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Abstract 

Air pollution significantly impact lung cancer progression, but there is a 

lack of a comprehensive molecular characterization of clinical samples 

associated with air pollution. Here, we performed a proteogenomic 

analysis of lung adenocarcinoma (LUAD) in 169 female never-smokers 

from the Xuanwei area (XWLC cohort), where coal smoke is the primary 

contributor to the high lung cancer incidence. Genomic mutation analysis 

revealed XWLC as a distinct subtype of LUAD separate from cases 

associated with smoking or endogenous factors. Mutational signature 

analysis suggested that Benzo[a]pyrene (BaP) is the major risk factor in 

XWLC. The BaP-induced mutation hotspot, EGFR-G719X, was present 

in 20% of XWLC which endowed XWLC with elevated MAPK pathway 

activations and worse outcomes compared to common EGFR mutations. 

Multi-omics clustering of XWLC identified four clinically relevant 

subtypes. These subgroups exhibited distinct features in biological 

processes, genetic alterations, metabolism demands, immune landscape, 

and radiomic features. Finally, MAD1 and TPRN were identified as novel 

potential therapeutic targets in XWLC. Our study provides a valuable 

resource for researchers and clinicians to explore prevention and 

treatment strategies for air-pollution-associated lung cancers. 
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Introduction 

Lung cancer is the leading cause of cancer deaths globally[1]. Though the 

most common cause of lung cancer is tobacco smoking, studies estimate 

that approximately 25% of lung cancers worldwide occur in individuals 

who have never smoked[2]. Recently, lung cancer in never smokers 

(LCINS) were molecular profiled and new genomic features were 

revealed[3-9]. For now, further stratification of LCINS based on different 

risk factors would be helpful to reveal the oncogenic mechanisms and 

develop more targeted therapies. Air pollutants, which can directly affect 

the pulmonary airway, play crucial roles in promoting lung 

adenocarcinoma[10-12]. More than 20 environmental and occupational 

agents are lung carcinogens[13, 14] and amount of studies have been 

made to investigate molecular mechanisms in tumor progression of air 

pollution chemicals or components using cell lines or mouse/rat 

models[15-17]. However, a comprehensive molecular characterization of 

clinical lung cancer samples associated with air pollution is still lacking.  

The Xuanwei area has the highest rate of lung cancer in China, and 

extensive research has established a strong link between lung cancer and 

exposure to domestic coal smoke[18-23]. Specifically,  etiologic link 

between smoky coal burning and cancer was epidemiologically 

established[18, 19] and association between household stove 

improvement and lower risk of lung cancer was observed[23]. Moreover, 
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genomic evidence of lung carcinogenesis associated with coal smoke in 

Xuanwei area, China was provided in our previous study[22]. Thus, lung 

cancer in Xuanwei areas exemplifies the ideal disease to study 

characteristics of lung cancers associated with air pollution. In recent 

years, the molecular features of Xuanwei lung cancer have been gradually 

revealed[24-26] [22]. A large sample size with multi-comic molecular 

profiling is urgent needed to explicit the air pollution chemicals and 

furthermore propose more targeted therapies. 

To better understand the molecular mechanisms and heterogeneity of 

XWLC and to advance precision medicine, we expanded the sample size 

of our next-generation sequencing dataset to 169 sample size and 

performed proteomic and phosphoproteomic profiling to 112 samples. 

Furthermore, we integrated 107 radiomic features derived from X-ray 

computed tomography (CT) scans to 115 samples to non-invasively 

distinguish molecular subtypes. This allowed us to identify potential 

major risk factor, distinguish the genomic features and establish clinically 

relevant molecular subtypes. Our study provides an exceptional resource 

for future biological, diagnostic, and drug discovery efforts in the study 

of lung cancer related to air pollution. 
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Results 

To investigate unique biological features of LUAD associated with air 

pollution, three previous LUAD datasets related to different carcinogens 

were used for comparison (Fig. 1a). CNLC is the subset of lung 

adenocarcinoma from non-smoking patients in Chinese Human Proteome 

Project (CNHPP project) [8] (n=77). TSLC is the subset of lung 

adenocarcinoma from smoking female in TCGA-LUAD project [27] 

(n=168). TNLC is the subset of lung adenocarcinoma from non-smoking 

female in TCGA-LUAD project[27] (n=102). The clinicopathological 

characteristics of patients from CNLC, TSLC and TNLC cohorts were 

supplied in Supplementary Table 1a and 1b.  

Proteogenomic landscape in Xuanwei lung cancer (XWLC) 

The present study prospectively collected primary samples of lung 

adenocarcinoma (LUAD) from 169 never-smoking women from the 

Xuanwei area in China (Supplementary Table 1c). The XWLC cohort had 

a median age of 56 years (Fig. 1b), and the majority of tissue samples 

were in the early stages of the disease (145 were stage I/II, and 24 were 

stage III/IV, Fig. 1c). A total of 135, 136, 102 and 102 tumor samples 

were profiled with whole-exome sequencing (WES), RNA-seq, label-free 

protein quantification, and label-free phosphorylation quantification, 

respectively (Fig.1d-e and Extended Fig.1a and 1b). Analysis of the WES 

data from the paired tumor and normal tissue samples revealed 37,149 
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somatic mutations, including 1,797 InDels, 32,972 missense mutations, 

2,345 nonsense mutations, and 35 nonstop mutations (Supplementary 

Table 2). Copy number analysis showed 140,396 gene-level 

amplifications and 67,605 deletions across 40 cytobands (Supplementary 

Table 3). The mRNA-seq data characterized the transcription profiles of 

19,182 genes (Supplementary Table 4). The label-free global proteomics 

identified 9,152 proteins (encoded by 6,864 genes) with an average of 

6,457 proteins per sample (Supplementary Table 5). The label-free 

phosphoproteomics identified 24,990 highly reliable phosphosites from 

5,832 genes with an average of 10,478 phosphosites per sample 

(Supplementary Table 6). The quality and reproducibility of the mass 

spectrometry data were maintained throughout the study (Extended Data 

Fig. 1c-e).  

