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ABSTRACT 

Importance: Diagnostic errors are common and cause significant morbidity. Large language models 

(LLMs) have shown promise in their performance on both multiple-choice and open-ended medical 

reasoning examinations, but it remains unknown whether the use of such tools improves diagnostic 

reasoning. 

Objective: To assess the impact of the GPT-4 LLM on physicians’ diagnostic reasoning compared to 

conventional resources. 

Design: Multi-center, randomized clinical vignette study. 

Setting: The study was conducted using remote video conferencing with physicians across the country 

and in-person participation across multiple academic medical institutions. 
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Participants: Resident and attending physicians with training in family medicine, internal medicine, or 

emergency medicine. 

Intervention(s): Participants were randomized to access GPT-4 in addition to conventional diagnostic 

resources or to just conventional resources. They were allocated 60 minutes to review up to six clinical 

vignettes adapted from established diagnostic reasoning exams. 

Main Outcome(s) and Measure(s): The primary outcome was diagnostic performance based on 

differential diagnosis accuracy, appropriateness of supporting and opposing factors, and next diagnostic 

evaluation steps. Secondary outcomes included time spent per case and final diagnosis. 

Results: 50 physicians (26 attendings, 24 residents) participated, with an average of 5.2 cases completed 

per participant. The median diagnostic reasoning score per case was 76.3 percent (IQR 65.8 to 86.8) for 

the GPT-4 group and 73.7 percent (IQR 63.2 to 84.2) for the conventional resources group, with an 

adjusted difference of 1.6 percentage points (95% CI -4.4 to 7.6; p=0.60). The median time spent on cases 

for the GPT-4 group was 519 seconds (IQR 371 to 668 seconds), compared to 565 seconds (IQR 456 to 

788 seconds) for the conventional resources group, with a time difference of -82 seconds (95% CI -195 to 

31; p=0.20). GPT-4 alone scored 15.5 percentage points (95% CI 1.5 to 29, p=0.03) higher than the 

conventional resources group. 

Conclusions and Relevance: In a clinical vignette-based study, the availability of GPT-4 to physicians as 

a diagnostic aid did not significantly improve clinical reasoning compared to conventional resources, 

although it may improve components of clinical reasoning such as efficiency. GPT-4 alone demonstrated 

higher performance than both physician groups, suggesting opportunities for further improvement in 

physician-AI collaboration in clinical practice. 
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INTRODUCTION 

Medical diagnosis is a high-stakes cognitive process that takes place in time-constrained and stressful 

clinical environments. Diagnostic errors are common and contribute to significant patient harm1,2,3,4,5,6. 

Strategies to reduce diagnostic errors include a variety of educational, reflective, and team-based 

practices. The impacts of these interventions have been limited, and even the most effective methods are 

difficult to integrate into clinical practice at scale7,8. Artificial intelligence (AI) technologies have long 

been pursued as promising tools for assisting physicians with diagnostic reasoning. To date, research on 

AI in medicine has largely focused on diagnosis and prediction of outcomes in specific domains.  

 

New technological improvements in large language models (LLMs) – machine learning systems that 

produce human-like responses from free text prompts – have shown the ability to solve complex cases, 

display human-like clinical reasoning, take patient histories, and communicate empathetically9,10,11,12,13,14. 

LLMs can be scaled into a variety of clinical workflows given their generalizable nature, and are already 

being integrated into healthcare15,16. Early integrations of LLMs will almost certainly require a “human in 

the loop” – augmenting, rather than replacing, human expertise and oversight17. Despite the impressive 

performance of these emerging technologies in experimental settings and rapid moves toward integration 

into clinical practice, considerable gaps remain in our understanding of how these systems affect human 

performance. Meaningful measures of the quality of diagnostic reasoning may help close this gap. 

