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Abstract
Background: Histopathology is a gold standard for cancer diagnosis. It involves
extracting tissue specimens from suspicious areas to prepare a glass slide for
a microscopic examination. However, histological tissue processing procedures
result in the introduction of artifacts, which are ultimately transferred to the
digitized version of glass slides, known as whole slide images (WSIs). Artifacts
are diagnostically irrelevant areas and may result in wrong predictions from deep
learning (DL) algorithms. Therefore, detecting and excluding artifacts in the
computational pathology (CPATH) system is essential for reliable automated
diagnosis.
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Methods: In this paper, we propose a mixture of experts (MoE) scheme
for detecting five notable artifacts, including damaged tissue, blur, folded tis-
sue, air bubbles, and histologically irrelevant blood from WSIs. First, we train
independent binary DL models as experts to capture particular artifact morphol-
ogy. Then, we ensemble their predictions using a fusion mechanism. We apply
probabilistic thresholding over the final probability distribution to improve the
sensitivity of the MoE. We developed four DL pipelines to evaluate computational
and performance trade-offs. These include two MoEs and two multiclass mod-
els of state-of-the-art deep convolutional neural networks (DCNNs) and vision
transformers (ViTs). These DL pipelines are quantitatively and qualitatively eval-
uated on external and out-of-distribution (OoD) data to assess generalizability
and robustness for artifact detection application.
Results: We extensively evaluated the proposed MoE and multiclass models.
DCNNs-based MoE and ViTs-based MoE schemes outperformed simpler mul-
ticlass models and were tested on datasets from different hospitals and cancer
types, where MoE using (MobiletNet) DCNNs yielded the best results. The pro-
posed MoE yields 86.15 % F1 and 97.93% sensitivity scores on unseen data,
retaining less computational cost for inference than MoE using ViTs. This best
performance of MoEs comes with relatively higher computational trade-offs than
multiclass models. Furthermore, we apply post-processing to create an artifact
segmentation mask, a potential artifact-free RoI map, a quality report, and an
artifact-refined WSI for further computational analysis. During the qualitative
evaluation, pathologists assessed the predictive performance of MoEs over OoD
WSIs. They rated artifact detection and artifact-free area preservation, where the
highest agreement translated to the Cohen kappa of 0.82, indicating substantial
agreement for the overall diagnostic usability of the DCNN-based MoE scheme.
Conclusions: The proposed artifact detection pipeline will not only ensure reli-
able CPATH predictions but may also provide quality control. In this work, the
best-performing pipeline for artifact detection is MoE with DCNNs. Our detailed
experiments show that there is always a trade-off between performance and com-
putational complexity, and no straightforward DL solution equally suits all types
of data and applications. The code and dataset for training and development can
be found online at Github and Zenodo, respectively.

Keywords: Computational Pathology, Deep Learning, Histological Artifacts, Mixture
of Experts, Vision Transformer, Whole Slide Images

1 Introduction
Cancer develops in organs when genetic mutations in normal cells trigger their trans-
formation into tumor cells. This transformation may be triggered by frequent exposure
to carcinogens, a class of substances (chemical, biological, or physical), or several
other factors that have the potential to cause cancer [1]. Diagnosing cancer accurately
and efficiently is critical for medical treatment and a reduced mortality rate, given
its status as one of the deadliest diseases worldwide, with a projected estimate of 29
million deaths by 2040 [2, 3]. Histopathology is considered a gold standard for identi-
fying the presence of cancerous cells, which involves examining tissue samples under

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.11.24304119doi: medRxiv preprint 

https://github.com/NeelKanwal/Equipping-Computational-Pathology-Systems-with-Artifact-Processing-Pipeline
https://doi.org/10.1101/2024.03.11.24304119
http://creativecommons.org/licenses/by-nc/4.0/