The air pollutant Benzo[a]pyrene (BaP) primarily contributes to the 

mutation landscape of XWLC 

To infer the primary risk factor responsible for the progression of XWLC, 

we used SomaticSignatures[28] to identify mutational signatures from 

single nucleotide variants. Mutational signatures were identified in each 

cohort  and a cosine similarity analysis was performed against mutational 

signatures in COSMIC mutational signatures[29, 30] and environmental 

agents mutational sigantures[31] allowing for inference of the underlying 

causes (Fig. 1f-i and Extended Fig. 2). Generally, exposure to tobacco 
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smoking carcinogens (COSMIC signature 4) and chemicals such as BaP 

(Kucab signatures 49 and 20) were identified as the most significant 

contributing factors in both the XWLC and TSLC cohorts (Fig. 1f and 

1g). In contrast, defective DNA mismatch repair (COSMIC signature ID: 

SBS6) was identified as the major contributor in both the TNLC and 

CNLC cohorts (Fig. 1h and 1i), with no potential chemicals identified 

based on signature similarities. Therefore, the XWLC and TSLC cohorts 

appear to be more explicitly associated with environmental carcinogens, 

while the TNLC and CNLC cohorts may be more associated with 

defective DNA mismatch repair processes.  BaP, a representative 

compound of polycyclic aromatic hydrocarbons (PAHs), is found in both 

cigarette smoke and coal smoke and is recognized as a major 

environmental risk factor for lung cancer[32-34]. Upon metabolism, BaP 

forms the carcinogenic metabolite 7β,8α-dihydroxy-9α,10α-epoxy-

7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which creates DNA adducts 

leading to mutations and malignant transformations. This process 

involves two key regulators: CYP1A1 and AhR. CYP1A1 plays a crucial 

role in BaP epoxidation at the 7,8 positions, which is the most critical step 

in BPDE formation[35]. AhR is a ligand-activated transcription factor 

that responds to various chemicals, including chemical carcinogens, and 

is activated by BaP[36]. Accordingly, our results demonstrated 

significantly higher protein expression of CYP1A1 in tumor samples 
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compared to normal samples (Fig. 1j). AhR showed higher mRNA 

expression in tumor samples, with no difference in protein level 

expression (Fig. 1k).  All these results suggested the involvement of BaP 

and its metabolite in the development of lung cancer. 

Though coal-smoke related lung cancer (XWLC cohort) and 

cigarette-smoke related lung cancer (TSLC cohort) showed similar 

environmental carcinogens, we found that downstream pathway 

activation and therapeutic targeted potential showed distinctive features. 

Firstly, the correlation of genomic mutations between XWLC and TSLC 

was found to be low (Fig. 2a). Secondly, there was a remarkable 

difference in the fraction of samples affected by pathway mutations 

between two cohorts (Fig. 2b). Notably, the TSLC cohort exhibited a 

higher fraction of samples affected by oncogenic pathways comparing to 

XWLC cohort. Thirdly, mutation frequencies of top mutated genes[22], 

such as EGFR, TP53, RBM10, and KRAS (Fig. 2c), as well as the 

distribution of amino acid changes in EGFR and TP53, showed 

noticeable differences between the XWLC and other cohorts (Fig. 2d). 

Specifically, the XWLC cohort exhibited a higher mutation rate in 

G719C/A/D/S within the EGFR gene compared to the other three cohorts. 

For the TP53 gene, frame shift mutations including D9Gfs*3 (n=1), 

S15Ifs*28 (n=1), D22Efs*61 (n=1), and V34Wfs*49 (n=2) were 

exclusively detected in the XWLC cohort, whereas tetramer domain 
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mutations were only found in the other three cohorts (Fig. 2d). Finally, 

there was a noticeable disparity in the percentage of samples with 

actionable targets among the cohorts. (Fig. 2e). Actionable targets in 

XWLC cohort were mainly focus on EGFR mutations including pG719S, 

pG719C, pG719A, pL858R, whereas TSLC cohort had more actionable 

targets in CHEK2 p.K373E, KRAS p.G12V/D/C/A (Fig. 2e).  

Taken together, we found that the XWLC and TSLC cohorts, which 

are smoke-related lung adenoma groups, demonstrated distinct etiology 

compared to the TNLC and CNLC cohorts which may be influenced by 

endogenous risk factors to a greater extent. Additionally, significant 

disparities were observed between XWLC and TSLC in terms of 

downstream pathway activations and specific oncogene loci. 

Consequently, we conclude that air pollution-associated lung cancer 

represents a distinct subtype within LUAD. 

