as well as the genetic correlations between features and the outcome. We then 

computed the Pearson correlation coefficient between the genetic correlation and the feature 

importance (Fig. 3b). Among the 30 diseases we considered, 28 disease outcomes had a significant 

correlation with a false discovery rate (FDR) < 0.05. This means that features exhibiting a strong 

genetic correlation with a certain disease outcome play a significant role in influencing the risk of 

that disease in our proposed model and demonstrates that ALIGATEHR is highly effective at 

capturing genetically relevant information using its pedigree-based attention mechanism. 

Interestingly, we again found many mental health-related diseases among the most strongly 

correlated diseases, including "Bipolar disorder (BPD)", "Schizophrenia (SCZ)", “Autistic 

disorder (AUT)”, and “Attention deficit-hyperactivity disorder (ADHD)”. These diseases were 

previously reported with high heritability (BPD: 60-80%; SCZ: 70-80%; AUT: 70-90%; ADHD: 

70-80%)39-42. 

To further investigate the extent to which ALIGATEHR’s attention mechanisms captured 

genetic aspects of disease, we turned to the distinction between monogenic diseases and complex 

diseases. A monogenic disease results from mutations in a single gene, whereas complex diseases 

involve the cumulative impact of genetic variants in multiple genes and their interactions with the 

environment. We compiled a set of 14 monogenic diseases such as “Cystic fibrosis”, “Familial 

hypercholesterolemia”, and “Muscular dystrophy”, from the literature. We trained risk models for 

all monogenic diseases and averaged the resulting feature importance scores to arrive at a single 

list of feature importance scores for the group of monogenic diseases. We treated the remaining 

1,872 diseases as complex diseases, and similar to above, computed a single list of feature 
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importance scores representing the group of complex diseases. Remarkably, we observed that for 

the monogenic diseases, the major risk factors of disease could be clearly identified by the 

magnitude of their feature importance score, as illustrated by the bimodality in the kernel density 

estimate of the monogenic disease feature importance score distribution (Fig. 3c). On the other 

hand, complex diseases seemed to be more diffusely influenced by a multitude of risk factors, as 

indicated by the right-skewed distribution with a peak around 0.01. These results verified that 

ALIGATEHR, despite using only EHR data, can capture aspects of the genetic architecture of 

diseases. 

Application: distinguishing inflammatory bowel disease subtypes 

To illustrate the utility of ALIGATEHR in analyzing individual diseases, we applied 

ALIGATEHR to the problem of distinguishing the subtypes of inflammatory bowel disease (IBD) 

based on EHR data only. IBD is a chronic disorder that involves inflammation of the 

gastrointestinal (GI) tract. Its burden is increasing worldwide43 due to the increasing prevalence 

and incidence rate over the past few decades44 and the tendency of IBD to frequently occur with 

comorbidities45. This public health concern is projected to escalate in the coming years, driven by 

the strongest risk factor of having a relative with the disease46. Crohn’s disease (CD) and ulcerative 

colitis (UC) are the two major subtypes of IBD and are primarily distinguished by location within 

the GI tract where the inflammation occurs47. Genetic studies have identified many susceptibility 

loci for IBD, mostly shared between CD and UC48. The genetic correlation between CD and UC 

is 0.63438. In clinical practice, differentiating between CD and UC can be challenging due to the 

overlap in symptoms, leading to misdiagnosis rates of up to 10%49. This similarity in clinical 

presentation was reflected in our analyses. First, CD and UC demonstrated comparable Pearson 

correlation coefficients of 0.647 (P=1.48E-4) and 0.645 (P=1.60E-4), respectively (Fig. 3b), which 
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suggested a shared set of risk factors and genetic components between these IBD subtypes. This 

was further supported by the observation that 16 features were shared among the top 20 features 

for CD and UC (Fig. 4a).   Hence, we wondered if we could use ALIGATEHR to distinguish CD 

and UC as distinct IBD subtypes from EHR data only. For this purpose, we merged the CD and 

UC patient populations (n = 2,324 and n = 1,651, respectively) and trained our model for predicting 

the risk of overall IBD. It appears that in the analysis of patient representations obtained from the 

model, ALIGATEHR successfully distinguishes between CD and UC patients (Fig. 4b). A small 

number of patients were mixed or overlap near the boundary of the two clusters. This could reflect 

the challenges in differentiating between CD and UC in clinical practice, as mentioned above. 