a microscope using a histological glass slide [4]. However, this manual inspection and
laboratory procedure is not without its pitfalls, as it is labor-intensive, subjective,
and can be affected by inter- and intra-observer variability [5, 6]. Furthermore, the
projected rise in cancer cases and the shortage of pathologists are significant issues
that may lead to delayed diagnosis and treatment, resulting in a severe impact on
clinical decision-making [7]. Therefore, streamlining the traditional diagnostic process
through digitization and automation can provide timely diagnosis, improved treat-
ment decisions, and efficacy [3]. Digital pathology (DP) has the potential to overcome
these challenges by providing rapid diagnosis and smooth sharing of secondary opin-
ions [8]. In fact, in the last decade, there has been a five-fold growth in DP research and
development [9, 10]. This increase in the adoption of DP in clinical practice enables
computation over the digitized version of histological slides, commonly called whole
slide images (WSIs).
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Fig. 1: An overview of computational pathology (CPATH) system equipped
with artifact processing pipeline. Whole slide images (WSIs) are split into small
sub-images (patches) to make them computationally tractable for deep learning (DL)
models. These patches are fed to a mixture of experts (MoE) or multiclass models com-
posed of state-of-the-art DL architectures to perform different CPATH classification
tasks. Only patches with histological relevance can flow further for the downstream
tasks. Finally, predictions are post-processed to produce different outcomes, such as
a segmentation map, artifact report for quality control, region of interest mask, and
artifact-free WSI for the diagnostic or prognostic algorithm to make a final clinical
prediction.

Computational pathology (CPATH) systems have the potential to unfold infor-
mation embedded in WSIs by automated systems based on AI and image processing
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[10–12]. The seamless integration of CPATH with DP can enhance diagnostic or prog-
nostic methodologies and save pathologists‘ time [6, 13]. However, artifacts that appear
during the histological slide preparation are ultimately transferred to the WSIs [14–
16]. Artifacts are diagnostically irrelevant areas, and pathologists usually ignore these
areas during manual inspection, but unfortunately, the presence of histological artifacts
can hamper the performance of CPATH systems during automated diagnosis [10, 17].
Therefore, it is essential to equip the CPATH system with an artifact detection pipeline
to exclude artifacts and ensure the flow of histologically relevant tissue for diagnostic or
prognostic algorithms, as illustrated in Figure 1. Thus, a CPATH system with artifact
processing capacity will not only increase the likelihood of reliable and accurate pre-
dictions but also provide quality control (QC) for laboratory procedures, identifying
weaknesses during the histotechnical stages (see review [10]) in acquiring WSIs.

In recent years, deep learning (DL) approaches have garnered more attention from
the CPATH community due to their ability to extract hidden patterns in histologi-
cal data [18–21]. Popular DL architectures such as deep convolution neural networks
(DCNNs) and vision transformers (ViTs) have widely been used as state-of-the-art
(SOTA) to distinguish tissue patterns for different cancer types and perform image
classification and segmentation tasks [16, 19, 22]. Some researches [23, 24] demonstrate
that DCNNs perform better on small datasets, thanks to the inductive bias, which
helps them to learn spatial relevance effectively. While other works [25–27] argue in
favor of ViTs, showing that they are highly robust, attend to overall structural infor-
mation, and are less biased towards textures. Nevertheless, both DL architectures may
suffer from overfitting, poor generalization, and reproducibility issues, leading to over-
confident predictions on new (external) data. To address these problems, ensembles
of DL models (a.k.a. deep ensembles) have been used to overcome the weakness of an
individual model [28–30]. Ensemble methods combine the prediction of independent
models using averaging or majority voting. A mixture of experts (MoE) is an extended
method that trains DL for a sub-task and then combines the predictions dynami-
cally to obtain a nuanced prediction. In short, the MoE approach consists of multiple
DCNNs or ViTs, experts on each subclass, to achieve improved results. MoEs benefit in
terms of reproducibility by reducing the variance of predictions but augmenting com-
putational expense [31]. In contrast, the multiclass approach can be computationally
efficient but does not involve the strength of multiple models, which are adaptive for
looking into different aspects of data. Based on these arguments, the choice between
DL approaches depends on application requirements. This raises a fundamental ques-
tion: how to build an effective artifact detection DL approach for CPATH systems with
suitable trade-offs between computational complexity and performance?