The EGFR-G719X mutation, which is a hotspot associated with BaP 

exposure, possesses distinctive biological features 

Notably, the XWLC cohort displayed a distinguishable mutation pattern 

in specific EGFR mutation sites compared to the other cohorts (Fig.3a 

and Fig.2d). In particular, the G719C/A/D/S (G719X) mutation was the 

most prevalent EGFR mutation in the XWLC cohort (20%), while it was 

rarely found in the other three cohorts (CNLC: 1.9%; TSLC: 1.9%; 

TNLC: 0) (Fig. 3b). Notably, we found it was a hot spot associated with 
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BaP exposure (Fig. 3c and 3d). Specifically, GGC is the 719 codon, the 

first G can be converted to T (pG719C, n=13) or A (pG719S, n=5), the 

second G can be converted to A (pG719D, n=1) or C (pG719C, n=8). 

Thus, pG719C was the most detected mutation type (Fig. 3c). G>T/C>A 

transversion can be induced by several compounds such as BaP or 

dibenz(a,h)anthracene (DBA), unlike other compounds, the tallest peak 

induced by BaP occurs at GpGpG, reflecting how their DNA adducts are 

formed principally at N2-guanine[31]. Our result showed that the most 

frequently detected pG719C AAchange was correspond to 

GGGC>GTGC transversion (Fig. 3d). Thus, pG719C is a hot spot 

associated with BaP exposure.  

We conducted further investigations into the biological characteristics 

of samples carrying the G719X mutations. Notably, we observed a 

moderate to high expression of MAPK signaling components, MAP2K2 

(MEK), and MAPK3 (ERK1), in tumors harboring the EGFR-G719X 

mutation compared to other EGFR statuses (Fig. 3e-3h). Utilizing 

hallmark capability analysis and RNA-seq-based estimation of immune 

cell infiltration, we found that tumors with G719X mutations exhibited 

similarities to those with L858R mutations (Extended Data Fig. 3a-b). 

However, patients with G719X mutations were notably younger than 

those with L858R mutations, indicating a higher occurrence rate of 

G719X in younger female patients (Fig. 3i). Analysis of overall survival 
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and progression-free interval (PFI) revealed that patients with the G719X 

mutation had worse outcomes compared to other EGFR mutation 

subtypes (Fig. 3j and 3k) which was consistent with a previous study[37]. 

Furthermore, there were no significant differences in mutation burden or 

the number of neoantigens between tumors with G719X mutations and 

tumors with other EGFR mutation statuses (Extended Data Fig. 3c).  

To explore the heterogeneity of signaling pathways activated by 

different EGFR mutation statuses, we conducted Kinase-Substrate 

Enrichment Analysis (KSEA) [38, 39] based on the XWLC 

phosphoproteomics dataset. Our analysis of the phosphoproteome across 

various EGFR mutation types revealed distinct activation patterns of 

kinases. Specifically, the G719X mutation was associated with the 

activation of PRKCZ, CDK2, AURKB, CSNK1A1, CDK4, and HIPK2. 

The L858R mutation showed activation of PRKCZ, MAPK7, MAPK12, 

HIPK2, and CSNK2A1. The Exon19del mutation exhibited activation of 

CHUK, TTK, PRKCZ, PLK1, NEK2, MAP2K2, CDK2, PRKDC, and 

MAP2K6. Other EGFR mutations were associated with the activation of 

AURKB, NEK2, TTK, PLK1, PRKACB, and PRKACG. EGFR-WT 

mutations showed activation of CSNK1E, PRKCZ, AURKB, CDK2, 

AURKC, CDK1, CSNK1A1, PRKDC, and CSNK2A1 (Fig. 3l). In 

Extended Data Fig. 3d, we provide a list of FDA-approved drugs that 

target the activated kinases in tumors harboring the G719X mutation. 
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Currently, afatinib is widely regarded as a first-line therapy for patients 

with the G719X mutation[40-43]. However, reports indicate that 80% of 

patients with this mutation may develop resistance to afatinib, even in the 

absence of T790M[44], underscoring the need for a deeper understanding 

of the downstream pathways associated with the G719X mutation. 

Therefore, a promising approach to overcome resistance in tumors with 

this mutation could involve combining afatinib, which targets activated 

EGFR, with FDA-approved drugs that specifically target the activated 

kinases associated with G719X. Therefore, we propose a potential 

approach to overcoming resistance in tumors with this mutation, which 

could involve combining afatinib, targeting activated EGFR, with FDA-

approved drugs that specifically target the activated kinases associated 

with G719X. 

Clinically relevant Subtyping in XWLC 

To uncover the inherent subgroups within air-pollution-associated tumors, 

we employed unsupervised Consensus Clustering[45] on integrated RNA, 

protein, and phosphoprotein profiles of XWLC tumor samples. This 

analysis led to the identification of four distinct intrinsic clusters, denoted 

as MC-I, II, III, and IV (Fig. 4a, Extended Data Fig. 4a and Methods). 

Further survival analysis demonstrated that patients belonging to the MC-

IV group exhibited the poorest overall survival compared to the other 

three subgroups, thus indicating the prognostic potential of multi-omic 
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clustering (Fig. 4b). Notably, there were no significant differences in 

clinical features such as age and stage observed among the four 

subgroups (Fig. 4a). As CYP1A1 is a key regulator involved in BaP 

metabolism and has been proven to be highly expressed in tumor samples 

(Fig. 1j), we next examined the expression of CYP1A1 among the four 

subgroups to evaluate their associations with air pollution. Our findings 

revealed that the MC-II subtype exhibited higher expression of CYP1A1 

(Fig. 4c). Moreover, the MC-II possessed more G719X mutations (MC-

1:0.39, MC-II:0.42, MC-III: 0.20, MC-IV: 0.08). Notably, there was a 

significant correlation between CYP1A1 and EGFR expression (Fig. 4e), 

with EGFR being more highly expressed in the MC-II subtype (Fig. 4e). 