Interestingly, 2.8% of UC patients (n = 47) appeared to be distinctly clustered within the CD group, 

i.e. had a clinical presentation that is very much like CD. These patients could represent cases of 

CD misdiagnosed as UC in clinical practice. In conclusion, despite the shared risk factors and 

symptoms between CD and UC, ALIGATEHR is highly effective at distinguishing between the 

two conditions using only EHR data as input. 

 

Discussion 

EHR databases store health-related information from millions of patients, routinely 

collected over many years in primary and/or secondary care settings. EHR data provides a 

comprehensive history of patients and their diseases by covering multiple modalities, such as 

diagnoses, prescriptions, and lab tests. In recent years, significant advancements have been made 

in developing artificial intelligence and machine learning methods to effectively manage the size 

and complexity of EHR data for improving our understanding of patients and diseases. Despite 

this progress, the well-documented influence of family relations has been largely overlooked. 
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In this work, we addressed this important limitation by presenting ALIGATEHR, a deep 

learning framework for integrating inferred family pedigrees as edges into a GAT, where the nodes 

are patient-specific EHR trajectories modeled using LSTM networks. Additionally, a medical 

ontology is integrated into ALIGATEHR via an attention mechanism. We showed that explicitly 

modeling family relations using ALIGATEHR leads to substantial performance gains in a risk 

prediction case study. Through ablation experiments, we demonstrated that all components of 

ALIGATEHR are essential for achieving its optimal performance. Moreover, we showed that 

ALIGATEHR is highly interpretable, and can capture genetic aspects of diseases using its 

attention-based feature importance scoring, without using any genetic data as input. Finally, we 

showed that the patient representations learned by ALIGATEHR can successfully distinguish 

between two closely related IBD subtypes, CD and UC, using only EHR data as input. 

A limitation of this study lies in the incomplete nature of EHRs, where only a fraction of 

patients could be linked to family pedigrees. Another potential limitation arises from the structure 

of the predicted families. The E-Pedigrees software employs a conservative rule-based decision 

tree algorithm for family relation inference, often resulting in the construction of a substantial 

number of small-sized families with a limited number of siblings within each family. Despite these 

incomplete e-pedigree data and small families, our experiments still yielded significant 

improvements in performance, underlining the importance of including family health history in 

predictive healthcare models. Future work that can acquire more comprehensive family health 

history may further improve the predictive power. 

In this work, our primary focus was on disease risk prediction. We achieved this by 

incorporating health history from relatives before the disease manifestation in the patient, through 

attention-based pedigree graphs and recurrent neural networks. It provides a more comprehensive 
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understanding of how a patient’s previous health records and family health history collectively 

impact the disease risk for that individual. It is important to note that ALIGATEHR is a generic 

framework for patient representation learning. Applications of ALIGATEHR are not restricted to 

disease risk prediction but include a wide range of downstream predictive and descriptive tasks, 

such as modeling disease onset and progression, as well as patient segmentation. For example, in 

patient segmentation, the attention-based feature importance scores could help in identifying novel 

patient subgroups for a given disease, based specifically on patterns of family-related risk factors. 

This could open up new opportunities for developing more personalized treatment plans and 

prevention strategies, enhancing the effectiveness of healthcare interventions. 