An effective DL approach for artifact detection applications (our case) might be
created using MoEs, one DL model for each artifact class, or multiclass models with
multiple output classes. In this paper, we propose the MoE-based DL approach, which
uses a fusion mechanism to integrate predictions from experts and apply probabilistic
thresholding to improve the sensitivity. We establish several DL pipelines using the
MoE and multiclass models for detecting notable artifacts (i.e., damaged tissue, blur,
folded tissue, air bubbles, and diagnostically irrelevant blood) from histological WSIs
(see Figure 1). Our DL pipelines produce four outcomes for the input WSI: i) an
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Artifact segmentation map; ii) an artifact report for QC using six classes (five artifacts
and artifact-free area); iii) An artifact-free mask with potential regions of interest
(ROIs) with diagnostic relevance; and iv) an artifact-refined WSI for the diagnostic
algorithm.

Our contributions to this work are summarized below:

• We develop four DL models (referred to as DL pipeline throughout the paper),
with SOTA DCNNs (MobileNet [32]) and ViTs (ViT-tiny [33]), using MoE and
a multiclass approach.

• We evaluate the computational complexity of the pipelines and systematically
choose a learned probability threshold for maximizing the sensitivity of DL
models in external validation.

• We conduct a qualitative and quantitative evaluation of out-of-distribution data
(from different cancer types) and assess the efficiency of the proposed MoE
scheme for detecting artifacts and QC.

The paper is structured as follows: Section 2 presents recent studies involving DL
approaches for computational pathology, along with related work for detecting arti-
facts. Section 3 provides data material descriptions. Section 4 explains pre-processing
for creating datasets, the proposed method, post-processing, evaluation metrics, and
implementation details. Section 5 discusses results for performance and computational
complexity. Finally, section 6 concludes this work and discusses future directions for
smooth integration of artifact processing pipelines in CPATH systems.

2 Related Work

2.1 Deep Learning for Computational Pathology
Deep learning (DL) approaches have gained popularity in the CPATH commu-
nity [21, 34–36]. In recent years, several works [20, 37–40] have used popular DL
architectures for diagnosis and prognostic algorithms. FDA-approved PAIGE [41] is an
example of such a DL-based algorithm for prostate cancer. These works can be roughly
divided into two branches such as DCNN-based (MobileNet [32], DenseNet [42],
ResNet [43], or GoogleNet [44], etc.) or ViT-based (ViT-Tiny( [33], DINO [45], or
SwinTransformer [46] etc.) approaches.

In the first branch, Srinidhi et al. [47] comprehensively reviewed different DL
approaches for developing disease-specific classification algorithms using histological
images. Riasatian et al. [48] applied transfer learning over DCNNs to classify various
tumor types and accomplished remarkable results using three public histopathology
datasets. Talo [49] demonstrated that pre-trained ResNet [43] and DenseNet [42]
to achieve better accuracy than traditional methods in the literature for classifying
grayscale and color histopathological images. Similarly, Wang et al. [50] proposed
a DCNN-based method based on GoogleNet [44] to locate tumors in breast and
colon images using complex example-guided training for WSI analysis. Among other
DCNN works, Meng et al. [29] compared several architectures for classification and
segmentation problems on a cervical histopathology dataset. Their approach found
the best results for precancerous lesions using ResNet-101 [43]. For the same task,
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MobileNet [32] was the fastest. Wang et al. [51] performed multi-class breast cancer
classification in their two-stage dependency-based framework. A MobileNet [32] was
used as a backbone to extract the features in the first stage. Then, the MobileNet [32]
backbone was modified to perform sub-type classification for benign and malignant
categories. Gandomkar et al. [38] deployed ResNet [43] for classifying breast histology
images into benign or malign and then identified them among several sub-types using
a meta-classifier based on a decision tree.

Works in the second branch used ViTs, which have emerged as new SOTA, leverag-
ing attention mechanisms to improve shape understanding and generalizablity [26] [27].
Stegmüller et al. [40] developed ViT-based ScoreNet for breast cancer classification.
Their approach attended to some regions in the WSI for faster processing based on
image semantics. Wesselet al. [39] used DINO [45] for predicting overall and disease-
specific survival in renal cell carcinoma. Zidan et al. [46] introduced a ViT-based
cascaded architecture for segmenting glands, nuclei, and stroma in colorectal cancer.
Gao et al. [52] proposed instance-based ViT to capture global and local features for
subtyping papillary renal carcinoma, achieving better performance over selected ROIs.