Collectively, these results indicated that MC-II was more associated with 

air-pollution. 

Through Kinase Substrate Enrichment Analysis (KSEA) of the 

phosphoproteome in tumor samples compared to normal adjacent tissues 

(NATs), we identified specific kinase activations within the four 

subgroups. In MC-I samples, kinase activations included PRKDC, 

PRKCZ, CSNK1A1, NEK2, GSK3A, and ROCK1. MC-II samples 

showed activations of CDK2, CDK1, AURKA, TTK, CDK6, and CHUK. 

MC-III samples exhibited activations of AKT1, AKT3, RPS6KB1, 

CSNK2A1, and PAK2. Finally, CDK2 and ROCK1 were activated in 

MC-IV samples (Fig. 4f). Particularly noteworthy is the enrichment of 
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CDK1/2/6 kinases, which regulate cell cycle checkpoints, in the MC-II 

subtype, indicating its high proliferation capabilities. These findings 

imply that distinct kinase pathways are activated within each subgroup, 

suggesting the presence of specific therapeutic targets for each subgroup. 

Consequently, we proceeded to explore therapeutic strategies for each 

subgroup as outlined below: 

The MC-IV subtype exhibited the poorest overall survival compared 

to the other three subtypes (Fig. 4b). Given the crucial role of epithelial-

mesenchymal transition (EMT) in malignant progression, our first 

evaluation focused on the EMT process across the four subtypes. We 

observed higher expression levels of mesenchymal markers such as VIM, 

FN1, TWIST2, SNAI2, ZEB1, ZEB2, and others in the MC-IV subtype 

(Fig. 5a). To comprehensively assess the EMT capability of the MC-IV 

subtype, we calculated EMT scores using the ssGSEA enrichment 

method based on protein levels and GSEA hallmark gene set 

(M5930)[46]. The results confirmed the elevated EMT capability of the 

MC-IV subtype at the protein level (Fig. 5b). Furthermore, Fibronectin 

(FN1), an EMT marker that promotes the dissociation, migration, and 

invasion of epithelial cells, was found to be highly expressed in the MC-

IV subtype at the protein level (Fig. 5c). Additionally, β-Catenin, a key 

regulator in initiating EMT, was highly expressed in the MC-IV subtype 

at the protein level (Fig. 5d). Collectively, our findings demonstrate that 
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the MC-IV subtype is associated with enhanced EMT capability, which 

may contribute to the high malignancy observed in this subtype.  

The MC-II subtype demonstrated the second-worst outcome and was 

found to be more strongly associated with air pollution (Fig. 4). This 

subtype exhibited dysregulation of cell cycle processes, including cell 

division, glycolysis, and cell cycle biological processes (Fig. 4a).  The 

KSEA analysis revealed that the CDK1 and CDK2 pathways, which are 

closely linked to cell cycle regulation, were predominantly activated in 

the MC-II subtype (Fig. 5e). Consistently, we observed higher expression 

levels of CDK1 and CDK2 at both the protein and phosphoprotein levels 

in the MC-II subtype, indicating specific elevation of the G2M phase in 

the cell cycle (Fig. 5e). The cell cycle and glycolysis processes are tightly 

coordinated, allowing cells to synchronize their metabolic state and 

energy requirements with cell cycle progression to ensure proper cell 

growth and division[47-49]. In line with this, we found that key enzymes 

involved in glycolysis regulation, such as Hexokinase 1 (HK1), 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 

Glyceraldehyde-3-phosphate dehydrogenase-like protein (GPL), were 

highly expressed in the MC-II subtype (Fig. 5f). Additionally, the MC-II 

subtype was enriched with EGFR mutations (MC-II vs. others: 18/24 vs. 

51/110; Fisher's exact p = 0.013) and TP53 mutations (MC-II vs. others: 

14/24 vs. 35/110; Fisher's exact p = 0.019), consistent with the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.11.24304129doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.11.24304129
http://creativecommons.org/licenses/by/4.0/


characteristic loss of control over cell proliferation. In summary, the MC-

II subtype exhibited dysregulated cell cycle processes accompanied by an 

elevated glycolysis capability, indicating a distinct metabolic and 

proliferative phenotype. 

The MC-I subtype exhibited enrichment in various biological 

processes including angiogenesis, the cAMP signaling pathway, 

complement and coagulation cascades, PDL1 expression, the PD-1 

checkpoint pathway, leukocyte transendothelial migration, and actin 

cytoskeleton processes (Fig. 4a). In-depth exploration of key components 

involved in angiogenesis revealed that vascular endothelial growth factor 

A (VEGFA), a growth factor crucial for both physiological and 

pathological angiogenesis, was highly expressed in the MC-I subtype (Fig. 

5g). Additionally, phosphorylation of vascular endothelial growth factor 

receptor 1 (VEGFR1), a receptor tyrosine kinase essential for 

angiogenesis and vasculogenesis, was also highly expressed in the MC-I 

subtype (Fig. 5h). The angiogenesis scores, calculated using the ssGSEA 

method based on protein levels and the hallmark gene set (M5944), were 

relatively high in the MC-I and MC-IV subtypes (Fig. 5i).   Furthermore, 

the relationship between the Notch signaling pathway and angiogenesis is 

well-established[50]. Notch signaling plays a role in multiple aspects of 

angiogenesis, including endothelial cell sprouting, vessel branching, and 

vessel maturation [51, 52]. In the MC-I subtype, the expression of Notch 
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receptors (Notch1-4) and ligands (DLL1, DLL4, JAG1, and JAG2) was 

highly elevated, indicating increased activation of Notch signaling (Fig. 

