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Abstract 
Purpose:	To	develop	Lifetime	Exposures	and	Asthma	outcomes	Projection	(LEAP),	a	
reference	policy	model	for	evaluating	health	outcomes	and	costs	of	asthma	interventions	
and	policies	for	the	Canadian	population.	

Methods:	Following	the	best	practice	guidelines	for	development,	we	first	created	a	
conceptual	map	with	a	steering	committee	of	clinician	experts	and	economic	modelers	
through	a	modified	Delphi-process.	Following	the	committee’s	recommendations	and	given	
the	multidimensionality	of	risk	factors	and	the	need	for	modeling	realistic	aspects	(e.g.,	
gradual	market	penetration)	of	adopting	health	technologies,	we	opted	for	an	open-
population	microsimulation	design.	For	the	first	version	of	the	model,	we	concentrated	on	
several	key	risk	factors	(age,	sex,	family	history	of	asthma	at	birth,	and	exposure	to	
antibiotics	in	the	first	year	of	life)	from	the	concept	map.	

The	model	consists	of	five	intertwined	modules:	1)	demographic,	2)	risk	factors,	3)	asthma	
occurrence,	4)	asthma	outcomes,	and	5)	payoffs.	The	demographic	module,	including	birth,	
mortality,	immigration,	and	emigration,	was	based	on	sex-	and	age-specific	estimates	and	
projections	from	Statistics	Canada.	The	distributions	of	risk	factors,	including	family	
history	of	asthma	and	exposure	to	antibiotics,	were	estimated	from	population-based	
administrative	databases	and	a	population-based	longitudinal	birth	cohort.	To	estimate	
parameters	in	the	asthma	occurrence	(prevalence,	incidence,	reassessment)	and	asthma	
outcomes	(severity,	symptom	control,	exacerbations)	modules,	we	performed	quantitative	
evidence	synthesis.	Costs	and	utility	weights	were	obtained	from	the	literature.	We	
conducted	multiple	face	and	internal	validation	assessments.		
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Results:	LEAP	is	capable	of	modeling	asthma-related	health	outcomes	at	the	individual	and	
aggregate	levels	from	2001	onwards.	Face	validity	was	confirmed	by	checking	the	
structure,	equations,	codes,	and	results.	We	calibrated	and	internally	validated	the	age-sex	
stratified	demographic	projections	to	the	estimates	and	projections	from	Statistics	Canada,	
the	age-sex	stratified	asthma	prevalence	to	the	administrative	data,	and	the	asthma	control	
levels	and	exacerbation	rates	to	the	estimates	from	the	literature.		

Conclusions:	LEAP	is	the	first	reference	Canadian	asthma	policy	model	that	emerged	from	
identified	needs	for	health	policy	planning	for	early	interventions	in	asthma.	As	an	open-
source	and	open-access	platform,	LEAP	can	provide	a	unified	framework	under	which	
different	interventions	and	policies	can	be	consistently	compared	to	identify	those	with	the	
highest	value	proposition.	
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Background 
Asthma	is	an	early-onset,	chronic	disease	of	the	airways	affecting	over	3	million	Canadians	
and	339	million	people	worldwide	(GBD	2019	Diseases	and	Injuries	Collaborators,	2020;	
Public	Agency	of	Canada,	2018;	Soriano	et	al.,	2020).	It	is	one	of	the	leading	causes	of	
emergency	department	visits,	hospital	admissions,	missed	school	days	for	children,	and	
loss	of	work	productivity	for	adults.	It	greatly	reduces	the	quality	of	life	of	patients	and	
their	families	(Bahadori	et	al.,	2009;	Ehteshami-Afshar	et	al.,	2016;	FitzGerald	et	al.,	2020).	
By	all	accounts,	asthma	imposes	a	substantial	economic	and	humanistic	burden	to	
individuals	with	asthma	and	society.	

Due	to	the	absence	of	a	cure	for	asthma,	the	contemporary	management	of	asthma	is	
focused	on	achieving	and	maintaining	asthma	control	(Global	Initiative	for	Asthma,	2023;	
Lommatzsch	et	al.,	2023).	However,	emerging	evidence	promises	the	development	of	
innovative	interventions	that	might	reduce	the	risk	of	asthma	onset	in	children.	For	
example,	researchers	have	found	an	association	between	the	risk	of	asthma	and	exposure	
to	antibiotics	during	infancy,	a	relationship	that	seems	to	be	mediated	by	the	gut	
microbiome	(Hoskinson	et	al.,	2023;	Patrick	et	al.,	2020).	This	finding	corroborates	the	
microflora	hypothesis	(Stiemsma	and	Turvey,	2017)	which	states	that	exposure	to	certain	
gut	microbes	in	early	life	is	critical	for	developing	a	robust	immune	system.	Thus,	
interventions	and	policies,	such	as	reducing	unnecessary	exposure	to	antibiotics,	may	
prevent	the	development	of	asthma	among	children.	

Efficient	health	policy-making	relies	on	projections	of	future	consequences	of	decisions.	
Hence,	epidemiological	forecasting,	burden	of	disease	projections,	and	economic	
evaluations	are	foundational	to	evidence-informed	policymaking.	Of	particular	importance	
in	health	policymaking	is	economic	evaluation	of	competing	interventions.	This	is	because	
the	implementation	of	any	new	intervention	or	policy	is	associated	with	‘opportunity	
costs.’	In	this	context,	the	opportunity	cost	of	implementing	a	particular	intervention	is	the	
health	benefits	that	could	have	been	obtained	if	the	resources	had	been	used	to	implement	
another	intervention.	Stakeholders	(e.g.,	the	government	and	patients)	who	have	limited	
resources	must	know	the	‘value	for	money’	potential	of	these	competing	interventions	to	
make	informed	decisions.	

For	the	most	part,	projecting	health	outcomes	at	the	population	level	and	conducting	
economic	evaluations	require	creating	a	decision-analytic	framework	of	the	disease	of	
interest	and	quantifying	the	impact	of	interventions	under	evaluation	(Buxton	et	al.,	1997).	
Such	a	framework	is	often	realized	as	a	computer	simulation	model	that	allows	one	to:	1)	
explicitly	describe	the	complex	interplay	of	risk	factors,	interventions,	and	health	and	
economic	outcomes,	2)	synthesize	data	from	multiple	sources	(e.g.,	effectiveness	from	
clinical	trials	and	evidence	on	health	services	use	from	electronic	medical	records)	in	a	
unified	framework,	3)	project	long-term,	policy-relevant	metrics	based	on	intermediate	
clinical	outcomes	or	outcomes	from	studies	with	shorter	follow-up	times,	and	4)	project	
the	outcomes	under	different	‘what-if’	scenarios	(e.g.,	how	many	asthma	cases	will	be	
averted	in	the	next	20	years	if	a	national	antibiotic	stewardship	program	is	implemented).	
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A	recent	scoping	review	and	an	earlier	systematic	review	concluded	that	current	decision-
analytic	asthma	models	generally	do	not	consider	the	multifaceted	and	heterogeneous	
nature	of	the	disease,	lack	transparency,	lack	sufficient	granularity	to	model	the	nuances	of	
interventions	(e.g.,	imperfect	adherence	to	treatments),	and	do	not	fully	adhere	to	
recommendations	on	modeling	and	outcomes	(Adibi	et	al.,	2021;	Ehteshami-Afshar	et	al.,	
2019).	Lack	of	high-quality	economic	evidence	is	likely	to	hinder	the	implementation	of	
interventions	that	could	substantially	reduce	the	burden	of	asthma.	Customarily,	a	new	
computer	model	is	developed	to	conduct	policy	analysis	and	economic	evaluation	for	each	
set	of	new	health	interventions.	In	recent	years,	this	approach	has	been	criticized	for	
several	reasons	(Afzali	et	al.,	2013).	Such	‘piecemeal’	modeling	is	deemed	inefficient,	
because	different	computer	models	are	sometimes	developed	and	used	for	the	same	
disease,	resulting	in	a	loss	of	analytic	resources.	Additionally,	such	de	novo	models	are	
prone	to	be	inconsistent	in	terms	of	model	structure,	evidence,	and	underlying	
assumptions.	There	is	an	increasing	recognition	that	de	novo	models	often	lack	
transparency,	making	them	inaccessible	to	other	users	(Kent	et	al.,	2019).	An	alternative	
approach	to	address	these	issues	is	the	use	of	a	‘reference	model’	that	serves	as	a	unified	
framework	for	evaluating	different	interventions	for	the	same	disease	(Afzali	et	al.,	2013).	
The	reference	model	must	be	transparent	enough	so	that	users	can	understand	its	model	
structure	and	assumptions	and	use	it	with	confidence.	The	need	for	a	national	reference	
policy	model	for	asthma	emerged	from	discussions	among	key	stakeholders	in	Canada	
(Legacy	for	Airway	Health,	2020).	To	address	this	knowledge	gap,	our	overarching	goal	was	
to	develop	and	validate	a	reference	policy	model	for	evaluating	interventions	for	asthma	in	
Canada.	

Methods 
Our	model	development	and	validation	underwent	the	following	stages,	in	accordance	with	
the	best	standards	set	forth	by	the	Professional	Society	for	Health	Economics	and	
Outcomes	Research	(ISPOR)	-	Society	of	Medical	Decision	Making	(SMDM)	Modeling	Good	
Research	Practices	Task	Force	(Briggs	et	al.,	2012;	Caro	et	al.,	2012;	Eddy	et	al.,	2012;	
Karnon	et	al.,	2012).	First,	we	convened	a	group	of	methodologists	and	clinical	experts	to	
create	a	conceptual	map.	Based	on	the	conceptual	map,	we	selected	an	appropriate	model	
structure	and	identified	key	model	components.	We	performed	several	analyses	to	
generate	and	synthesize	evidence	required	for	the	model	and	calibrated	the	model	to	the	
Canadian	population.	We	then	implemented	the	model	as	open-source,	open-access	
software.	Lastly,	we	carried	out	validation	studies	to	test	the	validity	of	model	assumptions	
and	implementation.	

As	recommended,	the	process	started	with	a	concept	map,	developed	by	deep	engagement	
with	a	steering	committee	of	economic	modelers,	allergists,	and	respirologists	across	
Canada	(Figure	1).	At	the	time,	interventions	of	interest	were	early	preventive	strategies.	
As	such,	the	group’s	focus	was	on	childhood	asthma.	The	model	concept,	which	emerged	
through	a	modified	Delphi	process	(details	are	provided	in	Adibi	et	al.	(2021)),	includes	
three	major	groups	of	risk	factors	(including	unmodifiable	ones)	related	to	diagnosis	of	
childhood	asthma:	patient	characteristics,	family	history,	and	environmental	factors.	
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Figure	1:	Concept	map	of	childhood	asthma.	An	arrow	indicates	the	direction	of	the	
relationship,	along	with	the	strength	written	above	it	(used	with	permission	from	BMJ).	

Our	implementation	of	this	conceptual	model	is	as	an	open-population	discrete-time	
microsimulation,	in	alignment	with	recommendations	from	the	steering	committee	(Adibi	
et	al.,	2021).	In	a	microsimulation	model,	a	virtual	individual	is	created	to	represent	a	
person	in	the	population	of	interest.	In	each	time	cycle,	actions	and	behaviors	of	the	
individual	are	simulated	based	on	pre-defined	rules,	and	the	attributes	and	disease	
characteristics	of	the	individual	are	updated	accordingly.	The	microsimulation	model	is	
capable	of	accommodating	the	multidimensionality	of	risk	factors	and	a	high	number	of	
disease	states	in	their	transition	probabilities.	A	virtual	individual	in	our	model	represents	
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a	Canadian.	We	did	not	allow	interactions	between	virtual	individuals	(hence	not	modeling	
vertical	relationships	in	the	model)	and	set	the	time	cycle	unit	to	annual	as	we	concluded	
the	annual	time	cycle	strikes	a	right	balance	between	granularity	in	simulation	events	over	
time	and	the	computational	demands	of	the	planned	analyses.	