Unsurprisingly, in both branches, most of these DL algorithms were trained and
tested on manually annotated clean data (with diagnostic relevance) and overlooked
the impact of potential noise (histological artifacts) during the inference stage or
unseen scenarios.

Schomig et al. [53], in their stress-testing study, showed that the accuracy of the
prostate cancer DL algorithm was negatively affected by the presence of artifacts
and resulted in more false positives. Even the presence of artifacts in the training
data may result in poor learning by DL models, as they add irrelevant features to
the data [10, 54]. Wrightet al. [17] demonstrated that removing images with artifacts
improved the accuracy of DL models by a significant margin. Laleh et al. [55] empha-
sized the need for robustness of DL-based CPATH systems against artifacts for their
widespread clinical adaptability. Artifact processing pipeline that can detect, extract,
and eliminate non-relevant patches in WSIs before running a diagnostic algorithm,
avoiding any detrimental effect on downstream image analysis [11, 17, 56]. Therefore,
it is essential to equip CPATH systems with artifact detection ability, which is also
the focus of this work, to obtain reliable predictions [17, 57, 58].

2.2 Detection of Histological Artifacts
Most researches focus on reducing color variations and image augmentations during
the pre-processing phase in CPATH literature [59, 60]. Detection of artifacts is often
an underrepresented aspect of WSI pre-processing [10]. Compared to color normal-
ization techniques, there remains a scarcity of research detecting notable artifacts
before feeding histologically relevant data to the diagnostic algorithms. While some
works [17, 61–63] have relied on quickly identifying faulty WSIs by doing QC at low
magnification. Avanki et al. [64] proposed a quality estimation method by combining
blurriness, contrast, brightness, etc., to accept or discard WSI based on a reference.
HistoQC [65] provides content-based evaluation for finding outliers in a cohort of
WSIS. Bahlmann et al. [63] exploited texture features and stain absorption to separate
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diagnostically relevant and irrelevant regions. However, artifacts appearing in diagnos-
tically relevant areas are likely to be missed. Apart from their limitations with lower
magnification, they were validated on specific staining and tissue types. Therefore,
artifact detection methods need to be extended to higher magnification. Moreover,
artifact detection methods that can identify specific artifacts are desirable for QC, as
some artifacts, like a blur, can be avoided by re-scanning glass slides or de-blurring
techniques.

Earlier works for artifact detection relied on traditional image processing and
color-space transformation approaches. Gao et al. [66] detected blurry areas using 44
handcrafted (local statistics, brightness, etc) features. Hashimoto et al. [67] combined
image sharpness and noise information to create a regression model for out-of-focus
detection. For folded tissue detection, Palokangaset al. [68] transformed red, green,
and blue (RGB) images to hue, saturation, and intensity (HSI) to apply k-means
clustering over the different saturation and intensity values. Bautista and Yagi [69]
detected folds using RGB shift with fixed thresholding on luminance and saturation
values to enhance color structure in thick (folded) areas. Kothari et al. [57] introduced
a rank-sum approach that used connectivity descriptors and image features to dis-
card folded tissues. Their approach used two adaptive thresholds on saturation and
intensity ranges. Chadaj et al. [70] separated uninformative blood (hemorrhage) from
blood vessels using cyan, magenta, yellow, and black (CYMK) color space and mor-
phology. Mercan et al. [71] proposed a k-means method to classify blood patches using
local binary patterns extracted from stains and L*a*b histograms. A detailed review
of other artifact detection works can be found in Kanwal et al. [10]. Since color-based
approaches can heavily underperform when exposed to data from different cohorts
with stain variation, data-driven DL approaches are needed to resolve the challenges.