5j). KEGG pathview analysis demonstrated that key regulators of the 

VEGF signaling pathway were highly expressed in the MC-I subtype 

(Extended Fig.5a). Therefore, manipulating Notch signaling could 

potentially serve as a strategy to regulate angiogenesis and control 

pathological angiogenesis in the MC-I subtype. 

The MC-III subtype is characterized by the upregulation of various 

metabolic processes, including oxidative phosphorylation, peroxisome 

function, adipogenesis, fatty acid metabolism, and xenobiotic 

metabolism-related processes (Fig. 5k). Additionally, we conducted 

further investigations into the immune features across the subtypes. 

Interestingly, we observed higher expression of genes associated with 

PD-1 signaling (GSEA, SYSTEMATIC_NAME M18810) in the MC-III 

subtype (Fig. 5l). Since PD-1 is primarily expressed on the surface of 

certain immune cells, particularly activated T cells, we inferred the 

immune cell infiltration using the ssGSEA method based on immune cell-

specific gene sets. We found that activated CD8+ T cells exhibited higher 

infiltration levels in the MC-III subtype compared to the other three 

subtypes (Fig. 5m and Supplementary Table 7), which may explain the 

elevated PD-1 signaling in the MC-III subtype. Furthermore, we 

examined the expression of receptor-ligand pairs involved in both anti-
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tumor and pro-tumor lymphocyte recruitment. Remarkably, the MC-III 

subtype exhibited specific high expression of anti-tumor lymphocyte 

receptors and ligands, while the expression of pro-tumor lymphocyte 

receptors and ligands was relatively lower (Fig. 5n). In general, the MC-I 

subtype showed the reverse expression trend in terms of anti-tumor and 

pro-tumor receptor-ligand pairs (Fig. 5n). 

 In conclusion, our classification of lung adenocarcinoma associated 

with air pollution resulted in the identification of four subtypes, each 

exhibiting distinct biological pathway activation and immune features. 

The MC-I subtype demonstrated elevated angiogenesis processes, while 

the MC-II subtype showed a high capacity for cell division and glycolysis. 

The MC-III subtype exhibited a notable infiltration of CD8+ cells, and 

the MC-IV subtype was characterized by high EMT capability, which 

may contribute to its poor outcome. These findings have significant 

implications for the development of precision treatments for XWLC 

(Extended Fig.5b).  

Radiomic features across subtypes 

Furthermore, we built a noninvasive method to distinguish MC subtypes 

with radiomics which entails the extensive quantification of tumor 

phenotypes by utilizing numerous quantitative image features. In the 

initial step, we defined 107 quantitative image features that describe 

various characteristics of tumor phenotypes, including tumor image 
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intensity, size, shape, and texture. These features were derived from X-

ray computed tomography (CT) scans of 155 patients with XWLC 

(Methods). The baseline characteristics of this cohort can be found in 

Supplementary Table 8. Firstly, all features were compared among the 

four subtypes, and notably, eight features showed significant differences 

between the MC-II subtype and the other three subtypes (Fig. 6a). 

Features such as median and mean reflect average gray level intensity and 

Idmn and Gray Level Non-Uniformity measure the variability of gray-

level intensity values in the image, with a higher value indicating greater 

heterogeneity in intensity values. These results suggest a denser and more 

heterogeneous image in the MC-II subtype. We further established a 

signature using a multivariate linear regression model with five image 

features to distinguish MC-II from the other three subgroups (Extended 

Fig.6). The performance of the five-feature radiomic signature was 

validated using the AUC value, which is a generation of the area under 

the ROC curve. The radiomic signature had an AUC value of 0.94 in the 

training set and 0.83 in the validation set (Fig. 6b). The confusion matrix 

revealed an overall accuracy of 0.875 for sample classification using the 

signature, indicating proficient performance. However, it exhibited 

suboptimal performance in terms of false-negative classification (Fig. 6c). 

Taken together, we found that MC-II showed a dense image phenotype, 

which can be noninvasively distinguished using radiomic features. 
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Identification of novel targets based on mutation-informed protein-

protein interface (PPI) analysis 

The integration of genomics and interactomics has enabled the discovery 

of functional and biological consequences of disease mutations[53, 54]. 

To explore novel targets with the concept, we created PPI networks with 

structural resolution using missense mutations from the XWLC, CNLC, 

TSLC, and TNLC cohorts (Fig. 7a and Methods). OncoPPIs, defined as a 

significant enrichment of interface mutations in either of the two protein-

binding partners across individuals, were identified in each cohort and 

were provided in Supplementary Tables 9. The OncoPPIs from the four 

cohorts are named XWLC_oncoPPIs, CNLC_oncoPPIs, TSLC_oncoPPIs, 

and TNLC_oncoPPIs, respectively (Fig. 7b and Extended Fig. 7a-c). 