The	model	is	open-population	as	it	simulates	the	entire	population	over	time,	including	
population	growth,	aging,	immigration,	and	emigration.	This	feature	was	deemed	necessary	
to	satisfy	the	need	for	modeling	realistic	aspects	(e.g.,	gradual	market	penetration)	of	
adopting	health	interventions	for	an	immigrant	welcoming	country,	such	as	Canada	
(Willekens	and	Van	Imhoff,	2015).	Correspondingly,	the	time	horizon	(i.e.,	the	period	over	
which	the	model	can	be	run)	is	defined	in	calendar	time.	The	maximum	range	of	the	time	
horizon	is	from	2001	(the	earliest	year	for	which	we	had	access	to	data)	to	2065	(the	latest	
year	for	which	population	projections	are	available),	enabling	both	retrospective	(e.g.,	the	
impact	of	previous	health	interventions	on	the	current	burden	of	asthma)	and	prospective	
modeling.	If	the	base	year	is	set	to	a	time	after	2019	(the	latest	year	in	which	the	data	on	
population	structure	is	available),	the	model	internally	will	simulate	the	2019	population	
towards	the	base	year.	

We	modeled	labeled,	rather	than	true,	asthma	states	due	to	lack	of	evidence	on	the	natural	
history	of	asthma	regarding	true	states.	Current	evidence	on	asthma	is	mostly	based	on	
labeled	asthma	states	(physician-diagnosis	or	International	Classification	of	Disease	[ICD]	
codes).	With	better	understanding	of	asthma	and	better	technology	that	enables	objective	
diagnostic	testing,	we	envision	obtaining	and	incorporating	evidence	on	true	asthma	states	
in	the	future.	

Model components 
The	asthma	model	consists	of	five	intertwined	modules:	1)	demographics,	2)	risk	factors,	3)	
asthma	occurrence,	4)	asthma	outcomes,	and	5)	payoffs	(costs	and	utilities).	The	core	of	the	
model	can	be	conceptualized	as	a	series	of	stochastic	structural	equations	relating	risk	
factors	to	each	other	and	to	events	of	interest	(Figure	2).	For	the	first	version	of	the	model,	
guided	by	consultation	with	the	steering	committee,	we	concentrated	on	several	key	risk	
factors	from	the	concept	map:	age,	sex,	family	history	of	asthma	at	birth,	and	infant	(<1	
year	old)	exposure	to	antibiotics.	This	represents	at	least	one	risk	factor	from	each	risk	
factor	group	(from	Figure	1),	and	is	aligned	with	the	first	identified	use	case	for	the	model	
(i.e.,	the	evaluation	of	infant	antibiotic	use	on	burden	of	asthma).	Table	1	shows	the	
summary	of	the	structural	equations	by	modules	in	the	asthma	model.	Parameter	values	
are	provided	in	a	separate	table	online	(https://github.com/tyhlee/LEAP.jl).	

We	describe	two	high-level	assumptions	in	the	model.	We	assumed	that	asthma	was	not	
labeled	for	children	under	3	years	of	age	due	to	difficulty	with	performing	and	confirming	
assessment	for	this	age	group.	As	such,	children	under	this	age	were	not	assigned	any	
asthma	attributes.	Further,	we	assumed	that	death	or	emigration	occurred	at	the	end	of	the	
time	cycles.	Put	differently,	any	events	they	experience	in	the	year	they	die	(or	emigrate)	
were	assumed	to	happen	before	their	death	(or	emigration).	
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In	the	remainder	of	this	section,	we	describe	each	of	the	five	modules	in	detail	and	then	
provide	an	overview	of	how	these	modules	are	connected	including	pseudocode	of	the	
microsimulation	model	at	the	end.	

	

Figure	2:	Schematic	illustration	of	the	reference	asthma	policy	model.	

	

Table	1:	Structural	equations	by	modules	in	the	asthma	model.		

The	notation	𝑥 ∗ 𝑦	means	main	effects	of	𝑥	and	𝑦	as	well	as	their	interaction	effects.			

The	notation	𝛽	means	a	vector	of	regression	coefficients	of	the	necessary	dimension.			

The	notation	poly(𝑥, 𝑞)	means	polynomials	of	𝑥	up	to	degree	𝑞	(i.e.,	𝑥, 𝑥!, … , 𝑥").	

Modules	 Description	 Source/Reference	
Demographics	 	 	
Initial	
population	

For	a	given	year	∈ {2000,2001,… ,2019},	the	
Statistics	Canada	estimated	population	size	is	used	
(treated	as	fixed).	The	empirical	distribution	of	sex	
and	age	for	the	given	year	is	used	to	assign	age	and	
sex	of	each	individual	𝑖	in	the	initial	population:	
1sex# , age#2 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙1𝑝(sex,age)|year2	

Statistics	Canada	
(2022a)	

Birth	 For	a	given	year	and	projection	scenario,	the	 Statistics	Canada	
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Modules	 Description	 Source/Reference	
Statistics	Canada	estimated	or	projected	number	of	
births	is	used	(treated	as	fixed).	The	empirical	or	
projected	distribution	of	sex	at	birth	for	the	given	
year	is	used	to	assign	sex	of	each	birth	𝑖:	sex# ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝sex|year,projection	scenario)	

(2022a,b)	

Net	
immigration	

For	a	given	year	and	projection	scenario,	the	
number	of	net	immigrants	by	sex	and	age	is	
estimated	by	calibration	(treated	as	fixed).	The	
empirical	or	projected	distribution	by	sex	and	age	
is	used	to	assign	sex	and	age	of	each	net	immigrant	
𝑖:	1sex# , age#2 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙1𝑝(sex,age)|year2)	

Calibration	

Net	emigration	 For	a	given	year	and	projection	scenario,	the	
number	of	net	emigrants	by	sex	and	age	is	
estimated	by	calibration	(treated	as	fixed).	The	
empirical	or	projected	proportion	of	net	emigrants	
by	sex	and	age	is	used	to	assign	whether	individual	
𝑖	emigrates:	emigration# ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝|sex,age,year,projection	scenario)	

Calibration	

Mortality	 For	a	given	year,	sex,	and	age,	the	Statistics	Canada	
estimated	or	projected	life	table	is	used	to	assign	
whether	individual	𝑖	dies.	death# ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝|year,sex,age)	

Canadian	life	table	
(Statistics	Canada,	
2022c)	

Risk	factors	 	 	
Family	history	
of	asthma	at	
birth	(𝑋')	

Regardless	of	birth	year,	sex,	and	other	
characteristics,	𝑋'	(the	indicator	of	having	parental	
history	of	asthma	at	birth)	is	generated:	𝑋' ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)	

CHILD	study	
(Takaro	et	al.	
2015)	

Infant	
antibiotic	
exposure	(𝑋!)	

For	a	given	birth	year	and	sex,	𝑋!	(the	number	of	
courses	of	antibiotics	individual	𝑖	receives	in	the	
first	year	of	life)	is	generated	by	a	Negative	
Binomial	model.	To	prevent	unrealistic	
extrapolation,	the	mean	parameter	is	truncated	at	
0.05	(equivalent	to	50	per	1,000	infants).		
𝑋!1sex# , birth	year#2 ∼
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(max(0.05, 𝜇#), 𝜃);		
log1𝜇#|sex# , birth	year#2 = 𝛽( + 𝛽'sex# +
𝛽!𝟏Ubirth	year# > 2005W ∗ birth	year.	

British	Columbia	
Ministry	of	Health	
(2023)	

Asthma	
occurrence	

	 	

Effect	of	𝑋'	 The	effect	of	𝑋'	in	terms	of	log	odds	ratio	(OR),	
denoted	as	𝑓)(𝑋', 𝑎𝑔𝑒),	on	𝑗 ∈

Patrick	et	al.	
(2020)	
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Modules	 Description	 Source/Reference	
{asthma	incidence	(inc),	asthma	prevalence	(prev)}	
is	given	by	the	following	equation:	𝑓)(𝑋', 𝑎𝑔𝑒)
: = log1𝑂𝑅)|𝑋', 𝑎𝑔𝑒2 = 𝟏[𝑎𝑔𝑒 ≥ 3	AND	
𝑋' = 1]1𝛽() + 𝛽')1min(𝑎𝑔𝑒, 5)2 − 32.	

Effect	of	𝑋!	 The	effect	of	𝑋!	in	terms	of	log	odds	ratio	(OR),	
denoted	as	𝑔)(𝑋!, 𝑎𝑔𝑒),	on	𝑗 ∈ {inc,prev}	is	given	
the	following	equation:	𝑔)(𝑋!, 𝑎𝑔𝑒)
: = log1𝑂𝑅)|𝑋!, 𝑎𝑔𝑒2 = 𝟏[(𝑎𝑔𝑒 ≥ 3	AND	𝑎𝑔𝑒 ≤
7)	AND	𝑋! > 0] f𝛽() + 𝛽')𝑎𝑔𝑒 + 𝛽!)min(𝑋!, 3)g	

Lee	et	al.	(2024)	

Asthma	
prevalence	
𝑌*+,-	

For	a	given	year	and	individual	characteristics,	
𝑌*+,-	(the	indicator	of	having	an	asthma	label)	is	
generated:	𝑌*+,- ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝|year,sex,age, 𝑋', 𝑋!)	
	𝑙𝑜𝑔𝑖𝑡(𝑝|year,sex,age, 𝑋', 𝑋!) = 𝛽( +
𝛽'poly(year,2) ∗ sex ∗ poly(age,5)+
𝑓*+,-(𝑋', 𝑎𝑔𝑒) + 𝑔*+,-(𝑋!, 𝑎𝑔𝑒)			
	
Note	that	the	length	of	𝛽'iiii⃗ 	is	34.	For	each	of	males	
and	females,	there	are	2	main	effects	of	year	and	
year!,	5	main	effects	of	age,	age!,	…,	age.	and	the	
corresponding	10	(first	order)	interaction	effects	
between	year	and	age.	

British	Columbia	
Ministry	of	Health	
(2023),	
Government	of	
Canada	(2023),	
calibration	

Asthma	
incidence	𝑌#/0 	

For	a	given	year	and	individual	characteristics,	𝑌#/0 	
(the	indicator	of	developing	an	asthma	label)	is	
generated:		𝑌#/0 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝|year,sex,age, 𝑋', 𝑋!)	
	𝑙𝑜𝑔𝑖𝑡(𝑝|year,sex,age, 𝑋', 𝑋!) = 𝛽( + 𝛽'year+
𝛽!iiii⃗ sex ∗ poly(age,5)+ 𝑓#/0(𝑋', 𝑎𝑔𝑒) + 𝑔#/0(𝑋!, 𝑎𝑔𝑒)		
	
Note	that	the	length	of	𝛽!iiii⃗ 	is	10.	For	each	of	males	
and	females,	there	are	5	main	effects	of	year,	year!,	
…,	year..	

British	Columbia	
Ministry	of	Health	
(2023),	
Government	of	
Canada	(2023),	
calibration	

Asthma	
reassessment	

For	a	given	year,	sex,	and	age,	an	individual	labeled	
as	asthmatic	is	reassessed.	They	maintain	their	
asthma	label	with	probability	𝑝,	where	𝑝	is	
determined	by	calibration:	asthma	reassessment ∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝|year,sex,age).	

Calibration	

Asthma	
outcomes	

	 	

Asthma	control	 There	are	three	levels	of	asthma	control:	1	=	
uncontrolled	(UC),	2	=	partially	controlled	(PC),	and	

Economic	Burden	
of	Asthma	(Chen	et	
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Modules	 Description	 Source/Reference	
3	=	well-controlled	(WC).	For	individual	𝑖	labeled	as	
asthmatic,	the	proportion	of	time	spent	in	each	of	
the	three	asthma	control	levels	in	a	year	
(conditional	on	their	age	and	sex)	is	given	by	the	
probabilities	generated	by	a	random-effects	ordinal	
regression	model.	For	𝑌# 	the	label	of	the	asthma	
control	level:	𝑙𝑜𝑔𝑖𝑡 f𝑃1𝑌# ≤ 𝑗|sex# , age#2g = 𝜃) −

1𝛽(# + 𝛽⃗'sex# ∗ poly(age,2)2,	for	𝑗 = 1,2,	where	
𝛽(# ∼ 𝑁(0, 𝜎!)	

al.,	2013)	

Asthma	
exacerbation	

For	a	given	year,	sex,	age,	and	the	proportion	of	
time	spent	in	each	of	the	control	levels	in	that	year	
(denoted	𝐶𝑇# 	for	𝑗 = 1,2,3),	the	number	of	
exacerbations	for	an	individual	labeled	as	asthmatic	
is	generated	by	a	Poisson	model:	
number	of	exacerbations ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇|𝐶𝑇', 𝐶𝑇!, 𝐶𝑇1,	year,	sex,	age).	
log(𝜇|𝐶𝑇', 𝐶𝑇!, 𝐶𝑇1,	year,	sex,	age) = 𝛽( +∑ 𝛽)) 𝐶𝑇) ,	
where	𝛽(	is	determined	by	calibration	as	a	function	
of	year,	sex,	and	age.	