 

We performed a randomized clinical vignette study using complex diagnostic cases to compare the 

diagnostic reasoning performance of physicians using a commercial AI chatbot (ChatGPT Plus, GPT-4) 

with the performance of physicians using conventional diagnostic reference resources. To move beyond 

simplistic evaluations of diagnostic accuracy, we further developed and validated a novel assessment tool 

adapted from the literature on human diagnostic reasoning, structured reflection18. 
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METHODS: 

 

 

We recruited practicing attendings and residents with training in a general medical specialty (internal 

medicine, family medicine, or emergency medicine) through email lists used for community messaging at 

Stanford University, Beth Israel Deaconess Medical Center, and the University of Virginia. Informed 

consent was obtained prior to enrollment and randomization. Small groups of participants were proctored 

by study coordinators either remotely or at an in-person computer laboratory. Sessions lasted for one 

hour. Resident participants were offered $100 and attending participants were offered up to $200 for 

completing the study. 
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Clinical Vignettes: 

Clinical vignettes were adapted from a landmark study that set the standards for the evaluation of 

computer-based diagnostic systems, including developing measures of diagnostic accuracy and relevance 

19. All cases were based on actual patients and included data available on initial diagnostic evaluation, 

including history, physical exam, and results of laboratory tests. The cases have never been publicly 

released to protect the validity of the test materials for future use; therefore, it is unlikely that the 

materials are included in GPT-4’s training data. Figure 2 includes a representative example of one of the 

cases. After iterative discussion among the investigators of all 110 cases, 6 were chosen to reflect 

diagnostic challenges across different adult medicine specialties. Cases were edited to reflect modern 

laboratory evaluation (e.g., referring to AST rather than SGOT) as necessary and pilot-tested with two 

groups of participants not in the study.  

 

A common gold standard in clinical decision support diagnostic studies has been the accuracy of 

differential diagnosis. Methods for the assessment of clinical reasoning by humans are far richer and 

include a variety of strategies including objective structured clinical exams (OSCEs), script concordance 

testing, evaluation of documentation, and global assessments adapted from the psychological literature20. 

To better capture the richness and nuance of diagnostic reasoning, we treated diagnostic accuracy as a 

secondary outcome, and instead developed and validated as a primary measure of performance a more 

holistic assessment of reasoning, which we refer to as structured reflection. 

 

Structured reflection is aimed at capturing and improving the process by which physicians consider 

reasonable diagnoses and case features that support or oppose their diagnoses, similar to how physicians 

may explain their reasoning in the “Assessment and Plan” component of clinical notes21,22. Adapting 

previous methodologies demonstrated to improve diagnostic performance, participants completed a 

structured reflection grid with free text responses. After user testing, we simplified the grid by collapsing 

two categories – evidential features that were missing and features that would have been expected but 
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were not present – into a single category of features opposing the diagnosis. Additionally, participants 

were asked to provide their most likely diagnosis and up to three next steps to further evaluate the patient.  

 

Grading of Performance 

We built upon previous studies of structured reflection by scoring the rubric itself, not just final diagnosis 

accuracy. For each case, we assigned up to 1 point for each plausible diagnosis. Findings supporting each 

diagnosis and findings opposing the diagnosis were also graded based on correctness, with 0 points for 

incorrect or absent answers, 1 point for partially correct, and 2 points for completely correct responses. 

The final diagnosis was graded as 2 points for the most correct diagnosis, while 1 point was awarded for a 

plausible diagnosis or a correct diagnosis that was not specific enough compared to the most correct 

diagnosis. Finally, participants were instructed to describe up to 3 next steps to further evaluate the patient 

with 0 points awarded for an incorrect response, 1 point awarded for a partially correct response and 2 

points for a completely correct response (see Supplementary 2, eTable 2). Participants who had incorrect 

differential diagnosis items but reasonable reasoning based on those items were not penalized.  

 

Study Design: 

We employed a randomized, single-blinded study design. Participants were randomized to access GPT-4 

via the ChatGPT Plus interface (intervention group) or to conventional resources only (control group). 