In addition to expanding the number of downstream applications beyond disease risk 

prediction, future research could explore the redefinition of edges in ALIGATEHR. While current 

edges are defined based on family relations, alternative measures of patient similarity may be more 

appropriate depending on the specific use case. For example, in biobanks such as the UK 

Biobank50, it is not always feasible to infer family relations between individuals, either because 

family information is unavailable or because the biobank cohort is too sparsely sampled from the 

general population. However, biobanks often provide additional data modalities, allowing the 

possibility of defining edges between patients based on measures of (disease-specific) genetic 

similarity. The inclusion of such additional data types would likely enhance the model’s ability to 

interpret and quantify the interplay between various risk factors, and further improve our 

understanding of diseases. 

In summary, our results show that ALIGATEHR has the potential to substantially enhance 

patient representation learning for a variety of downstream predictive and descriptive tasks. 
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Methods 

Notations 

We denote the set of entire diagnosis codes from EHR as 𝑑!, 𝑑", … , 𝑑|$| ∈ 𝐶  with the 

vocabulary size |𝐶| (detailed description of notations is in Extended Data Table 2). The health 

record of each patient can be described as a sequence of visits 𝑉!, … , 𝑉%, where each visit contains 

a subset of diagnosis codes 𝑉% ⊆ 	𝐶. 𝑉% can be represented as a binary vector 𝑋% ∈ {0,1}|$| in which 

the k-th element is 1 if 𝑉% contains the code 𝑑&. In the context of a given medical ontology 𝒢, the 

hierarchy of various medical concepts is often represented through a parent-child relationship, with 

the diagnosis codes 𝐷 serving as the leaf nodes, 𝐷 = {𝑑!, 𝑑", … , 𝑑|'|} where |𝐷| is the number of 

all leaf nodes. Ontology 𝒢 is depicted as a directed acyclic graph (DAG) in which the nodes 

constitute a set 𝐶 = 𝐷 + 𝐷(. The set 𝐷( = {𝑑|'|)!, 𝑑|'|)", … , 𝑑|'|)|'!|} represents the collection of 

non-leaf nodes, where |𝐷(|  denotes the number of all non-leaf nodes. We refer to the DAG 

representation of 𝒢 as a knowledge graph of medical ontology. In the knowledge DAG, a parent 

node represents a more general medical concept than its children. Consequently, 𝒢 offers a multi-

level perspective on medical concepts, presenting varying levels of specificity. This allows for a 

comprehensive understanding of the medical domain, accommodating concepts at different levels 

of granularity. 

Attention mechanism on pedigrees 

Family pedigrees are inferred via the E-Pedigrees software11 using available demographic 

information from EHR. A graph of patients is then built by connecting via the inferred first-degree 

relations in the family. Each node (patient) in the graph has an associated feature vector 

representing a patient’s disease status, denoted as ℎ* ∈ ℝ$ , with |𝐶| the total number of unique 

diagnosis codes in the EHR data. Between the nodes, an attention mechanism is used to link a 
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patient’s representation to the clinical profiles of his/her relatives. We formulate the patient’s final 

disease representation as follows: 

ℎ*( = 𝜎67 𝛼*+( 𝑊,ℎ+
+∈𝒩"

:, 

where ℎ*( ∈ ℝ$  denotes the final representation of patient 𝑖, 𝜎 applies a ReLU activation function, 

𝒩*  contains the indices of patient 𝑖 ’s first-degree relatives, 𝑊,  is the weight matrix which is 

applied to each node for a shared linear transformation, and the attention coefficient 𝛼*+(  of e-

pedigrees graph is calculated by the following softmax function, 

𝛼*+( = softmaxD𝑒*+( F =
expD𝑒*+( F

∑ exp(𝑒*&( )&∈𝒩"

	, 

where 𝑒*+( = 𝛼D𝑊,ℎ* , 	𝑊,ℎ+F . In our experiments, the attention mechanism is a single-layer 

feedforward neural network. Here 𝑒*+(  indicates the importance of first-degree relative 𝑗’s disease 

features to patient 𝑖. 