Economic	Burden	
of	Asthma	(Chen	et	
al.,	2013),	the	
GOAL	study	
(Bateman	et	al.,	
2004),	Lee	et	al.	
(2022a),	
calibration	

Exacerbation	
severity	

There	are	four	levels	of	exacerbation	severity:	1	=	
mild,	2	=	moderate,	3	=	severe,	and	4	=	very	severe.	
Given	the	number	of	exacerbations	𝑁# 	in	a	year	and	
the	past	history	of	very	severe	exacerbations	𝑛#2

past,	
the	number	of	exacerbations	𝑛#) 	in	each	severity	
level	𝑗	is	simulated	for	each	individual	𝑖	by	the	
Dirichlet-Multinomial	distribution.	A	preliminary	
vector	of	probabilities	for	the	severity	levels	is	
sampled	from	a	Dirichlet	distribution:	𝐰#

*+, ∼
𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛂).	If	individual	𝑖	experienced	any	
previous	very	severe	exacerbations,	their	
probability	of	very	severe	exacerbations	is	
increased	to	yield:	𝐰# = 𝐰*+,1𝑛#2

past2	(see	the	main	
text	for	details).		The	number	of	exacerbations	by	
the	severity	levels	is	generated	by	a	multinomial	
distribution:	(𝑛#', 𝑛#!, 𝑛#1, 𝑛#2) ∼
𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁# , 𝐰#).	

Yaghoubi	et	al.	
(2020),	Bateman	et	
al.	(2018),	Lee	et	al.	
(2022b)	

Payoffs	 	 	
Baseline	utility	 The	utility	values	measured	in	quality-adjusted	life	

years,	ranging	from	0	(death)	to	1	(perfectly	
healthy)	based	on	EQ-5D	are	used	to	assign	the	
base	utility	of	each	individual	by	sex	and	age.	

Yan	et	al.	(2024)	
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Modules	 Description	 Source/Reference	
Disutility	due	
to	asthma	
control	(per	
year)	

The	base	utility	value	of	an	individual	labeled	as	
asthmatic	decreases	based	on	their	asthma	control	
status.	Let	𝑑𝑢)3 	denote	the	disutility	due	to	having	
asthma	control	level	𝑗	in	a	year.	Then	the	total	
disutility	due	to	asthma	control	is	given	by:	∑)
𝑑𝑢)3 𝐶𝑇) 	

Einarson	et	al.	
(2015)	

Disutility	due	
to	asthma	
exacerbation	
(per	year)	

The	base	utility	value	of	an	individual	labeled	as	
asthmatic	decreases	if	they	experience	asthma	
exacerbations.	Let	𝑑𝑢)4 	denote	the	disutility	due	to	
experiencing	a	single	asthma	exacerbation	of	
severity	𝑗	in	a	year	and	𝑛) 	be	the	number	of	
exacerbations	of	severity	𝑗	for	𝑗 =	mild,	moderate,	
severe,	and	very	severe.	Then	the	total	disutility	
due	to	asthma	exacerbations	is	given	by:	∑ 𝑑𝑢)4) 𝑛) .	

Aldington	and	
Beasley	(2007),	
Yaghoubi	et	al.	
(2020),Einarson	et	
al.	(2015)	

Direct	annual	
costs	due	to	
asthma	control	

Let	𝑐)3 	be	the	direct	annual	costs	due	to	asthma	
control	level	𝑗.	Then	the	total	cost	due	to	asthma	
control	is	given	by:	∑ 𝑐)3) 𝐶𝑇) .	

Yaghoubi	et	al.	
(2020)	

Direct	annual	
costs	due	to	
asthma	
exacerbation	

Let	𝑐)4 	be	the	direct	annual	costs	due	to	one	asthma	
exacerbation	of	severity	𝑗.	Then	the	total	cost	due	to	
asthma	exacerbations	in	a	year	is	given	by:	∑ 𝑐)4) 𝑛) 	

Yaghoubi	et	al.	
(2020)	

Demographics module 

The	demographics	module	consists	of	birth,	immigration,	emigration	and	mortality	
equations.	At	the	start	of	the	simulation,	an	initial	population	is	generated	for	the	specified	
base	year.	In	subsequent	years,	virtual	individuals	enter	the	simulated	population	through	
birth	or	immigration	according	to	the	estimates	or	projections	of	population	growth	and	
aging,	and	exit	the	simulated	population	when	one	of	the	following	events	occur:	death,	
emigration,	or	reaching	the	end	of	the	time	horizon.	

To	model	the	initial	population	prior	and	up	to	2019,	we	used	the	population	estimates	by	
sex	and	age	from	Statistics	Canada	(Statistics	Canada,	2022a).	To	model	the	initial	
population	for	later	years,	we	applied	a	population	projection	by	sex	and	age	from	Statistics	
Canada	(Statistics	Canada,	2022b).	Among	the	nine	population	projection	scenarios	
provided	by	Statistics	Canada	(low	growth,	five	levels	of	medium	growth,	high	growth,	slow	
aging,	and	fast	aging)	(Statistics	Canada,	2022b),	we	found	that	the	third	medium	(M3)	
growth	resulted	in	the	lowest	root	mean	squared	error	of	the	total	population	at	the	
national	level	when	compared	with	the	observed	data	in	2020	and	2021	(Appendix	Section	
1).	As	such,	the	demographics	module	was	calibrated	to	the	M3	growth.	

Birth	is	one	of	the	two	ways	for	individuals	to	enter	the	simulation	after	the	initialization	of	
the	population.	The	number	of	births	by	sex	and	year	was	based	on	the	estimate	(2000-
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2019)	or	projection	(2020-2065)	from	Statistics	Canada	(Statistics	Canada,	2022a,b).	
Statistics	Canada	does	not	provide	a	breakdown	of	immigrants	and	emigrants	by	sex	and	
age	in	their	population	estimates	and	projections.	We	decided	to	model	the	net	immigrants	
and	net	emigrants	via	model	calibration.	For	each	year,	we	calculated	the	number	of	
individuals	required	to	immigrate	and	emigrate,	by	sex	and	age,	to	match	the	estimated	or	
projected	size	of	the	population.	Specifically	for	each	year,	we	computed	the	total	numbers	
of	net	immigrants	and	net	emigrants	by	summing	over	all	combinations	of	sex	and	age	and	
treated	these	totals	as	non-random.	We	then	computed	the	empirical	distribution	of	net	
immigrants	by	sex	and	age	by	dividing	the	count	of	each	sex–age	cell	by	the	total	number	of	
net	immigrants	for	each	year.	For	net	emigrants,	we	calculated	the	probability	of	
emigrating	out	of	the	country	by	sex	and	age	by	dividing	the	count	of	each	sex–age	cell	by	
the	total	number	in	the	population	for	each	year.	We	then	used	these	empirical	
distributions	to	assign	sex	and	age	of	each	immigrant	(via	a	categorical	distribution)	and	to	
determine	whether	an	individual	emigrates	(via	a	Bernoulli	distribution),	respectively.	

In	the	current	version,	the	mortality	rate	was	not	differentiated	between	individuals	with	
asthma	and	those	without	asthma,	as	deaths	due	to	asthma	are	very	rare	(O’Byrne	et	al.,	
2019).	In	Canada,	asthma	was	responsible	for	a	very	small	proportion	of	all-cause	deaths	
annually	between	2000	and	2020	(the	maximum	value	was	less	than	0.14%)	(Statistics	
Canada,	2022d).	As	such,	differentiation	was	not	deemed	necessary.	

For	mortality,	we	used	the	estimated	life	tables	to	model	whether	an	individual	dies	at	the	
end	of	each	time	cycle	(Statistics	Canada,	2022c).	However,	Statistics	Canada	does	not	
provide	a	projected	life	table	but	a	predicted	life	expectancy	of	an	individual	at	birth	in	year	
2068	for	each	projection	scenario.	For	M3,	this	value	is	87.0	years	for	males	and	90.1	years	
for	females	(Statistics	Canada,	2022b).	To	reflect	this	increase	in	life	expectancy,	we	
modified	the	latest	life	table	(2020)	for	each	sex	by	calibrating	the	probability	of	death	
across	all	ages	as	follows:	

𝑙𝑜𝑔𝑖𝑡1𝑝(𝑠𝑒𝑥, 𝑎𝑔𝑒, 𝑦𝑒𝑎𝑟)2 = 𝑙𝑜𝑔𝑖𝑡1𝑝(𝑠𝑒𝑥, 𝑎𝑔𝑒, 2020)2 − 𝛽5,6(𝑦𝑒𝑎𝑟 − 2020),  (1)	

where	𝑝(𝑠𝑒𝑥, 𝑎𝑔𝑒, 2020)	is	the	probability	of	death	from	the	2020	life	table.	Our	goal	is	to	
find	𝛽5,6	such	that	the	projected	life	table	matches	the	2068	life	expectancy	predicted	by	
Statistics	Canada.	Given	𝛽5,6 ,	we	can	calculate	the	probability	of	death	for	each	age	in	2068	
using	(1)	and	compute	the	corresponding	projected	life	expectancy	at	birth	(details	are	
provided	in	Appendix	Section	2).	We	solved	for	𝛽5,6	by	minimizing	the	absolute	error	
between	the	projected	and	targeted	life	expectancy	values	using	a	bisection	method	
(uniroot	function	in	R).	

Risk factor module 

We	describe	here	how	each	risk	factor	is	instantiated	for	a	virtual	individual.	In	the	current	
version	of	the	model,	the	following	risk	factors	are	included:	age,	biological	sex,	family	
history	of	asthma	at	birth,	and	infant	(<	1	year	of	age)	antibiotic	use.	Age	and	sex	of	a	
virtual	individual	were	determined	by	the	demographics	module.	The	probability	of	having	
family	history	of	asthma	at	birth	was	assumed	to	be	constant	across	birth	year,	age,	and	
sex.	To	obtain	an	estimate	of	the	probability	of	having	family	history	of	asthma	at	birth,	we	
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used	the	Canadian	Healthy	Infant	Longitudinal	Development	(CHILD)	study,	an	ongoing	
representative	birth	cohort	of	3,455	families	(Takaro	et	al.,	2015).	We	found	that	29.3%	
(95%CI:	27.3–31.1)	of	the	children	in	the	study	had	parental	asthma.	We	assumed	that	all	
virtual	individuals	had	this	probability	of	having	family	history	of	asthma	at	birth,	
regardless	of	birth	year,	age,	and	sex.	

To	obtain	an	estimate	of	the	infant	antibiotic	exposure,	we	used	the	antibiotic	prescription	
rate	as	a	proxy.	Using	the	prescription	data	from	the	British	Columbia	Ministry	of	Health	
for	the	period	from	2000	to	2019	(British	Columbia	Ministry	of	Health	[creator],	2023),	we	
fitted	a	negative	binomial	model	with	the	log	link	and	the	number	of	courses	of	antibiotics	
in	the	first	year	of	life	as	the	response	variable,	birth	year	and	biological	sex	as	linear	
covariates,	and	the	logarithm	of	the	number	of	new	births	as	an	offset.	In	addition,	we	
added	an	interaction	term	between	birth	year	and	an	indicator	for	the	introduction	of	an	
antibiotic	stewardship	program	in	British	Columbia	in	2005	(Mamun	et	al.,	2019).	