Among recent works using DL-based approaches, Albuquerque et al. [72] com-
pared several DCNNs for detecting out-of-focus areas in their ordinal classification
problem. Kohlberger et al. [73] proposed ConvFocus to quantify and localize blurry
areas in WSI. Wetteland et al. [74, 75] proposed a segmentation model to find blood
and damaged tissue in bladder cancer WSIs. Clymeret al. [76] developed a two-stage
method to detect blood at low resolution using RetinaNet and later Xception CNN
for subsequent classification. Babie et al. [77] used SOTA DCNNs with SVM, KNN,
and decision tree classifiers to separate folded tissues from normal tissue in a binary
fashion. Kanwal et al. [78] used several DCNNs to assess the impact of color normal-
ization over blood and damaged tissue detection. In another work [16], they trained
ViT-Tiny [33] for air bubble detection using knowledge distillation. All these works
relied on training a single network to classify one or two artifacts against an artifact-
free class. It is a well-known problem that DL models suffer from poor generalization,
robustness, and overconfident predictions over out-of-distribution (OoD) data [79–
81]. Thus, the high variance in the prediction of DL models needs to be addressed,
especially when deployed in a critical application. A prominent DL technique, "deep
ensembles," resolves these problems by training several baseline DL architectures and
combining the resultant predictions to increase accuracy and OoD performance [5].
However, the success of the ensemble method relies on several factors, such as how
baseline models are trained and integrated. The most widely used ensemble techniques
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include averaging and majority voting [31]. It is worth noting that a simple aggre-
gation using averaging methods or majority voting is not a smart choice and is very
sensitive to biased baseline models [31].

A mixture of experts (MoE) may address this shortcoming by combining base
learners, which are experts on detecting particular artifact morphology. Unlike deep
ensemble, where all models are trained on the same data, in MoE, each DL model is
trained for a sub-task to master specific aspects of data, resulting in improved robust-
ness. To the best of our knowledge, this is the first work to provide a comprehensive
DL-based artifact processing pipeline that takes the entire WSI, preprocess, inference,
and post-process and excels in both artifact detection and QC applications.

3 Data Materials
This section details the histological data used for training and validating DL models.
The following in-house (private) datasets are used for the experiments.

3.1 Training and Development Data
We obtained 55 glass slides of bladder cancer resection biopsies from the Eras-
mus Medical Centre (EMC) in Rotterdam, The Netherlands. These glass slides were
formalin-fixed and stained with Hematoxylin (purple) and Eosin (pink) (H&E) dyes.
The slides were scanned with a Hamamatsu Nanozoomer 2.0HT at 40× and saved in
ndpi format with a pixel size of 0.227 µm × 0.227 µm. These WSIs were properly
anonymized to preserve patient privacy, and all ethical requirements were followed
before the dataset was created. A non-pathologist who had received training for this
task manually annotated five artifacts (blurry areas, folded tissues, blood hemorrhage,
air bubbles, and damaged tissue). The rest of the tissue was marked as an artifact-
free region. Not all WSIs were extensively labeled as distinct tissue types since this
histological data is not used for any task other than artifact detection. However, each
WSI had at least one annotation for RoI or the artifact region (our case). In the later
sections, we refer to this cohort as EMC dev. A detailed description of the prepared
dataset and its availability is mentioned in Section 4.1.

3.2 External Validation Data
We have used the following datasets for inference only to assess the generalizability
and robustness of artifact processing pipelines.

3.2.1 EMC Cohort:

This dataset is a collection of high-risk non-muscle invasive bladder cancer WSIs from
a multi-center cohort provided by Erasmus MC, Rotterdam, The Netherlands. These
WSIs with MRXS format were prepared with H&E staining and scanned with a 3DHis-
tech P100 scanner at 80x magnification. A few WSIs were selected and annotated (by
FK) based on the presence of artifacts and annotated them to test their generalization
ability. We have used a 40x magnification level for inference as the models are trained
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at a similar level. We will refer to this dataset as EMC inf , and it is a different cohort
than the above-mentioned EMC dev.

3.2.2 SUH Cohort:

This dataset is a private triple-negative breast cancer cohort of 258 surgical specimens.
This dataset contains H&E WSIs prepared from surgical specimens and collected by
the Stavanger University Hospital (SUH) in Norway between 1978 and 2004. The
WSIs are in ndpi format and scanned using the Hamamatsu NanoZoomer S60 at 40×
magnification. An expert breast pathologist (UK) selected and annotated a few WSIs
based on the severity of the presence of these artifacts. We have used these WSIs to
test DL pipelines over cancer types different from the ones they are trained on. We
will refer to this dataset as SUH inf .