Attention mechanism on knowledge graph 

In the ontology DAG, each node is assigned a basic embedding vector ℯ* ∈ ℝ/, where 𝑚 

represents the dimensionality. Then 𝑒!, 𝑒", … , 𝑒|$|  are the basic embeddings of the codes 

𝑑!, 𝑑", … , 𝑑|$| . Let 𝑔* ∈ ℝ/  denote the final representation of the code 𝑑* ,	 as a convex 

combination of the basic embeddings of itself and its ancestors: 

𝑔* = 7 𝛼*+ℯ+
+∈𝒜(*)

, where	 7 𝛼*+ = 1
+∈𝒜(*)

, 𝛼*+ ≥ 0,					for	𝑗 ∈ 𝒜(𝑖). 

Here, 𝒜(𝑖) are the indices of the code 𝑑* and 𝑑*′𝑠 ancestors, ℯ+ is the basic embedding of the code 

𝑑+ , and 𝛼*+ ∈ ℝ, the attention weight on the embedding ℯ+  when calculating 𝑔* . The attention 

weight 𝛼*+ is calculated by the softmax function, 
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𝛼*+ =
exp(𝑓(ℯ* , ℯ+))

∑ exp(𝑓(ℯ* , ℯ&))&∈𝒜(*)
	, 

where 𝑓Dℯ* , ℯ+F is a scalar value representing the compatibility between the basic embeddings of 

ℯ* and ℯ+, computed via the feed-forward network, 

𝑓Dℯ* , ℯ+F = 𝑢34 tanh [𝑊3 \
ℯ*
ℯ+] + 𝑏3_, 

where 𝑊3 ∈ ℝ5×"/  is the weight matrix for the concatenation of ℯ*  and ℯ+ , 𝑏3 ∈ ℝ5  is the bias 

vector, and 𝑢3 ∈ ℝ5  is the weight vector for generating the scalar value, with 𝑙  denoting the 

dimension size of the hidden layer 𝑓Dℯ* , ℯ+F. 

End-to-end training with a predictive model 

We use the above-described approach to train a model for predicting the disease risk at the 

next visit, denoted as 𝑦%)! at time step 𝑡 + 1 given all the previous visit history up to the current 

time step 𝑣!, 𝑣", … , 𝑣%, 

𝑦d% = 𝑥d%)! = SigmoidD𝑊7𝑧% + 𝑏7F, where 

𝑧!, 𝑧", … , 𝑧% = RNN(𝑣!, 𝑣", … , 𝑣%; 𝜃), where		𝑣!, 𝑣", … , 𝑣% = tanh(𝐺𝐻(), 

where we perform the sequential disease risk prediction using a recurrent neural network. An 

LSTM is used for the experiments in this work. The prediction loss is defined as 

ℒ(ℎ!( , ℎ"( , … , ℎ%() = −
1

𝑇 − 17(𝑦%8 log(𝑦d%) + (1 − 𝑦%)8log	(1 −
49!

%:!

𝑦d%)). 

The pseudocode of the workflow of the ALIGATEHR training process is described in the 

Supplementary Information pseudo code. 

Experiments 
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We conduct experiments to assess if ALIGATEHR offers superior prediction performance 

compared to state-of-the-art baseline methods, ablation study, and to analyze the interpretability 

of ALIGATEHR. 

Our aim is to predict whether a patient will receive a specific diagnosis during the next 

clinical visit. We compare ALIGATEHR with state-of-the-art models in the following categories: 

1) Traditional machine learning methods: Logistic Regression (LR) and eXtreme Gradient 

Boosting (XGBoost). In both the LR and XGBoost models, the input feature vector, 

denoted as 𝒙, is a list of the disease status gathered from all preceding visits for a given 

patient, i.e., the feature vector captures the historical disease information up to the current 

point in time. 

2) Recurrent neural networks (RNN): Long Short-Term Memory. Input sequence 𝑥!, . . . , 𝑥% 

of RNN consists of sequential record of disease status up to the current point in time for a 

patient, allowing the model to make predictions based on this longitudinal data. 