We	observed	a	decreasing	trend	of	antibiotic	exposure,	with	males	receiving	more	courses	
of	antibiotics	than	females.	After	the	antibiotic	stewardship	program	was	introduced	in	
2005,	the	trend	became	steeper	(Figure	3).	For	subsequent	years	we	assumed	the	
stewardship	program	would	remain	in	place	and	the	corresponding	trends	were	
extrapolated.	However,	extrapolation	eventually	leads	to	near	zero	rates	of	antibiotic	
exposure	which	is	unrealistic.	To	prevent	this,	we	assumed	a	minimum	rate	of	50	(per	
1,000	persons)	after	consultation	with	the	steering	committee.	We	used	this	truncated	rate	
parameter	in	the	negative	binomial	model	to	simulate	the	number	of	antibiotic	
prescriptions	in	the	first	year	of	life	for	each	virtual	individual.	For	individuals	born	prior	to	
2001,	we	treated	their	birth	years	as	2001	for	simulating	their	number	of	antibiotic	
prescriptions	(i.e.,	we	did	not	use	the	model	to	extrapolate	into	the	past).	

	

Figure	3:	Trends	in	the	rate	of	courses	of	antibiotics	in	the	first	year	of	life	in	British	
Columbia	by	sex	(dotted	grey:	2005;	red:	observed;	green:	predicted;	blue:	truncated).	
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Asthma occurrence module 

This	module	is	responsible	for	asthma	labeling.	Recall	that	we	decided	to	model	labeled	
asthma	states	rather	than	true	asthma	states.	For	the	initial	population,	we	need	a	
prevalence	equation	to	determine	whether	an	incoming	virtual	individual	is	labeled	as	
asthmatic	in	the	base	year	of	the	microsimulation.	For	individuals	not	labeled	as	asthmatic	
for	each	time	cycle	in	the	model,	we	need	an	incidence	equation	to	determine	whether	they	
become	labeled	as	asthmatic.	We	assumed	that	immigrants	have	the	same	asthma	
incidence	and	prevalence	rates	as	Canadians.	Recall	that	asthma	was	not	modelled	for	
children	under	3	years	of	age,	as	it	is	difficult	to	perform	tests	to	perform	and	confirm	
asthma	assessment	for	that	age	group	(Jones	et	al.,	2019).	Accordingly,	we	did	not	assign	
any	asthma	attribute	to	children	under	3	years	of	age.	The	equations	for	incidence	and	
prevalence	are	provided	in	Table	1.	

Values	for	the	parameters	in	these	equations	were	obtained	in	a	stepwise	fashion.	We	
started	with	population-based	age-	and	sex-specific	`crude’	prevalence	and	incidence	
without	the	effect	of	other	risk	factors	(family	history	of	asthma	at	birth	and	exposure	to	
antibiotics	in	the	first	year	of	life).	Then	we	introduced	asthma	reassessment	to	calibrate	
the	age-	and	sex-specific	crude	incidence	and	prevalence	for	each	year.	Finally,	we	
incorporated	and	calibrated	for	the	effect	of	the	two	remaining	risk	factors.	

Estimation of crude asthma prevalence and incidence 

In	this	subsection,	we	explain	how	we	obtained	estimates	of	crude	asthma	prevalence	and	
incidence	at	the	national	level.	For	this	purpose,	we	used	two	data	sources:	a	national	
survey	(Government	of	Canada,	2023)	and	an	administrative	database	of	British	Columbia	
(BC).	The	Canadian	Community	Health	Survey	(CCHS)	is	a	cross-sectional	self-reported	
survey	for	12	years	or	older	at	the	national	level.	It	provides	asthma	prevalence	estimates	
at	the	national	level	but	does	not	report	on	asthma	prevalence	for	the	age	group	of	less	
than	12	years	of	age	or	on	asthma	incidence	for	any	age.	On	the	other	hand,	both	asthma	
prevalence	and	incidence	rates	in	BC	were	provided	in	the	administrative	data.	However,	in	
the	administrative	data,	asthma	labeling	was	made	with	healthcare	utilization	based	on	the	
diagnostic	codes	(ICD	codes–10-CA:	J45;	ICD-9-CA:	493):	one	or	more	asthma-related	
hospitalization,	OR	two	or	more	physician	visits	within	one	year,	OR	one	or	more	physician	
visits	and	two	or	more	asthma	prescriptions	within	one	year	(for	a	list	of	asthma	
prescriptions,	see	Ministry	of	Health	(2022)).	

Upon	examining	asthma	prevalence	in	the	CCHS	data,	we	found	that	prevalence	did	not	
differ	much	between	BC	and	Canada	(green	and	blue	lines,	respectively	in	Figure	4).	On	the	
other	hand,	there	was	a	considerable	discrepancy	in	asthma	prevalence	between	the	CCHS	
and	BC	administrative	data	(green	and	red	line,	respectively	in	Figure	4).	As	CCHS	was	a	
self-reported	survey	which	is	subject	to	self-selection	and	response	bias,	we	deemed	the	
estimates	from	the	BC	administrative	data	to	be	more	reliable.	As	such,	we	made	a	
simplifying	assumption	that	nationwide	asthma	prevalence	and	incidence	rates	were	equal	
to	those	from	the	BC	administrative	data.	
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Figure	4:	Observed	asthma	prevalence	across	age	in	2015	and	2019	for	British	Columbia	
(BC)	and	Canada	(CA)	based	on	the	BC	administrative	data	(red)	and	CCHS	data	(green:	BC;	
blue:	CA)	by	sex.	CCHS:	Canadian	Community	Health	Survey	

In	the	BC	administrative	data,	we	had	information	on	observed	prevalence	and	incidence	
from	2000	to	2019,	stratified	by	5-year	age	bands	(0-4,	5-9,	…,	84-89,	90+	years),	biological	
sex,	and	calendar	year(British	Columbia	Ministry	of	Health	[creator],	2023).	To	estimate	
the	prevalence	and	incidence	for	each	age	bin,	we	first	took	the	mid-point	of	the	five-year	
age	bands	as	the	age	for	the	corresponding	prevalence	and	incidence.	We	discarded	data	on	
age	>	65	years	due	to	potential	mislabeling	among	older	population	and	assumed	that	the	
incidence	and	prevalence	rates	for	age	>	63	years	(the	mid-point	of	the	last	age	band)	
remained	constant	at	the	rates	for	63	years	of	age.	For	asthma	incidence,	we	fitted	a	linear	
regression	model	with	the	log	of	the	incidence	rate	as	a	linear	combination	of	time,	sex,	
poly(age,5)	(recall	that	poly(𝑥, 𝑞)	stands	for	the	polynomials	of	𝑥	up	to	degree	𝑞),	as	well	as	
interaction	terms	of	sex	and	poly(age,5)	(Figure	5).	For	asthma	prevalence,	we	fitted	a	
linear	regression	model	with	the	log	of	the	prevalence	rate	as	a	linear	combination	of	
poly(time,2),	sex,	poly(age,5)	and	all	their	interactions	(Figure	6).	
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Figure	5:	Estimated	asthma	incidence	for	selected	years	by	sex	using	the	administrative	
data	of	British	Columbia.	

	

	

Figure	6:	Estimated	asthma	prevalence	for	selected	years	by	sex	using	the	administrative	
data	of	British	Columbia.	
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For	the	past	(prior	to	2000),	we	assumed	the	estimates	of	prevalence	and	incidence	from	
2000.	For	the	future	(2020	onwards),	we	assumed	that	current	incidence	and	prevalence	
trends	continued	up	to	2025,	and	stayed	constant	thereafter.	For	the	initial	population	and	
immigrants,	the	asthma	prevalence	estimates	would	be	used	to	assign	the	asthma	label	to	
all	individuals	3	or	more	years	of	age.	For	individuals	not	labeled	as	asthmatic,	the	asthma	
incidence	estimates	(except	for	individuals	less	than	3	years	of	age)	would	be	used	to	
simulate	whether	an	individual	becomes	labeled	as	asthmatic	in	each	time	cycle.	Of	note,	
this	implies	we	assume	that	immigrants	have	the	same	asthma	incidence	and	prevalence	
rates	as	Canadians.	

While	these	crude	asthma	prevalence	and	incidence	estimates	could	be	used	to	simulate	
asthma	cases	in	the	asthma	model,	the	asthma	model	would	generate	excess	asthma	cases	
without	accounting	for	asthma	dormancy	or	remission	(e.g.,	the	asthma	prevalence	rises	
from	early	childhood	to	young	adulthood	but	then	falls).	In	addition,	we	still	need	to	
incorporate	risk	factors.	In	the	next	section,	we	describe	how	we	calibrated	the	crude	
asthma	and	incidence	estimates	through	the	asthma	reassessment	submodule	before	
incorporating	the	risk	factors.	

Reassessment 

Asthma	prevalence	varies	across	age,	characterized	by	a	hump	in	early	age.	Asthma	is	not	
curable	and	from	a	biologic	perspective,	its	core	pathology	does	not	disappear	(Thomas	et	
al.,	2022).	Such	variation	is	instead	explained	by	the	‘dormancy’	of	asthma,	a	prolonged	
period	with	no	asthma	symptoms.	Such	dormancy	might	be	endogenous	(e.g.,	outgrowing	
of	asthma	from	childhood	to	adulthood)	or	exogenous	(e.g.,	change	in	environment	and	risk	
of	asthma	triggers)	(Bisgaard	and	Bønnelykke,	2010).	As	well,	in	the	community,	
misdiagnosis	of	asthma	occurs	mostly	due	to	confounding	by	other	allergic	diseases	or	
respiratory	diseases	(Kavanagh	et	al.,	2019),	which	can	also	explain	reduction	in	the	
prevalence	of	asthma	by	age.	Correspondingly,	we	modeled	the	clinical	status	of	asthma	by	
a	sub-module,	asthma	reassessment,	to	evaluate	whether	an	individual	labeled	as	
asthmatic	remains	labeled	as	asthmatic.	

We	assume	the	following	relationship	among	asthma	incidence,	prevalence,	and	
reassessment.	For	specific	sex	and	age,	the	number	of	individuals	labeled	as	asthmatic	at	
the	current	year	𝑡	consists	of	individuals	labeled	as	asthmatic	from	the	past	year	(𝑡 − 1)	
who	remain	labeled	as	asthmatic	and	individuals	without	an	asthma	label	from	the	past	
year	who	become	labeled	as	asthmatic	in	the	current	year.	For	specific	sex	and	age	
(arguments	dropped	for	brevity),	let	𝑝𝑟𝑒𝑣7	be	the	probability	(or	equivalently	the	
proportion)	of	being	labeled	as	asthmatic	in	year	𝑡,	𝑖𝑛𝑐7	be	the	probability	of	becoming	
labeled	as	asthmatic,	and	𝑝7(𝑟𝑒𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡)	be	the	probability	of	maintaining	the	asthma	
label.	Of	note,	we	do	not	have	to	consider	immigrants,	emigrants,	or	death	as	we	assume	
that	death	or	emigration	occurs	at	the	end	of	the	year	and	that	immigrants	have	the	same	
prevalence	and	incidence	as	the	Canadian	population.	Then	the	relationship	can	be	
described	as	follows:	

𝑝𝑟𝑒𝑣7 = 𝑝𝑟𝑒𝑣78'𝑝7(𝑟𝑒𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡) + (1 − 𝑝𝑟𝑒𝑣78')𝑖𝑛𝑐7  (2)	
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We	solved	for	𝑝7(𝑟𝑒𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡)	for	each	year,	sex,	and	age,	as	all	the	other	quantities	were	
known	from	the	previous	section.	In	the	microsimulation,	an	individual	is	labeled	as	
asthmatic	based	on	the	asthma	prevalence	equation	when	they	enter	the	simulation.	In	a	
subsequent	time	cycle,	if	they	are	labeled	as	asthmatic,	then	their	label	is	reassessed	and	
maintained	with	𝑝7(𝑟𝑒𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡).	If	not,	their	asthma	label	is	determined	by	the	asthma	
incidence	equation.	