Both groups were permitted to access any resources they normally use for clinical care (with examples 

given of UpToDate [Wolters Kluwer, Philadelphia, PA], Epocrates [Athenahealth, Watertown, MA], and 

Google [Google, Mountain View, CA] search); the control group was explicitly instructed not to use large 

language models (e.g., ChatGPT, Bard, Claude, MedPaLM, LLAMA2, etc.). Participants had one hour to 

complete as many of the six diagnostic cases as they could. Participants were instructed to prioritize 

quality of responses over completing all cases.  
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The study was conducted using a Qualtrics survey tool. Each case presented a clinical vignette for which 

participants were asked to complete the structured reflection process described above. Cases were 

presented in random order for each participant. In a secondary analysis, we included a comparison arm 

using GPT-4 alone to answer the cases. Using established principles of prompt design, we iteratively 

developed a few-shot prompt – a type of input where the language model is given examples to follow – 

by copy-pasting the clinical vignette questions23. For the prompt, we used the same example provided to 

the human participants (Supplementary 5, eTable 5). These were run three times, and the results from the 

three runs were included for blinded grading alongside the human outputs before any unblinding or data 

analysis. 

 

Assessment Tool Validation  

In order to establish validity in our population, we collected two sets of data which were not included in 

the final study, with 13 participants in total. The three primary scorers (J.H, A.R, and A.O.), all board-

certified physicians with experience in the evaluation of clinical reasoning at the post-graduate medical 

level, graded each of these sets together, to ensure consistency. After data collection, each case was 

graded independently by 2 scorers who were blinded to the assigned treatment group. When scorers 

disagreed, they met to engage on the differences in their assessments and to seek consensus. 

Disagreement was predefined by a difference of > 10% of the final score, based on experience that this 

represented a clinically significant disagreement. In addition, the final diagnosis scoring was adjudicated 

by two reviewers to obtain agreement for the secondary outcome of diagnostic accuracy. We calculated a 

weighted Cohen’s kappa to show concordance in grading. We calculated Cronbach's alpha to determine 

the internal reliability of this measure.  
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Study outcome 
Our primary outcome was the final score as a percentage across all components of the structured 

reflection tool. A key secondary outcome was time spent per case in seconds. Final diagnosis accuracy, a 

common primary outcome in diagnosis studies, was evaluated as a secondary outcome. Final diagnosis 

was treated as an ordinal outcome with three groups (incorrect, partially correct, and most correct). Since 

the difference between the most correct response and partially correct responses may not be clinically 

meaningful, we additionally analyzed the outcomes as binary (incorrect compared to at least partially 

correct). This represents the avoidance of a diagnostic error. 

 

Statistical Analysis: 

The target sample size of 50 participants was pre-specified based on a power analysis using our two 

validations sets of data, scored prior to study enrollment, corresponding to an expected 200 to 250 cases 

completed (4-5 cases per participant). All analyses were at the case level, clustered by the participant. In 

the primary analysis, we only included cases with completed responses. Generalized mixed-effect models 

were applied to assess the difference in the primary and secondary outcomes of the GPT-4 group 

compared to the conventional resources only group. A random-effect for the participant was included in 

the model to account for the potential correlation between cases for a participant. Additionally, a random 

effect for cases was included to account for any potential variability in difficulty across cases. A pre-

planned sensitivity analysis evaluated the effect of including incomplete cases on the primary outcome. 

Subgroup analyses were conducted based on training status and experience with ChatGPT. In a secondary 

analysis, cases completed by GPT-4 alone were treated as a third group with cases clustered in a nested 

structure of 3 attempts under a single participant. These were compared to cases from real participants 

with each case considered as a single attempt under a single participant using a similar nested structure.  
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All statistical analysis was performed using R v4.3.2 (R Foundation for Statistical Computing, Vienna, 

Austria). Statistical significance was based on a p value <0.05.  This study was reviewed and determined 

to be exempt by institutional review boards at Stanford University, Beth Israel Deaconess Medical Center, 

and University of Virginia.  