Initially, the nodes from these four OncoPPIs were subjected to biological 

process enrichment analysis (Extended Fig. 7d). The analysis revealed 

that biological processes such as regulation of mitotic cell cycle, TGF-

beta signaling pathway, and immune system were predominantly enriched 

in the genes related to OncoPPIs. Moreover, the processes disrupted by 

interface mutations showed a relatively higher similarity between the 

XWLC and TSLC cohorts (Extended Fig. 7d) suggesting convergent 

targets or pathways affected by smoke-induced mutations. 

To refine the novel targets from XWLC_oncoPPs, we performed 

molecular dynamics simulations to predict the binding affinity change by 
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the interface-located mutations (Methods). Mitotic Arrest Deficient 1 

Like 1 (MAD1), a crucial component of the mitotic spindle-assembly 

checkpoint[55, 56], forms a tight core complex with MAD2, facilitating 

the binding of MAD2 to CDC20[57] , which plays a critical role in sister 

chromatid separation during the metaphase-anaphase transition[58]. 

Specifically, MAD1 Arg558His has been identified as a susceptibility 

factor for lung cancer[59] and colorectal cancer[60]. Here, we found that 

MAD1 allele carrying a p.Arg558His substitution may disrupt the 

interaction between MAD1 and MAD2 (Fig. 7c). To assess this, we 

performed molecular dynamics simulations and found that the binding 

affinity between Arg558His MAD1 and MAD2 was -195.091 kJ/mol and 

that of wild type was -442.712 kJ/mol (Fig. 7c). Furthermore, on a per-

residue basis, the predicted binding affinity (ΔΔG) of Arg558His 

(Extended Fig. 7e) was projected to increase by 118.319 kJ/mol relative 

to the wild type (Extended Fig. 7f), indicating that the substitution of 

Arg558His in MAD1 perturbs the binding affinity. Thus, our findings 

suggest that the MAD1 Arg558His attributed to lung cancer progression 

by disrupting of the interaction between MAD1 and MAD2, which 

showed potential to be explored as a target.  

Notably, we identified TPRN as a novel significantly mutated gene in 

the XWLC cohort (Extended Fig. 7g and 7h) whose status was also 

associated with patients’ outcomes (Fig. 7e). Previous studies have 
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reported that TPRN interacts with PPP1CA[61]. Thus, we assessed the 

binding affinity of the TPRN-PPP1CA complex affected by the mutant 

variant His550Gln. Our result showed that the binding affinities of the 

complex were -694.372 kJ/mol and -877.570 kJ/mol in mutant and WT 

cases, respectively (Fig. 7d). On a per-residue basis, the predicted ΔΔG of 

His550Gln compared to the wild type exhibited an increase of 96.774 

kJ/mol (Extended Fig. 7i-j). All these results indicated that TPRN 

His550Gln increase the binding affinity of the TPRN-PPP1CA complex. 

To investigate the effect of TPRN His550Gln mutation on tumor 

progression, we examined proliferation and migration capabilities in both 

A549 and H1299 lung adenocarcinoma cell lines. CCK-8 assay showed 

significantly enhanced cell growth after transfection of TPRN mutant 

allele in both A549 (Fig. 7f) and H1299 cells (Extended Fig. 8a). 

Moreover, wound-healing assay showed that TPRN mutant cell had 

achieved enhanced migration capacity (Fig. 7g-h and Extended Fig. 8b-c). 

Finally, more cell clones in TPRN His550Gln mutation cells were 

observed in both TPRN-mutant A549 and H1299 cells (Fig.7i). All these 

results supported that TPRN His550Gln could be explored as a target in 

XWLC. 

Taken together, our integrated analysis of oncoPPIs and molecular 

dynamics simulations showed potential to explore novel therapeutic 

vulnerabilities. 
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Discussion 

In this study, we conducted proteogenomic and characterized air-

pollution-related lung cancers. We found that Benzo[a]pyrene (BaP) 

influenced the mutation landscape, particularly the EGFR-G719X hotspot 

found in 20% of cases. This mutation correlated with elevated MAPK 

pathway activation, worse clinical outcomes, and younger patients. Multi-

omics clustering identified four subtypes with unique biological pathways 

and immune cell patterns. Moreover, our analysis of protein-protein 

interfaces unveiled novel therapeutic targets. These findings have 

significant implications for preventing and developing precise treatments 

for air-pollution-associated lung cancers. 

Previously considered uncommon, the EGFR-G719X mutation was 

detected in only 1-2% of CNLC or TCGA-LUAD cohort samples. 

Limited knowledge exists from G719X, mostly based on isolated case 

reports or small series studies[62-66]. In vitro experiments using G719X 

mutant cell lines and patient-derived xenografts (PDX) demonstrated that 

osimertinib effectively inhibits signaling pathways and cellular growth, 

leading to sustained tumor growth inhibition[67]. However, in silico 

protein structure analysis suggests that G719 alterations may confer 

osimertinib resistance due to reduced EGFR binding[68]. Presently, 

afatinib is proposed as the first-line therapy for G719X mutation 

patients[40-43]. Unfortunately, 80% of G719X patients develop acquired 
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resistance to afatinib without detecting the T790M mutation40. Hence, 

further mechanistic studies are warranted for G719X. Our study reveals 

that the G719X mutation is prevalent in the XWLC cohort, significantly 

impacting treatment selection. Additionally, the large number of G719X 

samples allowed us to uncover variations in biology and pathway 

activation, which may facilitate the development of more precise targeted 

therapies for these patients. 

There is substantial evidence linking lung cancer in the Xuanwei area 

to coal smoke[18, 19, 21, 22, 69, 70]. In addition, we conducted a rat 

model study that demonstrated the induction of lung cancer by local coal 

smoke exposure[22]. However, the specific chemical compound in coal 

smoke responsible for causing lung cancer remains largely unknown. 