Incorporating the effect of risk factors 

In	this	subsection,	we	describe	how	the	effect	of	the	risk	factors,	namely	family	history	of	
asthma	at	birth	and	infant	(<	1	year	of	age)	antibiotic	exposure,	are	estimated	and	
incorporated	into	the	asthma	incidence	and	prevalence	equations.	

Using	the	CHILD	study	data,	Patrick	et	al.	(2020)	found	that	family	history	of	asthma	was	
associated	with	an	increase	in	the	risk	of	being	labeled	as	asthmatic.	They	used	a	
multivariable	logistic	regression	to	establish	the	association	with	the	prevalence	of	asthma	
at	the	age	of	3	years	with	an	odds-ratio	[OR]	of	1.13	(95%CI:	0.66–1.95)	and	at	the	age	of	5	
years	with	an	OR	of	2.40	(95%CI:	1.13–5.09).	In	addition	to	sex,	they	adjusted	for	presence	
of	older	siblings,	exposure	to	antibiotics	in	the	first	year	of	life,	ethnicity,	mode	of	delivery,	
birth	weight,	parental	asthma,	breastfeeding,	exposure	to	tobacco	smoke,	season	of	birth,	
and	exposure	to	environmental	nitrogen	oxide	(these	additional	risk	factors	should	be	
incorporated	in	the	future).	We	used	linear	interpolation	on	the	log	OR	scale	to	estimate	the	
risk	at	the	age	of	4	years,	and	for	age	greater	than	5	years,	we	assumed	that	the	risk	stayed	
constant	at	the	level	for	5	years	of	age.	That	is,	the	log	odds	ratio	for	having	family	history	
of	asthma	at	birth	(for	age	≥	3	years)	can	be	expressed	as:	

log(𝑂𝑅) = 𝛽( + 𝛽'(min(𝑎𝑔𝑒, 5) − 3),  (3)	

where	𝛽( = log(1.13)	and	𝛽' = 1log(2.40) − log(1.13)2/2.	This	equation	corresponds	to	
𝑓)(⋅)	(``Effect	of	𝑋'’’)	in	Table	1.	

A	recent	systematic	review	found	support	for	the	association	between	exposure	to	
antibiotics	in	early	life	and	the	risk	of	being	labeled	as	asthmatic	(Duong	et	al.,	2022).	
However,	the	association	is	mostly	attributable	to	exposure	to	antibiotics	in	the	first	year	of	
life	(Hoskinson	et	al.,	2023).	In	consultation	with	the	steering	committee,	we	assumed	an	
association	only	for	the	first	year	of	life.	To	obtain	an	estimate	of	the	age-specific	dose-
response	of	the	number	of	courses	of	antibiotics	in	the	first	year	of	life	on	the	risk	of	being	
labeled	as	asthmatic,	Lee	et	al.	(2024)	carried	out	a	meta-analysis	using	the	summarized	
data	from	the	systematic	review.	Applying	strict	inclusion-exclusion	criteria,	they	included	
six	studies	that	reported	on	the	dose	response	relationship,	including	a	Canadian	study	by	
Patrick	et	al.	(2020),	with	low	risk	of	bias.	They	fitted	a	random-effects	meta-regression	
model	with	the	number	of	courses	of	antibiotics	(0,	1,	2,	3,	4,	5	or	more)	and	age	of	asthma	
diagnosis	as	covariates.	They	found	a	detrimental	dosage	effect	up	to	7	years	of	age	and	a	
diminishing	effect	with	age	of	antibiotic	exposure	in	the	first	year	of	life.	We	followed	their	
assumption	of	no	effect	of	the	exposure	to	antibiotics	in	the	first	year	on	the	risk	of	asthma	
beyond	7	years	of	age.	
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We	made	a	further	assumption	to	facilitate	the	calibration	(discussed	next).	As	the	
antibiotic	prescription	rate	was	not	high,	the	probability	of	having	more	than	three	courses	
of	antibiotics	in	the	first	year	of	life	was	practically	zero.	Hence,	we	reclassified	the	levels	3,	
4,	and	5+	together	as	one	level,	3+,	and	the	log	OR	for	3+	was	assumed	to	be	equal	to	the	log	
OR	for	3.	That	is,	the	log	odds	ratio	for	having	any	number	of	courses	of	antibiotics	(dose)	
in	the	first	year	of	life	(for	age	∈ {3, . . ,7}	years	and	dose	>	0)	can	be	expressed	as:	

log(𝑂𝑅) = 𝛽( + 𝛽'(𝑎𝑔𝑒 − 3) + 𝛽!min(𝑑𝑜𝑠𝑒, 3),  (4)	

where	𝛽( = 1.826,	𝛽' = −0.225,	and	𝛽! = 0.053.	This	equation	corresponds	to	𝑔)(⋅)	
(``Effect	of	𝑋!’’)	in	Table	1.	

Now	incorporating	the	effect	of	risk	factors	into	the	asthma	incidence	and	prevalence	
equations	requires	calibration,	so	that	the	marginal	asthma	prevalence	(i.e.,	the	sum	of	the	
products	of	the	prevalence	of	each	combination	of	the	risk	factors	and	the	corresponding	
asthma	prevalence)	remains	calibrated.	

At	calendar	year	𝑡,	sex	𝑠,	and	age	𝑎,	let	𝑋(𝑡, 𝑠, 𝑎) = 0,1,2, . . . , 𝑞	be	a	categorical	risk	factor	
that	takes	levels	𝑥 = 0,1, … , 𝑞.	For	brevity,	we	drop	the	arguments	𝑡, 𝑠, 𝑎	in	the	following	
text.	Let	𝑝79+:,7	be	the	target	marginal	asthma	prevalence,	𝑂𝑅6	be	the	association	between	
the	risk	factor	level	𝑥	and	asthma	labeling,	and	𝑝6	be	the	prevalence	of	the	risk	factor	level.	
With	𝑝*+,-	denoting	the	asthma	prevalence	at	level	𝑥	and	𝛽(

79+:,7	denoting	the	logit	of	the	
target	asthma	prevalence,	we	seek	a	correction	term	𝛿	for	the	intercept	in	the	following	
asthma	prevalence	equation	

𝑙𝑜𝑔𝑖𝑡 f𝑝*+,-(𝑥)g = 𝛽(
79+:,7 + 𝑙𝑜𝑔(𝑂𝑅6) − 𝛿,  (5)	

such	that	the	marginal	asthma	prevalence	is	calibrated	(i.e.,	𝑝79+:,7 = ∑ 𝑝66 𝑝*+,-(𝑥))	while	
maintaining	the	ORs.	There	is	a	unique	solution	to	this	optimization	problem	(monotone	
decreasing	in	𝛿),	and	we	used	the	Broyden–Fletcher–Goldfarb–Shanno	(BFGS)	algorithm	to	
solve	for	𝛿	(Fletcher,	2000).	Multiple	categorical	risk	factors	can	be	represented	as	a	single	
categorical	risk	factor,	and	the	same	method	can	be	applied.	

To	obtain	the	calibrated	asthma	prevalence	equation	in	Table	1,	we	took	the	following	
steps	for	each	year,	sex,	and	age.	First,	we	represented	the	logit	of	the	crude	asthma	
prevalence	by	𝛽(0+;<, + 𝛽⃗'

=>:#7poly(year,2) ∗ sex ∗ poly(age,5).	These	terms	represent	
𝛽(
79+:,7	in	Equation	5.	The	effect	of	level	𝑥	of	the	risk	factors	𝑋'	and	𝑋!	is	incorporated	with	
using	𝑓*+,-	and	𝑔*+,- ,	which	represents	log(𝑂𝑅6)	in	Equation	5.	Finally,	we	evaluated	𝛽( =
𝛽(0+;<, − 𝛿	by	𝛽(	to	obtain	the	final	form	of	the	calibrated	equation.	

Calibration	for	the	asthma	incidence	equation	is	more	complicated	since	the	effects	of	the	
risk	factors	are	unknown	and	need	to	be	estimated	such	that	both	the	marginal	asthma	
incidence	and	the	ORs	in	the	asthma	prevalence	equation	remain	unchanged.	We	assumed	
that	the	same	form	of	relationship	between	the	risk	factors	and	asthma	prevalence	for	
asthma	incidence	(𝑓) 	and	𝑔) 	in	Table	1)	and	that	the	risk	factor	equations	for	asthma	
prevalence	and	incidence	are	equal	at	age	of	3	years	(i.e.,	𝑓#/0 = 𝑓*+,-	and	𝑔#/0 = 𝑔*+,-	at	
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age	of	3	years).	In	other	words,	the	values	of	𝛽(	in	𝑓#/0 ,	and	𝛽(	and	𝛽!	in	𝑔#/0 	are	equal	to	
those	of	𝑓*+,-	and	𝑔*+,- ,	respectively.	Our	goal	is	then	to	optimize	𝛽'’s	in	𝑓#/0 	and	𝑔#/0 .	

Suppose	we	start	with	an	initial	guess	of	𝛽'’s	in	𝑓#/0 	and	𝑔#/0 	(we	used	the	corresponding	
values	in	𝑓*+,-	and	𝑔*+,-).	We	apply	the	calibration	method	used	for	the	asthma	prevalence	
equation	to	adjust	for	the	marginal	asthma	incidence,	giving	us	the	adjusted	asthma	
incidence	for	each	combination	of	levels	of	the	risk	factors.	For	each	combination	of	levels	
(excluding	the	reference	level),	the	first	step	is	to	construct	a	2x2	contingency	table	for	
labeled	asthmatic	by	level	𝑥	versus	the	reference	level	from	the	previous	time	cycle.	The	
second	step	is	to	construct	the	contingency	table	for	the	current	time	cycle	using	the	
asthma	incidence	equation	and	asthma	reassessment.	The	third	step	is	to	compute	the	
resulting	ORs	for	asthma	prevalence	and	compare	them	with	the	ORs	from	the	asthma	
prevalence	equation.	The	absolute	differences	are	aggregated	over	all	combinations	of	year	
(up	to	the	stabilization	year,	2025),	sex,	and	age.	This	process	is	iterated	until	convergence	
with	the	BFGS	optimization	algorithm.	Details	are	provided	in	Appendix	Section	3.	

In	summary,	we	have	described	how	we	estimated	each	parameter	in	the	asthma	incidence	
and	prevalence	equations.	In	the	next	section,	we	explain	the	asthma	outcomes	module	that	
an	individual	labeled	as	asthmatic	experiences	in	the	microsimulation.	

Asthma outcomes module 

Two	main	features	of	the	disease	course	of	asthma	are	asthma	control	and	asthma	
exacerbation.	Asthma	control	refers	to	how	well	asthma	and	the	risk	of	adverse	outcomes	
can	be	managed	with	risk	factor	modifications	or	treatment	(Global	Initiative	for	Asthma,	
2023).	There	are	different	methods	for	the	assessment	of	asthma	control,	with	the	
definition	adopted	by	the	Global	Initiative	for	Asthma	(GINA)	being	the	most	popular.	
According	to	this	definition	(Global	Initiative	for	Asthma,	2023),	at	any	given	time,	an	
individual	with	asthma	is	either	uncontrolled	(UC),	partially	controlled	(PC),	or	well-
controlled	(WC).	Asthma	control	is	evaluated	based	on	the	frequency	of	asthma	symptoms	
(e.g.,	night	waking	due	to	asthma).	

An	asthma	exacerbation	(or	a	‘flare-up’)	is	a	sudden	worsening	of	asthma	symptoms,	such	
as	wheezing,	coughing,	and	chest	tightness	(Global	Initiative	for	Asthma,	2023).	
Contemporary	management	of	asthma	emphasizes	reducing	the	risk	of	asthma	
exacerbations.	Moreover,	asthma	exacerbations	are	a	key	variable	for	deciding	a	treatment	
strategy.	As	asthma	control	is	determined	by	assessing	symptoms,	exacerbation	rate	is	
naturally	associated	with	asthma	control.	