3.2.3 INCLIVA Cohort:

This dataset is prepared by the department of anatomical pathology of the Hospital
Clínico Universitario de Valencia, Spain, and is a collection between 1988 and 2020.
The prepared WSIs are from skin cancer biopsies with Spitz tumors and were scanned
with Roche‘s Ventana iScan HT at 40x magnification. WSIs were saved in tiff format.
An expert dermatopathologist (AM) selected and annotated a few WSIs with artifacts
from this cohort to validate the proposed pipeline over the external cohort. We will
refer to this dataset as INCLIVAinf

Table 1: Breakdown of the number of patches obtained in each class
of the dataset D, obtained form EMC dev after preprocessing.

(label) Class
(35 WSIs)
Training

(10 WSIs)
Validation

(10 WSIs)
Test Total

(0) Artifact free 5,249 1,441 965 7,655
(1) Blood 16,743 4,186 1,409 22,338
(2) Blur 5,661 754 1,137 7,552
(3) Air bubbles 2,499 1,175 846 4520
(4) Damaged Tissue 2,577 332 1,023 3,932
(5) Folded Tissue 998 114 131 1,243

4 Proposed Method
This section describes the data pre-processing, the proposed method for MoE, post-
processing, evaluation metrics, and implementation details for the DL pipelines.

Figure 1 gives a graphical overview of the proposed DL method for detecting
histological artifacts in WSIs. We proceed with the artifact detection task in two steps.
First, we train binary and multiclass models for patch-wise classification. The binary
models are trained to detect one particular artifact, i.e., blur against artifact-free. The
multiclass models provide output with six classes (five artifacts and artifact-free). In
the second step, we used these trained binary models to create a sort of MoE for
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Artifact-free Blood Blur Air bubbles Damaged Folded Tissue

Fig. 2: Examples of artifact-free and artifact-classes patches in our prepared dataset
D from EMC dev, and extracted at 40x magnification.

inference and post-processing the predictions. We deploy multiclass models directly.
We combine predictions from each expert in MoE by fusing their outputs. We apply
a probability threshold for maximizing sensitivity for detecting notable artifacts and
providing artifact-free WSI with diagnostic potential. A detailed description of the
proposed method is given below.

4.1 Pre-processing
We have used the EMCdev cohort to prepare the dataset. This included WSIs from
this cohort, which were divided into 35/10/10 training, validation, and test WSIs to
prevent data leakage.

Let a WSI at magnification level 40x (sometimes known as 400x) be denoted by
I40xWSI(i). Since I40xWSI are huge gigapixel images, it is not possible to process the entire
WSI in compute memory at once. To make computation feasible, most CPATH sys-
tems first tile or patch the WSI, or the RoI, before processing it further. The initial
step in the patching procedure was to separate the foreground tissue from the back-
ground (white) areas irrelevant for image analysis. Foreground/background separation
is usually done with a low-resolution version of the image, which can later be inter-
polated to be used with the full-resolution image. We obtained tissue foreground by
transforming the RGB (red, green, and blue) color space to HSV (hue, saturation, and
value). Later, Otsu thresholding was performed on the value channel to separate the
foreground-containing tissue from the background. We set a uniform patch-coordinate
sampling grid over the extracted foreground. Patches having at least 70% overlap with
the annotation area (R) were retrieved after the extracted foreground was tiled across
the grid with a non-overlapping stride, as depicted in Figure 1.
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Assuming T : I40xWSI(i)∈R → {xij ; j = 1 · · · J} denotes the tiling process, which
gives a set of J patches over R. Here, xij ∈ RW×H×C corresponds to patch j with
coordinates (xi0, yi0) from WSIi and H, W, and C represent the width, height, and
channels of the patch, respectively. We refer to this prepared dataset from EMCdev
as D = (X,y) = {(xn,yn)}Nn=1 containing N patches. Here xn is n-th instance with
224×224×3 pixels and yn ∈ {0, ..., k}, where k = 1 for binary and k = 5 for multiclass
dataset formulation. For instance, in a multiclass dataset, ’0’ represents artifact-free
class, and {1,2,3,4,5} corresponds to blood, blur, air bubbles, damaged tissue, and
folded tissue classes, respectively. Table 1 shows the breakdown of patches in each
subset of the dataset D and Figure 2 shows example instances for all classes obtained
from I40xWSI. This training and development dataset is made publicly available and can
be downloaded from Zenodo.