 

 

RESULTS 

50 US-licensed physicians were enlisted (26 attendings, 24 residents). Median years in practice was 3 

(IQR 2-9). Further information on participants is included in Table 1 below. 
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Table 1: Baseline Participant Characteristics 

Participant Characteristics Overall 

(n=50) 

Physicians + 

GPT-4 

(n=25) 

Physicians + 

Conventional 

Resources only 

(n=25) 

Career Stage    

Attendings 26 (52%) 13 (52%) 13 (52%) 

Residents 24 (48%) 12 (48%) 12 (48%) 

Specialty    

Internal Medicine 44 (88%) 22 (88%) 22 (88%) 

Family Medicine 1 (2.0%) 1 (4.0%) 0 (0%) 

Emergency Medicine 5 (10%) 2 (8.0%) 3 (12%) 

Years in Practice (median [IQR]) 3 [2 - 7..8] 3 [2 - 7] 3 [2 - 9] 

Past ChatGPT Experience    

I've never used it before 8 (16%) 5 (20%) 3 (12%) 

I've used it once ever 6 (12%) 4 (16%) 2 (8%) 

I use it rarely (less than once per month) 15 (30%) 7 (28%) 8 (32%) 

I use it occasionally (more than once per 

month but less than weekly) 

13 (26%) 6 (24%) 7 (28%) 

I use it frequently (weekly or more) 8 (16%) 3 (12%) 5 (20%) 
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Primary Outcome: Diagnostic performance 

Median number of completed cases was 5.2. The median score per case was 76.3 (IQR 65.8 to 86.8) for 

the GPT-4 group and 73.7 (IQR 63.2 to 84.2) for the conventional resources group. The generalized 

mixed effects model resulted in a difference of 1.6 percentage points (95% CI -4.4, 7.6; p=0.6) between 

the GPT-4 and conventional resources groups as shown in Table 2. A sensitivity analysis including all 

cases, complete and incomplete, showed a similar result with a difference of 2.0 percentage points (95% 

CI -4.1 to 8.2; p=0.5) between the GPT-4 and conventional resources group. 

 

Past ChatGPT Experience (Binary)    

Less than monthly 29 (58%) 16 (64%) 13 (52%) 

More than monthly 21 (42%) 9 (36%) 12 (48%) 
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Table 2: Performance Outcomes 

 

Group 

Diagnostic Performance (percentage points) 

Physicians + GPT-4 Physicians + 

Conventional Resources 

Difference 

(95%CI) 

P- 

value 

All 

Participants 

76.3 (65.8, 86.8) 73.7 (63.2, 84.2) 1.6 (-4.4, 7.6) 0.60 

Level of Training 

Attending 78.9 (63.2, 86.8) 75.0 (60.5, 86.8) 0.5 (-8.9, 9.9) 0.92 

Resident 76.3 (68.4, 84.2) 73.7 (63.2, 84.2) 2.8 (-5.5, 11.1) 0.50 

ChatGPT Experience 

Less than 

monthly 

76.3 (63.2, 84.2) 76.3 (63.2, 86.8) -0.5 (-7.7, 6.7) 0.90 

More than 

monthly 

78.9 (67.8, 89.5) 73.7 (62.5, 84.2) 4.5 (-6.7, 15.7) 0.40 

 

Caption: Continuous variables are expressed as median (interquartile range). Differences between 

groups are reported from the multilevel analysis accounting for clustering of cases by participant. 
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Table 3: Time Spent Per Case 

 

Group 

Time spent per case (seconds) 

Physicians + GPT-4 Physicians + 

Conventional 

Resources 

Difference (95% CI) P- value 

All 

Participants 

519 (371, 668) 565 (456, 788) -81.9 (-195.1, 31.3) 0.15 

Level of Training 

Attending 533 (389, 672) 563 (435, 778)  -73 (-204 to 58) 0.26 

Resident 478 (356, 654) 565 (458, 800) -76 (-284, 131)  0.45 

ChatGPT Experience 

Less than 

monthly 

556 (415, 742) 572 (474, 778) -46 (-219, 127) 0.59 

More than 

monthly 

462 (305, 627) 556 (427, 810) -140 (-294, 13) 0.07 

Caption: Continuous variables are expressed as median (interquartile range). Differences between 

groups are reported from the multilevel analysis accounting for clustering of cases by participant. 
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Secondary Outcomes 