Asthma control 

To	estimate	the	control	levels	in	Canada,	we	used	the	data	from	the	Economic	Burden	of	
Asthma	(EBA)	study	(Chen	et	al.,	2013).	EBA	was	a	prospective	representative	
observational	study	of	618	participants	aged	1-85	years	(74%	are	18	years	or	older)	with	
self-reported,	physician	diagnosed	asthma	from	BC.	Based	on	the	GINA	guidelines,	asthma	
control	and	numbers	of	exacerbations	were	measured	every	3	months	for	a	year.	For	the	
asthma	control	data,	our	goal	was	to	fit	a	model	for	generating	the	proportion	of	time	that	
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an	individual	labeled	as	asthmatic	spends	in	each	control	level.	We	fitted	a	random-effects	
ordinal	regression	model	with	the	logit	link	and	included	age,	age	squared,	sex,	and	their	
interactions	as	fixed-effects	and	individuals	as	a	random-effect	using	the	clmm	function	
from	the	ordinal	R	package	(Christensen,	2023).	While	predictions	from	this	model	are	the	
probabilities	of	being	in	each	of	the	control	levels	during	the	3-month	period,	we	assumed	
them	to	be	the	proportion	of	time	spent	in	the	control	levels.	Further,	we	assumed	that	
those	predictions	apply	for	one	year	instead,	matching	the	time	cycle	unit	of	the	simulation,	
and	that	there	was	no	time	trend	as	well	as	no	dependency	on	the	past	history	of	asthma	
control	and	exacerbations.	In	short,	for	each	virtual	individual	labeled	as	asthmatic,	we	
sampled	an	individual-specific	intercept	from	the	estimated	distribution	of	the	random-
effects,	and	with	that	intercept	in	the	asthma	control	prediction	model,	we	simulated	the	
proportion	of	time	spent	in	each	of	the	control	levels	in	each	time	cycle.	

Asthma exacerbation 

For	each	individual	labeled	as	asthmatic	in	each	year,	we	used	a	Poisson	regression	model	
to	simulate	the	number	of	exacerbations	in	each	cycle	conditional	on	the	proportion	of	time	
spent	in	each	of	the	asthma	control	levels	by	combining	evidence	from	the	EBA	study	(Chen	
et	al.,	2013)	and	the	Gaining	Optimal	Asthma	controL	(GOAL)	study	(Bateman	et	al.,	2004).	
Combining	these	two	sources	was	deemed	necessary,	because	the	EBA	study	alone	did	not	
have	enough	events	for	robust	estimation	of	exacerbation	rate.	The	GOAL	study	was	a	one-
year	randomized,	double-blind	clinical	trial	with	3,421	individuals	aged	between	12	and	80	
years	with	uncontrolled	asthma	at	entry	to	the	study,	with	asthma	exacerbations	as	the	
primary	outcome.	We	acknowledge	a	potential	limitation	of	this	study	as	the	results	may	
not	be	generalizable	to	the	general	asthmatic	population.	The	cohort	is	not	likely	
representative	of	the	general	population	(individuals	were	uncontrolled	at	entry)	and	the	
treatment	escalation	strategy	is	likely	to	differ	in	practice.	

We	first	obtained	the	annual	rate	of	exacerbation	from	the	EBA	study,	as	0.347/year,	as	
well	as	the	proportion	of	time	spent	in	the	control	levels,	well-controlled	(WC)	=	0.340,	
partially-controlled	(PC)	=	0.474,	and	uncontrolled	(UC)	=	0.186.	An	analysis	of	the	GOAL	
study	provided	the	(rounded)	annual	exacerbation	rates	for	each	asthma	control	level:	
rate(exacerbation|WC)	=	0.1,	rate(exacerbation|PC)	=	0.2,	and	rate(exacerbation|UC)	=	0.3.	
Thus,	we	assumed	that	the	annual	exacerbation	rate	for	an	PC/UC	asthmatic	individual	is	
twice/thrice	higher	than	for	a	WC	asthmatic	individual.	Using	the	annual	exacerbation	rate	
from	the	EBA	study,	we	solved	for	rate(exacerbation|WC)	in	the	relationship	
rate(exacerbation)	=	P(WC)	*	rate(exacerbation|WC)	+	P(PC)	*	rate(exacerbation|PC)	+	
P(UC)	*	rate(exacerbation|UC)	to	obtain	the	annual	exacerbation	rate	conditional	on	each	
asthma	control	level:	rate(exacerbation|WC)	=	0.188,	rate(exacerbation|PC)	=	0.376,	
rate(exacerbation|UC)	=	0.564.	

We	simulated	the	total	number	of	exacerbations	in	a	year	experienced	by	an	asthmatic	
individual	as	Poisson,	where	the	log	of	the	mean	parameter	is	a	linear	function	of	the	time	
spent	in	each	of	the	asthma	control	levels	𝐶𝑇) ,	with	the	corresponding	coefficient	estimates,	
∑ 𝛽)) 𝐶𝑇) 	(e.g.,	log(0.188)	for	𝐶𝑇1),	and	a	calibration	term	𝛽(.	Estimation	of	the	calibration	
term	is	described	in	the	subsection,	``Calibration	for	the	exacerbation	module’’	below	after	
the	subsections	on	exacerbation	severity	and	initialization	of	the	exacerbation	module.	
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Exacerbation severity 

Asthma	exacerbation	is	commonly	classified	as	mild,	moderate,	or	severe	(Global	Initiative	
for	Asthma,	2023).	We	added	a	fourth	level,	very	severe,	that	requires	hospitalization	
(Castillo	et	al.,	2017).	To	assign	the	severity	of	exacerbation,	we	used	data	from	the	
Symbicort	Given	as	Needed	in	Mild	Asthma	(SYGMA)	II	study,	a	double-blind	multi-center	
clinical	trial	with	individuals	with	mild	asthma	(n=4,176)	(Bateman	et	al.,	2018).	The	
proportion	of	exacerbation	by	severity	was	49.5%	for	mild,	19.5%	for	moderate,	28.3%	for	
severe	and	2.6%	for	very	severe	(Bateman	et	al.,	2018;	Yaghoubi	et	al.,	2020).	We	used	
those	values	as	the	shape	parameter	𝛼	for	a	Dirichlet	distribution	to	generate	a	preliminary	
vector	of	probabilities	𝐰*+, 	for	the	severity	levels.	We	then	incorporated	the	effect	of	very	
severe	exacerbations	on	subsequent	very	severe	exacerbations	(Lee	et	al.,	2022b).	If	an	
individual	labeled	as	asthmatic	had	a	past	history	of	very	severe	exacerbation,	the	
probability	for	the	very	severe	level	increased	by	a	factor	of	1.79	if	less	than	14	years	of	age	
and	2.88	otherwise.	The	probabilities	for	the	other	levels	were	correspondingly	scaled	
down	such	that	the	sum	of	the	probabilities	was	1.	Finally,	given	the	total	number	of	
exacerbations	for	an	individual	labeled	as	asthmatic	in	a	year	and	the	final	probability	
vector	𝐰	for	the	severity	levels,	we	generated	the	number	of	exacerbations	in	each	severity	
level	with	a	multinomial	distribution.	

Initialization of the exacerbation module 

We	needed	to	assign	whether	any	very	severe	exacerbations	were	previously	experienced	
by	each	individual	labeled	as	asthmatic	in	a	prevalent	population.	To	do	so,	we	first	needed	
to	determine	the	number	of	time	cycles	that	individual	was	labeled	as	asthmatic	since	
asthma	can	be	reversible.	Calculating	this	was	computationally	burdensome	due	to	an	
explosion	of	possible	states.	To	simplify,	we	made	the	assumption	that	asthma	was	not	
reversible	in	these	individuals	and	ran	a	mini-simulation	to	determine	the	time	cycle	the	
individual	was	labeled	as	asthmatic	and	then	calculated	the	probability	of	having	no	very	
severe	exacerbations	from	that	incidence	to	the	present.	Finally,	we	tossed	a	coin	to	
determine	whether	this	individual	had	at	least	one	very	severe	exacerbation.	Our	
simplifying	assumption	implies	the	number	of	years	that	the	individual	was	labeled	as	
asthmatic	was	overestimated.	However,	given	the	low	chance	of	asthma	reversibility	in	our	
dataset,	we	posited	that	overestimation	was	not	too	severe.	

Calibration for the exacerbation module 

We	performed	calibration	for	asthma	exacerbation	to	match	the	rate	of	asthma-related	
hospitalizations,	which	are	equivalent	to	very	severe	exacerbations,	observed	in	Canada	by	
year,	sex,	and	age	(Lee	et	al.,	2022a).	Of	note,	the	denominator	of	the	observed	rate	is	the	
general	population,	not	the	asthma	population.	For	each	year,	sex,	and	age,	we	computed	
the	predicted	proportion	of	time	spent	in	each	of	the	asthma	control	levels	and	then	
calculated	the	predicted	annual	rate	of	exacerbations.	Under	the	simplifying	assumption	
that	individuals	labeled	as	asthmatic	had	no	past	history	of	very	severe	exacerbations,	we	
calculated	the	predicted	rate	of	very	severe	exacerbation	per	unit	of	general	population.	
Subsequently,	for	each	year,	sex,	and	age,	we	compared	it	with	the	observed	value	to	obtain	
a	calibration	multiplier	value	and	the	logarithm	of	the	multiplier	was	added	to	the	
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exacerbation	equation	as	𝛽(.	Of	note,	our	assumption	implies	that	calibration	will	result	in	
slightly	higher	rates	than	observed.	

Payoffs module 

The	payoffs	module	is	responsible	for	assigning	utilities	and	costs.	The	utility	values	were	
measured	in	the	quality-adjusted	life	year	(ranging	from	0	[death]	to	1	[perfectly	healthy])	
using	EQ-5D	(Balestroni	and	Bertolotti,	2012).	We	obtained	the	baseline	population	
average	utility	values	for	the	Canadian	population	from	a	recent	study	(Yan	et	al.,	2024).	As	
this	study	does	not	provide	the	utility	values	for	less	than	18	years	of	age,	we	made	an	
assumption	that	the	utility	values	started	at	1	at	birth	and	linearly	interpolated	to	18	years	
of	age	for	each	sex	(where	the	utilities	were	0.881	for	females	and	0.875	for	males).	

We	modeled	disutility	values	due	to	having	asthma	for	each	control	level	(Einarson	et	al.,	
2015)	and	due	to	having	exacerbations	for	each	severity	level	(Aldington	and	Beasley,	
2007;	Yaghoubi	et	al.,	2020).	Disutility	of	well-controlled	asthma	was	0.06.	This	value	was	
0.09	for	partially-controlled	asthma	and	0.10	for	uncontrolled	asthma.	Disutility	of	having	a	
mild	exacerbation	for	a	year	was	0.32.	This	value	was	0.44	for	moderate	exacerbation	and	
0.56	for	very	severe	exacerbation.	To	estimate	disutility	for	severe	exacerbation,	we	took	
the	midpoint	between	the	disutility	values	of	moderate	and	very	severe	exacerbations:	
0.50.	We	assumed	a	mild	exacerbation	lasted	one	week	(leading	to	disutility	of	0.32	*	1/52	
=	0.006)	and	exacerbations	of	other	severity	levels	lasted	two	weeks	(Aldington	and	
Beasley,	2007).	

Direct	annual	costs	due	to	having	asthma	by	the	control	levels	and	having	exacerbation	by	
the	severity	levels	were	extracted	from	Yaghoubi	et	al.	(2020).	The	costs	were	converted	
from	2018	USD	to	2023	CAD	using	historical	inflation	(1	USD	in	2018	=	1.22	USD	in	2023;	1	
USD	=	1.36	CAD	in	2023).	To	estimate	the	direct	cost	of	having	a	severe	exacerbation,	we	
took	the	exponential	of	the	average	of	the	log	costs	of	moderate	and	very	severe	
exacerbations.	

Microsimulation: pseudocode 

We	have	described	how	the	structural	equations	in	each	of	the	five	main	modules	were	
constructed	and	used	to	simulate	individual-level	characteristics	and	asthma	events	in	the	
microsimulation.	We	explain	in	more	detail	how	these	modules	are	utilized	through	
pseudocode	of	the	core	of	the	microsimulation	(Figure	7).	