Previous research has mainly focused on studying indoor concentrations 

of airborne particles and BaP[18, 19, 21, 23, 71]. For instance, studies 

have shown an association between the concentration of BaP and lung 

cancer rates across counties[18]. Moreover, improvements in household 

stoves have led to reduced exposure to benzopyrene and particulate 

matter, benefiting people’s health[23, 71]. However, these studies 

primarily relied on epidemiological data, which may be influenced by 

confounding factors. Mechanistically, Qing Wang showed that BaP 

induces lung carcinogenesis, characterized by increased inflammatory 

cytokines, and cell proliferative markers, while decreasing antioxidant 
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levels, and apoptotic protein expression[72]. In our study, we used 

clinical samples and linked the mutational signatures of XWLC to the 

chemical compound BaP, which advanced the etiology and mechanism of 

air-pollution-induced lung cancer. In our study, several limitations must 

be acknowledged. Firstly, although our multi-omics approach provided a 

comprehensive analysis of the subtypes and their unique biological 

pathways, the sample size for each subtype was relatively small. This 

limitation may affect the robustness of the clustering results and the 

identified subtype-specific pathways. Larger cohort studies are necessary 

to confirm these findings and refine the subtype classifications. Secondly, 

although our study advanced the understanding of air-pollution-induced 

lung cancer by using clinical samples, the reliance on epidemiological 

data in previous studies introduces potential confounding factors. Our 

findings should be interpreted with caution, and further mechanistic 

studies are warranted to establish causal relationships more definitively. 

Thirdly, our in silico analysis suggested potential approach to drug 

resistance in G719X mutations. However, these predictions need to be 

validated through extensive in vitro and in vivo experiments. The reliance 

on computational models without experimental confirmation may limit 

the clinical applicability of these findings. 

In summary, our proteogenomic analysis of clinical tumor samples 

provides insights into air-pollution-associated lung cancers, especially 
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those induced by coal smoke and offers an opportunity to expedite the 

translation of basic research to more precise diagnosis and treatment in 

the clinic. 
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Graphical Abstract 

 

 

Highlights: 

� We conducted comprehensive multi-omic profiling of air-pollution-

associated LUAD. 

� Our study revealed the significant roles of the air pollutant BaP and 

its induced hot mutation G719X in lung cancer progression. 

� Multi-omic clustering enabled the identification of personalized 

therapeutic strategies. 

� Through mutation-informed interface analysis, we identified novel 

targets for therapeutic intervention. 
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Figure legends 

 

Fig 1.| Proteogenomic profiling and mutational signatures in XWLC 

a. Four cohort datasets used in this study: XWLC (Lung adenocarcinoma 

from non-smoking females in Xuanwei area), CNLC (subset of lung 

adenocarcinoma from non-smoking patients in Chinese Human Proteome 
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Project), TSLC (subset of lung adenocarcinoma from smoking females in 

TCGA-LUAD project), TNLC (subset of lung adenocarcinoma from non-

smoking females in TCGA-LUAD project); b. Age distribution of 

patients at the time of operation in the four cohorts; c. Distribution of 

tumor stages across the cohorts; d. Data availability for the XWLC 

datasets. Each bar represents a sample, with orange bars indicating data 

availability and gray bars indicating data unavailability. T, tumor sample. 

N, Normal tissue; e. Summary of data generated from the XWLC cohort; 

f-i. Mutational signatures identified in XWLC (f), TSLC (g), TNLC (h), 

and CNLC (i) cohorts. Cosine similarity analysis of the signatures 

compared to well-established COMIC signatures (in green) and Kucab et 

al. signatures (in red). Contribution of signatures in each cohort provided 

on the right; j-k. Protein abundance of CYP1A1 (j) and AhR (k) in tumor 

and normal samples within the XWLC cohort; Two-tailed Wilcoxon rank 

sum test used to calculate p-values in j-k. 
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Fig 2.| Genomic and genetic features in XWLC cohort 

a. Correlation of genomic mutations among cohorts, determined using the 

Pearson correlation coefficient; b. Comparison of oncogenic pathways 

affected by mutations in each cohort; c. Comparison of mutation 

frequency of four key genes across cohorts; d. Lollipop plot illustrating 

differences in mutational sites within EGFR (left) and TP53 (right) across 

XWLC/CNLC, XWLC/TSLC, and XWLC/TNLC pairs; e. Analysis of 

the percentage of samples with actionable alterations, with a focus on 

significant variations between XWLC and TSLC cohorts, highlighted by 

black boxes.  
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Fig 3.| EGFR-G719X in the XWLC cohort 

a. Distribution of different EGFR mutation statuses across the four 

cohorts; b. Comparison of the fraction of G719X mutations across the 

four cohorts. Two-sided Fisher’s test was used to calculate p values; c. 

Detailed information on pG719X (pG719/A/D/C/S) mutations in the 

XWLC cohort. The number of each mutation type is labeled; d. 

Distribution of nucleotide pairs surrounding the most common G>T 

transversion site in the XWLC cohort. The x-axis represents the 

immediate bases surrounding the mutated base. For BaP, the tallest G>T 
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peak occurs at GpGpG; e-h. Comparison of activation levels of key 

components in the MAPK pathway across different EGFR mutation 

statuses in the XWLC cohor. N, number of tumor samples containing 

corresponding EGFR mutation; i. Comparison of patient ages across 

different EGFR mutation statuses in the XWLC cohort, N, number of 

tumor samples containing corresponding EGFR mutation; j-k. 