The median time spent per case was 519 seconds (IQR 371 to 668 seconds) for the GPT-4 group and 565 

seconds (IQR 456 to 788 seconds) for the conventional resources group (Table 3). The linear mixed 

effects model resulted in an adjusted difference of -82 seconds (95% CI -195 seconds to 31 seconds; 

p=0.20). 

 

Accuracy of final diagnosis was evaluated as well, as shown in Supplementary 3, eTable 3. Using the 

ordinal scale, the GPT-4 group had a 1.4 higher odds (95% CI 0.67 to 2.8; p=0.39) of a more correct 

diagnosis. Treating final diagnosis as binary correct compared to incorrect did not qualitatively change 

the results (OR 1.9, 95% CI 0.9 to 4.0; p=0.10). 

 

Subgroup Analyses: 

Tables 2 and 3 include the analyses by subgroups, including level of training and level of prior experience 

with chatGPT.  Subgroup analyses were directionally similar to the analyses for the whole cohort. 

 

GPT-4 alone  

In the three runs of GPT-4 alone, the median score per case was 92.1 percentage points (IQR 82.2 to 

97.4). Comparing GPT-4 alone to the human with conventional resources group found a score difference 

of 15.5 percentage points (95% CI 1.5 to 29.5 percentage points; p=0.03) favoring GPT-4 alone 

(Supplementary 4, eTable 4). 

 

Assessment Tool Validation 

The weighted Cohen’s kappa between all three graders was 0.66, indicating substantial agreement within 

the expected range for diagnostic performance studies24. The overall Cronbach’s alpha was 0.64. The 

variances of individual sections of the structured reflection rubric are shown in Supplementary 6, eTable 

6. After removing Final Diagnosis, which had the highest variance, the Cronbach’s alpha was 0.67.  
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DISCUSSION 

This randomized clinical vignette study found that physician use of a commercially available LLM 

chatbot did not improve diagnostic reasoning on challenging clinical cases, despite the LLM alone 

outperforming human participants. The results were similar across the important subgroups of different 

training levels and experience with the chatbot. Since the task in this study is similar to how physicians 

often structure their clinical assessments and plans, these results suggest that providing access to GPT-4 

alone may not improve overall diagnostic reasoning in clinical practice. These findings are particularly 

relevant now that many health systems offer HIPAA-compliant chatbots that physicians can use for 

clinical care25. 

 

Even though we did not find a meaningful difference in diagnostic reasoning overall with access to GPT-

4, the LLM may improve physician performance in certain areas of clinical reasoning. The average time 

spent on cases for those randomized to the GPT-4 arm was almost a minute less per case and over two 

minutes less per case for the subgroup who reported occasional or frequent use of the chatbot. Given the 

wide variability in time to complete cases, the results for time spent per case did not reach statistical 

significance despite suggesting a potentially relevant difference. Final diagnosis accuracy also potentially 

included a meaningful benefit, but this outcome did not reach statistical significance either. 

 

If confirmed with additional studies, improvement in diagnostic efficiency and final diagnosis accuracy 

may be enough to justify the use of LLM chatbots in clinical practice given the time-constrained nature of 

clinical medicine and the need to address the long-term challenge of diagnostic error26. An important 

barrier to the use of clinical decision support systems in medicine is the integration into clinical 

workflows without increasing physician workload and time spent in the electronic health record; if LLMs 

are able to increase efficiency without sacrificing performance, then they may prove well worth the cost 

to securely house the models and train physicians in their clinical application. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.24303785doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.12.24303785
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

A surprising result of a secondary analysis was that the LLM alone performed significantly better on 

diagnostic challenges than both groups of humans, which is consistent with a prior study27. These results 

should not be interpreted to mean that LLMs should be used for diagnosis without physician oversight. 