The	input	parameters	of	the	microsimulation	(lines	0–4)	determine	the	maximum	age	of	
each	virtual	individual	examined	(110	is	the	default),	the	starting	year	of	the	simulation,	
the	period	for	which	the	simulation	is	run,	and	the	size	of	the	population	(e.g.,	10%	of	the	
whole	population).	Subsequently,	the	maximum	calendar	year	is	calculated	(line	6),	and	the	
starting	year	is	set	to	2019	if	it	exceeds	2019	(lines	8–10)	as	explained	in	the	demographics	
module.	We	also	initialize	an	array	to	store	events	over	all	virtual	individuals.	

For	each	calendar	year,	we	determine	how	many	virtual	individuals	to	simulate	based	on	
the	demographics	module	(lines	16–20).	If	it	is	the	starting	year,	we	need	to	simulate	the	
entire	initial	population.	If	not,	we	simply	need	to	simulate	newborns	and	immigrants.	
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Then	we	simulate	each	virtual	individual	(line	22)	and	begin	with	initializing	their	risk	
factors	(line	26).	Sex	and	age	are	assigned	based	on	the	demographics	module,	and	family	
history	of	asthma	at	birth	and	infant	antibiotic	exposure	are	simulated	based	on	the	risk	
factors	module.	Next,	we	determine	their	asthma	attributes	from	the	previous	year	(lines	
28–38).	This	happens	only	if	their	age	is	greater	than	3	years	since	asthma	attributes	are	
not	given	for	individuals	less	than	3	years	of	age.	We	assign	the	asthma	label	based	on	the	
asthma	prevalence	equation	and	simulate	asthma	control	and	exacerbations	if	they	are	
labeled	as	asthmatic.	This	is	the	end	of	the	initialization	of	the	demographic	and	disease	
characteristics	for	a	virtual	individual.	

Now	the	virtual	individual	enters	a	conditional	loop	(line	40).	They	exit	the	loop	if	they	
meet	any	of	the	conditions:	they	are	dead	or	emigrate,	their	age	exceeds	the	prespecified	
maximum	age,	or	their	current	calendar	year	is	greater	than	the	prespecified	maximum	
year.	In	each	time	cycle,	we	first	run	the	asthma	occurrence	module	to	determine	whether	
they	are	labeled	as	asthmatic	(lines	42–46).	If	they	are	labeled	as	asthmatic,	then	we	
simulate	asthma-related	outcomes,	namely	asthma	control	and	exacerbations	(lines	48–
53).	Then	we	call	the	payoffs	module	to	evaluate	their	utility	and	costs	(line	55).	We	check	
whether	they	emigrate	via	the	emigration	submodule	(line	57)	or	die	via	the	mortality	
submodule	(line	59).	If	they	die	or	emigrate,	we	update	their	status	so	they	will	exit	the	
loop	(line	62).	Otherwise,	we	increment	their	age	and	year	by	1	(line	64).	

After	all	the	virtual	individuals	are	simulated	and	exit	the	simulation	across	all	the	years,	
we	stop	the	simulation	and	examine	the	outcomes	matrix.	
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Figure	7:	Pseudocode	of	the	asthma	model.	
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Implementation 

Julia	was	chosen	as	the	main	engine	for	running	the	model.	Julia	offers	the	flexibility	of	an	
interpretative	language	(e.g.,	R	and	Python)	and	the	near-efficiency	of	a	low-level	compiled	
language	(e.g.,	C++).	This	has	been	a	major	design	feature	of	Julia,	making	it	a	powerful	tool	
for	computationally	intensive	calculations	without	using	a	low-level	language	(Lee	and	
Sadatsafavi,	2021).	Despite	these	attractive	features,	Julia	does	not	yet	have	the	same	
popularity	of	Python	and	R.	In	particular,	open-source	modeling	in	R	is	receiving	attention	
in	the	health	policymaking	community.	As	such,	to	facilitate	the	uptake	of	the	model,	we	
also	provided	instructions	on	how	to	use	the	model	in	R.	The	model	is	publicly	available	on	
the	GitHub	repository	(https://github.com/tyhlee/LEAP.jl).	

Results 

Demographics module 

The	adjustment	𝛽5,6	for	mortality	in	(1)	was	0.0150	for	males	and	0.0135	for	females.	The	
asthma	model	simulated	mortality	robustly	as	illustrated	by	close	alignment	of	the	
simulated	and	estimated	(prior	to	2020)	or	projected	(2020	onwards)	values	from	
Statistics	Canada	(Figure	8).	After	incorporating	the	adjustment	in	mortality	and	net	
immigrants	and	emigrants,	the	model	also	generated	the	population	growth	and	aging	as	
estimated	or	predicted	by	Statistics	Canada	(Figure	9).	
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Figure	8:	Mortality	by	sex	(left:	males;	right:	females)	for	the	model	(grey	solid)	and	
Statistics	Canada	(black	dashed).	
	

	

Figure	9:	Population	by	age	across	selected	years	from	the	model	(grey	solid)	and	from	
Statistics	Canada	(black	dashed).	

Risk factors module 

The	asthma	model	correctly	produced	the	distribution	of	risk	factors.	The	mean	proportion	
of	simulated	individuals	with	family	history	of	asthma	was	29.3%	(95%	CI:	29.2,29.3)	with	
the	true	value	of	29.3%.	The	simulated	trends	in	antibiotic	exposure	in	the	first	year	of	life	
followed	the	observed	trends	well,	and	plateaued	at	50	per	1,000	as	programmed	
(Figure	10).	
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Figure	10:	Rate	of	antibiotic	prescriptions	by	sex	(red:	females;	blue:	males)	for	simulated	
(solid)	and	target	values	(dotted),	with	the	floor	rate	of	50	per	1,000	(purple).	

Asthma occurrence module 

After	incorporating	calibration,	the	asthma	model	produced	asthma	prevalence	rates	in	
close	alignment	with	target	values	(estimated	or	projected)	prior	to	the	stabilization	year,	
2025	(Figure	11).	After	the	stabilization	year,	we	noticed	the	asthma	model	started	
deviating	slightly	from	the	target	values.	The	reason	was	that	the	asthma	reassessment	
probability	hit	the	upper	bound	of	1	among	the	young	adult	population	(when	solving	(1)	
led	to	a	value	slightly	greater	than	1,	e.g.,	1.04).	This	occurred	when	the	asthma	prevalence	
was	much	higher	than	the	previous	year	and	the	asthma	incidence	was	not	high	enough	to	
match	the	desired	number	of	individuals	labeled	as	asthmatic.	As	such,	the	model	
generated	fewer	individuals	labeled	as	asthmatic	after	the	stabilization	year.	Consequently,	
the	model	would	be	reliable	until	2030	or	so.	On	the	other	hand,	excluding	the	reference	
levels	(i.e.,	no	family	history	of	asthma	at	birth	and	no	exposure	to	antibiotics	in	the	first	
year	of	life),	we	found	that	differences	between	the	target	and	simulated	log	ORs	for	
asthma	prevalence	were	just	slightly	larger	than	expected.	With	the	ideal	value	being	0,	the	
median	and	mean	differences	were	0.05	and	0.07,	respectively,	implying	simulated	values	
on	average	were	modestly	lower	than	the	target	values.	The	extreme	differences	(the	
minimum	and	maximum	values	are	-1.40	and	1.72,	respectively)	below	the	lower	1%	
quantile	(-0.48)	and	above	the	upper	99%	quantile	(0.93)	all	occurred	in	combinations	of	
year,	sex,	age,	and	risk	factors	with	sparse	data	(i.e.,	ORs	for	3	or	more	courses	of	
antibiotics	in	the	first	year	of	life).	
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Figure	11:	Asthma	prevalence	rates	per	1,000	general	population	by	sex	(left:	females;	
right:	males)	from	the	model	(grey	solid)	and	estimated	or	projected	(black	dashed).	

Asthma outcomes module 

The	asthma	model	correctly	produced	the	asthma	control	levels	(Figure	12).	Asthma	
severity	levels	appeared	to	be	correctly	modeled	(Figure	13);	the	simulated	value	of	very	
severe	exacerbations	should	be	slightly	higher	than	the	target	value,	as	the	risk	of	very	
severe	exacerbations	was	increased	for	individuals	with	past	history	of	very	severe	
exacerbation.	Consequently,	the	asthma	model	produced	slightly	higher	annual	rates	of	
very	severe	exacerbations	than	observed	values	(Figure	14).	However,	differences	in	the	
ratio	of	target	and	simulated	very	severe	exacerbation	rates	on	the	log	scale	were	modest,	
ranging	from	-0.19	to	0.07	with	median	and	mean	values	of	-0.08	and	-0.09.	
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Figure	12:	Asthma	control	levels	(red:	well-controlled;	green:	partially	controlled;	blue:	
uncontrolled)	by	the	model	(solid)	and	target	(dashed).	

	

	

Figure	13:	Simulated	(solid)	and	target	(dotted)	asthma	exacerbation	severity	levels	(red:	
mild;	blue:	moderate;	green:	severe;	purple:	very	severe).	
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Figure	14:	Comparison	of	simulated	(grey	solid)	and	target	(black	dotted)	very	severe	
asthma	exacerbation	(asthma-related	hospital	admissions)	per	100,000	general	population	
by	sex	(left:	females;	right:	males)	across	years.	

Discussion 
We	developed	the	first	policy	model	for	asthma	in	Canada	with	a	focus	on	early	childhood	
asthma	and	prevention.	As	recommended	by	the	steering	committee,	the	model	was	
designed	to	provide	a	unified	framework	under	which	different	interventions	can	be	
consistently	and	concurrently	compared.	More	specifically,	the	following	several	design	
choices	were	made.	First,	we	used	an	open-population	structure	that	enables	modeling	of	
realistic	aspects	of	population	aging	and	adopting	health	interventions,	such	as	market	
penetration.	Further,	we	used	an	individual-level	simulation	platform	to	robustly	model	the	
vast	parameter	space	created	by	the	many	combinations	of	patient	and	disease	
characteristics	and	event	histories.	To	populate	this	model,	we	used	multiple	data	sources	
and	evidence	synthesis	methods	to	obtain	the	highest	quality	of	evidence	and	
generalizability.	This	included	a	secondary	analysis	of	several	population-based	and	clinical	
datasets	to	estimate	disease	prevalence,	variations	in	control	levels,	and	exacerbation	rate	
and	severity.	

Major	focus	was	placed	on	designing	an	easily	accessible,	transparent,	and	expandable	
platform.	The	asthma	model	was	built	in	a	modular	approach,	with	each	module	composed	
of	submodules	in	a	hierarchical	fashion.	The	modular	design	offers	great	flexibility	and	
reusability.	Since	each	module	is	developed	separately,	it	does	not	require	knowledge	of	
other	modules	for	further	development.	In	addition,	technical	bugs	are	easier	to	detect	and	
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thus	repair.	Code	refactoring	is	also	easier	in	the	long	run	with	the	modular	approach.	
However,	it	comes	with	the	cost	of	increased	programming	complexity	and	the	need	for	
rigorous	documentation.	

We	found	that	the	asthma	model	performed	satisfactorily	in	the	face	and	internal	validation	
studies.	With	calibrated	mortality	and	net	immigrants	and	emigrants,	the	model	replicated	
the	population	growth	quite	well.	The	marginal	asthma	prevalence	was	replicated	well	up	
to	the	stabilization	year,	but	was	underestimated	among	young	adults	after	the	
stabilization	due	to	the	limitation	of	the	framework	with	asthma	reassessment.	One	could	
overcome	this	limitation	by	modeling	true	asthma	states	and	introducing	an	asthma	
diagnosis	module	as	a	means	to	calibration	(i.e.,	in	addition	to	reassessment	and	incidence,	
misdiagnosis	can	be	used	to	generate	asthmatic	individuals).	Calibration	of	asthma	
prevalence	by	the	risk	factors	was	satisfactory	in	general	although	the	assumption	that	the	
risk	factor	equations	between	asthma	prevalence	and	incidence	are	equal	at	age	of	3	years	
might	be	unnecessarily	strong.	For	better	calibration,	one	could	relax	this	assumption	and	
allow	a	more	flexible	form	of	the	risk	factor	equations	for	asthma	incidence	(e.g.,	optimize	
𝛽(’s	𝑓#/0 	and	𝑔#/0 ,	and	include	interaction	effects	among	the	risk	factors).	As	for	the	asthma	
outcomes	module,	asthma	control	and	severity	levels	were	replicated	well.	The	simulated	
rate	of	very	severe	exacerbations	was	slightly	higher	than	observed	values.	A	better	
calibration	method	that	more	fully	accounts	for	the	past	history	of	very	severe	
exacerbations	would	eliminate	this	deviation.	