4.2 Feature Extractors and Classifiers
The feature extractor and classifier are two significant components of any DL model.
Feature extractors are crucial in DL algorithms as they help identify critical features
in the data. In short, it reduces the dimensionality of the image and facilitates classi-
fication from a vector. Based on artifact detection works in the literature [16, 78], we
have selected two popular DL architectures as feature extractors due to their smaller
parametric size and faster inference: i) DCNN-based MobileNetv3 [32] architecture,
and ii) Vision transformer-based ViT-Tiny [33] architecture.

MobileNetv3: MobileNetV3 is a SOTA DCNN architecture proposed by
Howardet al. [32] and is part of the family of computationally efficient models for
small devices by Google. The basic building blocks of MobileNetV3 include depth-wise
separable convolutions and inverted residual blocks designed to reduce computational
complexity and improve accuracy. MobileNetV3 is optimized through a combination of
hardware-aware network architecture search and novel architecture advances, includ-
ing the use of hard-swish activation and squeeze-and-excitation modules [32]. This
architecture is released in different variants. The large architecture variant (used in
this work) has a 5.4M parameter and is lightweight and efficient, making it suitable
for computationally efficient image classification pipelines.

Vision Transformer: Vision Transformers (ViTs) have gained attention as a
new SOTA for image recognition tasks [26, 27]. ViT architecture breaks down an
input image into a series of smaller patches, linearly embeds each patch, adds position
embeddings, and then feeds the resulting sequence of vectors to a standard Transformer
encoder [82]. This Transformer encoder consists of a stack of identical layers. It uses
a self-attention mechanism that allows it to focus on different parts of the input by
computing a weighted sum of the input features based on their similarity. We use
a lightweight and efficient variant of the ViT architecture, ViT-Tiny [33], with 6M
parameters for faster inference.

We apply transfer learning to train DL models and update model parameters at
each epoch. Assume ϕ represents our feature extractor with θf parameters. Then, for
the input patch (xn) with ground truth (yn), we get a flattened feature embedding
(an) using;

ϕθf (xn) = an where an = {a1, a1, ...., az} (1)
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For patch-wise classification, we train classifiers in a binary and multiclass fashion.
We appended a three-layer fully connected (FC) classifier (Cθc) at the end of the
feature extractor. Let us denote our DL models with notation ψθ, where θ = θf ∪ θc,
denotes the parameter set of both the feature extractor and the classifier. To obtain
the output probability vector (P yn) for the input patch, we apply softmax (σ) to
the output logits of the classifier as shown in Eq. (2). For instance, binary models
predict (artifact vs. artifact-free), and multiclass models predict (5 artifact classes vs.
artifact-free), as shown in Eq. (3).

P yn(xn) = ψθ(xn) = σ(Cθc(ϕθf (xn))) = σ(Cθc(an)) (2)

P yn =

{
[py0 , py1 ]

T if binary
[py0 , py1 , py2 , py3 , py4 , py5 ]

T if multiclass
(3)

Here, yp0 is the probability of being an artifact-free class. In the binary model,
yp1 corresponds to artifact class and in the multiclass model [yp1 , yp2 , yp3 , yp4 , yp5 ] are
predicted probabilities for blood, blur, air bubbles, damaged tissue, and folded tissue
classes respectively. Finally, We calculate cross-entropy loss between the ground truth
and the prediction, back-propagate this loss, and update model parameters, θ, at each
epoch based on the experimental setup explained in Sec 4.7.