3) The Skip-gram based Model: Med2Vec. Med2Vec follows the concept of Skip-gram, 

known for its simplicity and robustness in learning representations, attempting to construct 

meaningful representations of medical codes. 

4) Attention-based models: GRAM and Dipole. In GRAM, the input sequence 𝑥!, . . . , 𝑥% is 

first transformed by the embedding matrix, then fed to the Gated Recurrent Unit (GRU) 

with a single hidden layer, which in turn makes the prediction. In Dipole, an RNN-based 

risk prediction model that applies attention mechanism to perform visit analysis on top of 

bidirectional GRU, which can use attention weights to determine the importance of each 

visit. 
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To evaluate the robustness of our proposed model, we perform an ablation study to examine 

the influence of e-pedigrees and medical ontology graphs on the performance of ALIGATEHR. 

Our goal is to explore whether our model can effectively establish connections among crucial 

family members who significantly impact the patient’s disease risk. Specifically, we design the 

following setting: 

1) ALIGATEHR1: Pedigree graph is removed. We only keep ontology graph in the model to 

assess the impact of family relations. 

2) ALIGATEHR2: Medical ontology graph is removed. We only keep pedigree graph in the 

model to assess the impact of diagnoses from EHR. 

3) ALIGATEHR3: Both pedigree graph and ontology graph are removed. A baseline model 

for comparison. 

4) ALIGATEHR4: We maintain both pedigree graph and ontology graph, while specifically 

assign constant weights to the edges of the pedigree graph. The goal is to evaluate whether 

variations in contributions from distinct family members may influence the outcomes. 

5) ALIGATEHR5: Similar to the above ablation setting, we specifically apply constant 

weights to the edges of the ontology graph only. 

6) ALIGATEHR6: The model maintains constant weights on the edges of both pedigree graph 

and ontology graph. 

For all models, we randomly partition the dataset into three parts, training data (70%), validation 

data (10%), and testing data (20%). In our experiments, the best-performing model on the 

validation data was selected and its performance was further evaluated on the test data in a 3-fold 

cross validation by calculating the area under a receiver operating characteristic curve (AUC). 
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Data availability 

The data that support the findings of this study are available from IBM Watson Health, but 

restrictions apply to the availability of these data, which were used under license for the current 

study, and so are not publicly available. Data are however available from the authors upon 

reasonable request and with permission of IBM Watson Health. 

 

Code availability 

The source code of ALIGATEHR is publicly available at: 

https://github.com/XiayuanHuang/ALIGATEHR 
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Figure legends 

Fig. 1: Illustrative diagram of ALIGATEHR. ALIGATEHR consists of two parallel processes: 

1) Construction of pedigree graph: the patient representation ℎ(  aggregates health information 

from relatives; and 2) Construction of ontology graph: the representation 𝑔 captures dependencies 

between diseases. The final representation 𝑣%  merges both patient and ontology information to 

represent a patient’s disease status for each visit. Finally, a series of visits is fed into a neural 

network model for the risk prediction task. 

Fig. 2: Performance evaluation of ALIGATEHR using area under the curve (AUC). a, Kernel 

density estimate (KDE) of the AUC difference between ALIGATEHR and six baseline models 

across all diseases, showing that ALIGATEHR outperforms all other methods for almost all 

individual diseases. b, KDE of AUC distribution for ALIGATEHR, Dipole, GRAM, and 

Med2Vec, in four ICD diagnosis groups where ALIGATEHR has the most improvement. 