The	limitations	of	this	work	should	be	recognized.	Currently	the	natural	disease	course	of	
asthma	is	modeled	after	labeled,	rather	than	true,	asthma	states.	True	asthma	states	should	
be	modeled	in	the	future	upon	accumulation	of	sufficient	evidence	on	true	asthma	states	
(either	through	expert	knowledge	elicitation	and/or	analysis	of	data	on	true	asthma	
states),	which	would	enable	evaluation	of	interventions	regarding	asthma	diagnosis.	We	
have	currently	incorporated	a	selective	subset	of	asthma	risk	factors,	but	many	more	risk	
factors,	such	as	exposure	to	air	pollution,	need	to	be	developed	to	comprehensively	capture	
the	disease	course	of	asthma.	Some	important	modules	also	need	to	be	developed.	
Particularly	important	is	an	asthma	management	module	that	can	model	various	asthma	
management	and	treatment	strategies,	and	their	realistic	aspects	(e.g.,	suboptimal	
adherence).	Of	note,	currently,	treatment	is	`implicit’	in	the	model	as	the	asthma	outcomes	
module	is	based	on	data	sources	that	included	patients	under	current	standard	of	care.	This	
approach	was	adopted	as	the	first	scenarios	for	the	use	of	this	model	pertain	to	asthma	
prevention	policies.	However,	comparative	analysis	of	the	outcomes	under	different	
asthma	management	strategies	will	require	creating	an	explicit	treatment	module.	
Immigration	and	emigration	were	modeled	as	a	means	to	calibrate	for	the	population	
growth	and	projection.	This	implies	policies	surrounding	immigration	and	emigration	
should	not	be	evaluated	with	the	current	version	of	the	model	until	further	development.	
Further,	interactions	among	virtual	individuals	were	not	modeled.	This	means	the	model	
cannot	evaluate	interventions	that	target	family	units	(such	as	subsidizing	air	filters	for	
families	with	multiple	asthma	patients).	More	importantly,	the	current	version	of	the	
asthma	model	does	not	account	for	uncertainty	in	parameters	(Thom,	2022).	While	this	is	a	
current	limitation,	it	was	a	conscious	choice	to	initially	emphasize	proper	modeling	of	the	
structure.	Future	work	requires	specification	of	the	parameter	distributions	and	updating	
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calibration	procedures	that	are	specifically	tuned	for	probabilistic	projections	(Shewmaker	
et	al.,	2022).	

Development	of	the	reference	policy	model	is	one	step	towards	rigorous	evaluation	of	
interventions	for	asthma.	It	addresses	the	concerns	with	existing	asthma	models	on	
generalizability,	transparency,	accessibility,	and	granularity	in	details	(Ehteshami-Afshar	et	
al.,	2019).	It	represents	consolidated	efforts	in	evidence	generation,	evidence	synthesis,	
and	validation.	With	further	development	and	validation,	the	value	of	the	asthma	reference	
policy	model	will	continue	to	be	enhanced	and	will	present	an	invaluable	platform	on	
which	resources	can	be	focused	to	inform	optimal	investment	in	asthma	prevention	and	
care.	
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Appendix 

1. Best population scenario 
Statistics	Canada	provides	nine	scenarios	for	the	demographics	projection	starting	in	2020.	
The	medium	growth	3	(M3)	scenario	resulted	in	the	lowest	root	mean	squared	error	of	the	
total	population	at	the	national	level	when	compared	with	the	observed	data	in	2020	and	
2021.	

Population	projection	scenario	 Root	mean	squared	error	
Medium	growth	3	 71708	
Medium	growth	2	 71714	
Medium	growth	1	 71714	
Medium	growth	4	 71714	
Medium	growth	5	 71741	
Slow	aging	 102175	
High	growth	 122869	
Fast	aging	 132307	
Low	growth	 152424	

2. Life expectancy calculation 

Given	the	probability	of	death	for	each	sex	and	age	in	2020	and	a	value	for	𝛽5,6 ,	the	
probability	of	death	for	each	sex	and	age	in	2068	given	by	(1)	allows	evaluation	of	the	
corresponding	projected	life	expectancy	at	birth	(our	target	values	are	87.0	years	for	males	
and	90.1	years	for	females).	The	life	expectancy	in	year	𝑡	is	calculated	based	on	the	current	
life	table	for	year	𝑡,	following	the	notations	and	definitions	in	Strauss	et	al.	(2023).	Let	𝐼(𝑥)	
be	the	number	of	persons	alive	at	age	𝑥,	𝑑(𝑥) = 𝐼(𝑥) − 𝐼(𝑥 + 1)	be	the	number	of	deaths	in	
the	interval	(𝑥, 𝑥 + 1)	for	persons	alive	at	age	𝑥,	𝑞(𝑥)	be	the	probability	of	dying	at	age	𝑥,	
𝐿(𝑥)	be	the	total	number	of	person-years	lived	by	the	cohort	from	age	𝑥	to	𝑥 + 1,	and	𝑇(𝑥)	
be	the	total	number	of	person-years	lived	by	the	cohort	from	age	𝑥	until	all	members	of	the	
cohort	have	died	(i.e.,	the	sum	of	𝐿(𝑥)	from	age	𝑥	to	the	maximum	age,	which	is	110	years	
in	the	Canadian	life	table	generated	by	Statistics	Canada).	Then	𝑒(𝑥),	the	remaining	life	
expectancy	of	persons	alive	at	age	𝑥,	is	calculated	as	𝑒(𝑥) = 𝑇(𝑥)/𝐼(𝑥).	

Life	expectancy	at	birth	is	𝑒(0) = 𝑇(0)/𝐼(0).	To	calculate	𝑇(0),	𝐿(𝑥)	is	needed	for	all	ages	𝑥.	
Note	that	𝐿(𝑥)	is	the	sum	of	the	years	lived	by	the	𝐼(𝑥 + 1)	persons	who	survive	the	
interval,	and	the	𝑑(𝑥)	persons	who	died	during	the	interval.	The	former	contribute	exactly	
1	year	each,	while	the	latter	contribute,	on	average,	approximately	half	a	year.	For	the	
boundary	of	ages	of	0	and	110,	a	smaller	contribution	(< 0.5)	is	usually	used	for	the	
former,	and	a	larger	contribution	(between	1	and	2)	is	usually	used	to	for	the	latter	(since	
they	live	longer	than	110	years	but	not	very	much	longer).	In	general,	with	𝑤(𝑥)	denoting	
the	contribution	made	by	members	of	the	cohort	who	die	at	age	𝑥,	𝐿(𝑥) = 𝐼(𝑥 + 1) +
𝑤(𝑥)𝑑(𝑥).	We	chose,	by	trial	and	error,	𝑤(𝑥) = 0.2	for	𝑥 = 0	,	1.4	for	𝑥 = 110,	and	0.5	for	
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all	other	values	of	𝑥.	This	choice	of	𝑤(𝑥)	matched	the	calculation	of	the	life	expectancy	at	
birth	for	the	2020	life	table	by	Statistics	Canada.	

In	summary,	using	(1)	and	initial	values	of	𝛽5,6 ,	we	first	calculated	𝑞(𝑥)	for	all	ages	𝑥	in	
2068.	We	used	𝐼(0) = 100,00	(other	values	can	be	used	as	the	value	of	𝐼(0)	cancels	out	
during	evaluation	of	life	expectancy)	and	calculated	𝑑(𝑥) = 𝐼(𝑥)𝑞(𝑥)	and	𝐿(𝑥) =
𝐼(𝑥 + 1) + 𝑤(𝑥)𝑑(𝑥).	Then	we	computed	𝑇(𝑥)	and	finally	𝑒(𝑥).	Using	the	uniroot	solver,	we	
found	the	optimal	values	𝛽5,6	that	matched	our	target	life	expectancy	values	at	birth	in	
2068.	

3. Calibration for asthma incidence 

Calibration	for	the	asthma	incidence	equation	is	difficult	since	the	effects	of	risk	factors	are	
unknown	and	need	to	be	estimated	such	that	both	the	marginal	asthma	incidence	and	the	
odds	ratios	in	the	asthma	prevalence	equation	remain	unchanged.	The	former	can	be	
achieved	with	the	method	used	for	the	asthma	prevalence	calibration,	but	the	latter	
involves	several	steps.	As	described	in	the	main	text,	our	goal	is	to	optimize	𝛽'’s	in	𝑓#/0 	and	
𝑔*+,- .	Required	inputs	are	the	odds	ratios	for	asthma	prevalence,	calibrated	prevalence,	
and	the	probability	distribution	of	the	risk	factor(s)	from	the	previous	time	step,	and	odds	
ratios	for	asthma	prevalence,	crude	incidence,	and	reassessment	probabilities	from	the	
current	time	step.	We	also	need	to	specify	initial	values	for	𝛽'’s	(we	used	the	corresponding	
values	from	𝑓*+,-	and	𝑔*+,-).	The	first	step	is	to	compute,	for	each	combination	of	sex	and	
age,	an	odds	ratio	for	being	labeled	asthmatic	for	each	level	𝑥	of	the	risk	factor	relative	to	
its	reference	level	for	the	current	time	step.	Put	differently,	we	need	a	2x2	contingency	
table	of	proportions,	not	counts,	for	that	level	𝑥.	

To	construct	this	contingency	table,	we	first	need	the	contingency	table	of	level	𝑥	from	the	
previous	time	step.	Given	an	odds	ratio	of	level	𝑥,	the	proportion	of	individuals	labeled	as	
asthmatic	(among	individuals	in	level	𝑥	and	the	reference	level),	and	the	proportion	of	
individuals	being	at	level	𝑥	from	the	previous	time	step,	the	table	can	be	obtained	using	a	
method	by	Bonett	(2007).	Let	𝑎(, 𝑏(, 𝑐(, 𝑑(	represent	this	table,	with	𝑎(	and	𝑐(	being	the	
proportion	of	individuals	not	labeled	as	asthmatic	at	the	reference	level	and	at	level	𝑥,	and	
𝑏(	and	𝑑(	being	the	proportion	of	individuals	labeled	as	asthmatic	at	the	reference	level	
and	at	level	𝑥.	

As	described	in	the	main	text,	specifying	initial	values	for	the	ORs	in	the	incidence	equation	
followed	by	calibration	for	the	overall	incidence	rate	provides	a	revised	incidence	equation.	
With	the	incidence	rate	for	the	reference	level	(𝑖𝑛𝑐()	and	level	𝑥	(𝑖𝑛𝑐6),	we	now	construct	
the	corresponding	contingency	table	for	the	current	time	step.	The	first	cell	𝑎	is	equal	to	
the	proportion	of	individuals	at	the	reference	level	who	either	lose	their	asthma	label	
f𝑏(11 − 𝑝(𝑟𝑒𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡)2g	or	are	not	newly	labeled	as	asthmatic	1𝑎((1 − 𝑖𝑛𝑐()2.	Having	
calculated	𝑎,	the	second	cell	𝑏	can	be	obtained	by	subtraction:	𝑏 = 𝑎( + 𝑏( − 𝑎.	The	cells	𝑐	
and	𝑑	are	similarly	obtained	from	𝑐(, 𝑑(,	and	𝑖𝑛𝑐6 .	We	then	compute	the	odds	ratio,	
compare	it	to	the	target	odds	ratio	for	level	𝑥,	record	the	absolute	difference.	To	find	a	set	
of	values	of	𝛽'’s	in	the	asthma	incidence	equation,	we	aggregated	the	absolute	differences	
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over	all	combinations	of	year	(up	to	the	stabilizing	year,	2025),	sex,	and	age,	and	used	the	
iterative	BFGS	algorithm	until	the	aggregated	difference	was	less	than	108'(.	
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