Presentation of overall survival (OS, j) and progression-free interval (PFI, 

k) analysis across different EGFR mutation statuses in the TCGA-LUAD 

cohort, Logrank test was used to calculate p values; l. Evaluation of 

kinase activities by KSEA in tumors across different EGFR mutation 

statuses in the XWLC cohort. The two-tailed Wilcoxon rank sum test was 

used to calculate p-values in panels e-i. 
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Fig 4.| Subtyping of XWLC 

a. Integrative classification of tumor samples into four 

ConsensusClusterPlus-derived clusters (MC-I to MC-IV). The heatmap 

displays the top 50 features, including mRNA transcripts, proteins, and 

phosphoproteins, for each multi-omic cluster. The features are annotated 

with representative pathways or genes. If a cluster has fewer than 50 

features, all features are shown. If no significant GO biological processes 

are associated with cluster features, all features are displayed; b. 

Comparison of overall survival between MC-IV and the other three 

subtypes; c. Protein abundance comparison of CYCP1A1 across subtypes; 
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d. Protein-level correlation between CYCP1A1 and EGFR; e. Protein-

level comparison of EGFR across subtypes; f. Evaluation of kinase 

activities by KSEA in tumors across subtypes in the XWLC cohort. The 

two-tailed Wilcoxon rank sum test was used to calculate p-values in 

panels c and e. 
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Fig5.| Biological and immune features across MC subtypes 

a. Relative expression of epithelial-mesenchymal transition (EMT) 

markers across subtypes; b. EMT scores across subtypes using a gene set 

derived from MsigDB (M5930); c-d. Protein abundance comparison of 

FN1 (c) and β-Catenin (d) across subtypes; e. Protein and phosphoprotein 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 7, 2024. ; https://doi.org/10.1101/2024.03.11.24304129doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.11.24304129
http://creativecommons.org/licenses/by/4.0/


levels of key cell cycle kinases across subtypes; f. Expression of mRNA 

and protein levels of glycolysis-associated enzymes; g. mRNA expression 

of VEGFA across subtypes; h. Phosphoprotein abundance of VEGFR1 

across subtypes; i. Angiogenesis score across subtypes using a gene set 

derived from MsigDB (Systematic name M5944); j. Expression 

comparison of key regulators of the Notch pathway across subtypes; k. 

Metabolism-associated hallmarks across subtypes. Gene sets for oxidative 

phosphorylation, peroxisome, adipogenesis, fatty acid metabolism, and 

xenobiotic metabolism were derived from MsigDB hallmark gene sets; l. 

Expression of PD-1 signaling-associated genes across subtypes. PD-1 

signaling-associated genes were derived from MsigDB (Systematic name 

M18810) ; m. Immune cell infiltration across subtypes. Gene sets for 

each immune cell type were derived from a previous study[73]; n. 

Expression of anti-tumor/pro-tumor lymphocyte receptors and ligands 

across subtypes. The two-tailed Wilcoxon rank sum test was used to 

calculate p-values in panels b, c, d, g, h, i, and m.  
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Fig 6.| Radiomic features across subtypes. 

a. Eight features showing significant differences between MC-II and the 

other three subtypes. The Wilcoxon rank sum test was used to calculate 

the p-values; b. A receiver operating characteristic (ROC) curve was used 

to evaluate the performance of the radiomic signature in distinguishing 

MC-II from the other three subtypes; c. Confusion matrix allows 

visualization of the performance of the algorithm in separating MC-II 

from other subtypes.  
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Fig.7|Identification of novel targets in XWLC 

a. Flow chart showing the integration of mutation-informed PPI analysis, 

molecular dynamic simulation and experiment validation to identify 

novel targets; b. Network visualization of XWLC_oncoPPIs. Edge 

thickness represents the number of missense mutations at the protein-
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protein interaction (PPI) interface, while node size indicates connectivity; 

c. MAD1-MAD2 interaction model and the p.Arg558His mutation at the 

interface (left). The complex model was generated using Zdock protein 

docking simulation. The right distribution showing root-mean-squared 

deviation (RMSD) during a 20 ns molecular dynamics simulation of 

MAD1 wild type vs. MAD1 p.Arg558His in the complex; d. Model 

showing the p.His550Gln alteration within the TPRN-PPP1CA complex 

(left). The right distribution showing root-mean-squared deviation 

(RMSD) during a 20 ns molecular dynamics simulation for TPRN wild 

type vs. TPRN p.His550Gln (H550Q) in the complex; e. Survival analysis 

of TPRN mutation group and unaltered group derived from cbioportal 

using TCGA-LUAD cohort (https://www.cbioportal.org/); f. CCK8 assay 

for empty vector (EV), TPRN-WT and TPRN-MT cell lines in A549 cells 

which was transfected by EV, TPRN-WT and TPRN-MT, respectively. g. 

Transwell assay for EV, TPRN-WT and TPRN-MT after 24h and 36h in 

A549 cells. Magnification was set to 40x; h. Bar chart showing the 

statistical results of transwell assay; i. Cell colony assay for EV, TPRN-

WT and TPRN-MT in A549 and H1299 cell line. The two-tailed 

Wilcoxon rank sum test was used to calculate p-values in f and h. *, 

p<0.05; **, p <0.01; ***, p<0.001; 
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