Fig. 3: Interpretability analysis of ALIGATEHR in capturing genetic aspects of diseases. a, 

Feature importance ranking based on the feature importance scores averaged across all diseases, 

representing the importance of features to general human health. The x-axis represents the ranking 

of each feature; the y-axis represents the averaged feature importance. Highlighted diseases are 

common conditions or risk factors associated with general human health. b, Pearson correlation of 

genetic correlation (between features and the outcome) and feature importance (associated with 

the outcome) for 30 disease outcomes. Diseases in blue bars showing significant correlation with 

a false discovery rate (FDR) < 0.05. c, Kernel density estimate (KDE) of feature importance for 

monogenic and complex disease groups, where bimodality in the monogenic disease feature 

importance score distribution and right-skewed in the complex disease feature importance score 

distribution. 
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Fig. 4: Interpretability analysis of ALIGATEHR in distinguishing inflammatory bowel 

disease (IBD) subtypes. a, Top 20 feature importance ranking for Crohn’s disease (CD) and 

ulcerative colitis (UC), showing 16 features are shared between CD and UC. The x-axis represents 

feature importance; the y-axis represents conditions, where conditions in blue are common features 

for both CD and UC. b, t-SNE plot of IBD patients using learned latent patient representation, 

showing the separation and clustering of CD and UC subtypes. 
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Table 1: Comparison of model performance. (a) Average performance on disease risk prediction 

tasks with 95% confidence interval. (b) Model ablation comparison: ALIGATEHR1 without 

pedigree graph; ALIGATEHR2 without ontology graph; ALIGATEHR3 without both pedigree 

graph and ontology graph; ALIGATEHR4 with constant weights on edges of the pedigree graph; 

ALIGATEHR5 with constant weights on edges of the ontology graph; ALIGATEHR6 with 

constant weights on edges of both pedigree graph and ontology graph. 

 

 

 

 

 

(a) Average performance of comparison 

 
 
 
 
 
 
 
 
 
 

(b) Model ablation comparison 

Logistic Regression 0.624±0.001 
XGBoost 0.648±0.002 
Recurrent Neural Networks 0.703±0.002 
Med2Vec 0.742±0.002 
GRAM 0.762±0.003 
Dipole 0.809±0.003 
ALIGATEHR 0.843±0.003 

Model AUC 

Model AUC 

ALIGATEHR1 0.764±0.002 
ALIGATEHR2 0.781±0.003 
ALIGATEHR3 0.698±0.002 
ALIGATEHR4 0.778±0.003 
ALIGATEHR5 0.769±0.003 
ALIGATEHR6 0.707±0.002 
ALIGATEHR 0.843±0.003 
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Additional information 

Extended data 

Extended Data Fig. 1 Distribution of population percentages across states in the experimental 

EHR dataset 

 

Extended Data Table 1 Basic characteristics of the experimental EHR dataset 

 

 

 

 

 

 

 

 

Dataset Characteristics 

# of patients 660k 
Male 48% 

Female 52% 
Average age 40.1 

# of visits 5,281k 
Average # of visits per patient 7.9 

Maximum # of visits per patient 38 
# of unique ICD9 codes 13,097 

Average # of codes per visit 10.6 
Maximum # of codes per visit 25 

Average # of codes per patient 84.3 
Maximum # of codes per patient 1,072 
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Extended Data Table 2 Notations in ALIGATEHR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer Notation Description 

Knowledge graph 

𝐷 Set of leaf codes 
𝐷# Set of internal nodes 
𝐶 Set of entire diagnose codes 
𝑉$ A patient’s visit at time step 𝑡  

𝑋$ ∈ {0,1}|&| A vector representation of 𝑉$ 

E-pedigrees graph 

ℎ' Input vector of patient 𝑖′𝑠 disease representation 
ℎ'# Vector of patient 𝑖′𝑠 disease latent representation 
𝜎(⋅) An activation function that applies nonlinearity 
𝛼'( Attention score 

𝑊) ∈ ℝ|&×&| A weighted matrix for linear transformation 

Predictive neural 
networks 

𝑦8$ ∈ ℝ Disease label output 
𝑧$ RNN’s hidden layer at the 𝑡-th time step 

𝑣$ ∈ ℝ|&| 𝑡-th visit representation 
𝑊+ ∈ ℝ|&| Weight matrix of Softmax function 

𝑏+ Bias of Softmax function 
𝜃 Parameters of RNN 
ℒ(⋅) Entropy loss function 
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