Our study and others were performed using clinical case vignettes that were curated and summarized by 

human clinicians with specific and answerable diagnostic questions in mind and do not reflect the full 

ambiguity in patient care settings. These vignette-style cases address an important, but specific 

component of diagnostic reasoning – the ability to extract both relevant and exculpatory information from 

case vignettes with relatively little “noise”. While early studies show that LLMs might effectively collect 

and summarize patient information, these capabilities will need to be explored more thoroughly27,28.  

 

The difference between the performance of the LLM alone and that of the clinicians provided with access 

to the LLM highlights important opportunities for research on enhanced human-clinician collaboration. 

For one, studies have demonstrated that the accuracy of LLM output is sensitive to the formulation of 

prompts, and therefore prompt engineering by the study team could explain the superior performance of 

GPT-4 alone compared to the study participants29. Training clinicians in best prompting practices may 

improve physician performance with LLMs. Alternatively, predefined “prompting for diagnostic decision 

support” might be optimized as a system service for physicians.  Second, we note the rich design space 

for exploring and enhancing clinician-AI interaction, including gaining better understandings of how and 

when to display AI inferences to physicians30. Our results highlight the potential for improving the 

diagnostic performance of physicians through innovation with integrating AI capabilities into clinical 

workflows. More generally, we see opportunity with deliberate consideration and redesign of medical 

education and practice frameworks that enable the best use of computer and human resources to deliver 

optimal medical care.  

 

Our study also developed and validated a measure, structured reflection, inspired by studies of physician 

cognition. This assessment tool demonstrated substantial agreement between graders and internal 
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reliability similar or superior to other measures used in the assessment of reasoning31,32,33,34. Early 

research focused on benchmarks with limited clinical utility, such as multiple-choice question banks used 

for medical licensing; or curated case vignettes of diseases rarely seen in clinical practice such as New 

England Journal of Medicine clinicopathological case conferences11,35. While having obvious advantages 

in ease of measurement, these tasks are not consistent with clinical reasoning in practice. We must 

understand how AI affects reasoning for implementation purposes, rather than merely demonstrating an 

improvement in multiple choice answering or diagnoses rarely encountered in clinical practice. As AI 

systems become more advanced and autonomous, we must urgently ensure their alignment with human 

needs and thought processes.  

 

Limitations: 

We focused our investigation around a single LLM, GPT-4, given its commercial availability and 

integration into clinical practice25. Multiple alternative LLM systems are rapidly emerging, though GPT-4 

currently remains amongst the most performant for the applications studied36,37. Participants were given 

access to the GPT-4 chatbot without explicit training in prompt engineering techniques that could have 

improved the quality of their interactions with the system, however this is consistent with many current 

integrations25. Our cohort was a convenience sample from multiple major academic centers, so our results 

may not be representative of the broader population of practicing physicians. Our study included six cases 

that were deliberately selected to ensure a broad and relevant selection of medicine cases, but any sample 

could never cover the full variety of cases to represent the field of medicine. Our approach and total 

number of cases is nonetheless consistent with established human criterion-based assessments, including 

national licensing assessments in which students completed 12 cases over 8 hours38,39,40,41,42. Given the 

internal reliability of our assessment, there is no evidence to suggest that additional case sampling would 

meaningfully alter the overall results of this study.  
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CONCLUSION: 

Despite GPT-4 alone significantly outscoring human physicians on a complex diagnostic reasoning 

clinical vignette study, the availability of GPT-4 as a diagnostic aid did not improve physician 

performance compared to conventional resources. While the use of a large language model may improve 

the correctness of final diagnosis and efficiency of diagnostic reasoning, further development is needed to 

effectively integrate AI into emerging clinical decision support systems to exploit their potential for 

improving medical diagnosis in practice. 

 

Data Availability 

Example case vignettes, questions, and grading rubrics are included in the supplement. GPT-4 transcript 

chat logs, raw score table, and individual survey responses are available upon request.  
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