LCE(yn, Pyn) =


−yn · log(py0) + (1− yn) · log(1− py0) for binary

−
∑k

i=0 yn · log(pyi) for multiclass
(4)

To obtain final predictions (P̂yn) for classes, we apply argmax to P yn .

P̂ yn = argmax(P yn) (5)

At the inference stage, we establish four DL pipelines using combinations of
trained models, i.e., multiclass models (with MobileNetv3 and ViT-Tiny) and MoEs
(combining binary MobileNetv3 and ViT-Tiny), as explained further in the following
sections.

4.3 Mixture of Experts
The "mixture of experts (MoE)" DL approach is often confused with deep ensembles.
A deep ensemble combines DL models trained on the same data using different seed
initializations or hyperparameters to learn different aspects of the data [81]. Unlike
deep ensemble, in MoE, each DL model is trained for a specific task (blur, fold,
blood, folded tissue, and damaged tissue detection) to become a specialist in particular
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Fig. 3: An overview of the mixture of experts (MoE) formation for artifact
detection. Five base learners (either MobileNetv3 or ViT-Tiny deep learning archi-
tectures) are trained on overlapping sub-datasets to learn the distinct morphology of
each artifact. Labels are transformed to take the artifact class as a negative class. A
fusion function integrates output from all experts to form a predictive probability dis-
tribution for the final prediction. A meta-learned probability threshold is applied to
maximize the sensitivity of the MoE.
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aspects of data. Instead of applying simple majority voting like deep ensembles, a gat-
ing mechanism forms the final prediction, incorporating output from diverse experts
and resulting in improved robustness.

Our proposed DL scheme is a kind of MoE where we integrate five identi-
cal DL architectures (also called base learners or experts) after training on the
parts of the data (similar to bagging). Bagging offers the advantage of reducing
variance, thus eliminating overfitting by training models on subsets of data. This
parallel and data-independent training strategy avoids affecting the results of other
experts. We form two MoE-based DL pipelines, namely ViTs-based MoE and DCNNs-
based MoE, by choosing five base learners (either DCNN or ViT architectures as
explained in Sec 4.2). All these experts are trained on five overlapping subsets,
{Dblood,Dblur,Dairbubble,Ddamaged,Dfolds} ∈ D. Here, each sub-dataset contains a dis-
tinct artifact class and the same artifact-free class as shown in Figure 3. For simplicity,
we transform ground truth labels as a positive class with the label ’1’ for artifact-free
and a negative class with the label ’0’ for the artifact class.

The contingent MoE model, Ω, forms a single prediction using the aggregation
function (G). G is similar to gating, which combines the output probabilities of the
experts using a fusion approach. In short, the proposed approach formulates MoE
trained on individual artifact morphology detection tasks. For artifact models ψi ∈
{ψblood, ψblur, ψairbubble, ψdamage, ψfold}, we only utilize the prediction for negative
class (Pψ0) (a.k.a probability of being an artifact), and fuse binary outputs for Ω as
shown in Eq. (7).

PΩy = G(ψblood, ψblur, ψairbubble, ψdamage, ψfold) (6)

PΩy =

{
1−max(Pψi0

) for artifact-free (positive) class
max(Pψi0

) for artifact (negative) class
(7)

To evaluate the final prediction (P̂Ωy ), we adopt a form of meta-learning by placing
a constraint on maximizing the sensitivity of the model for the positive (artifact-
free) class. Therefore, we introduce a probability threshold, ts, to handle previously
unseen tissue morphology and avoid misclassifying artifact-free patches with potential
diagnostic relevance. In other words, if the probability of being a positive class in
PΩy is higher than ts, then we assign artifact-free label to the patch as shown in
Eq. (8). Here, ts would help to efficiently minimize false negatives without re-training
models with a new cohort of WSIs with different tissue types or staining. We determine
the best value of ts by maximizing the true positive rate (sensitivity) in the receiver
operating characteristic (ROC) curve over the validation data.

P̂Ωy =

{
Artifact− free if PΩy0

≥ ts

Artifactk Otherwise k ∈ {1, 2, 3, 4, 5}
(8)
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4.4 Multiclass Models
In case of multiclass models (ψmulti) with predicted probability distribution
Pψyi

∀ i ∈ {0, 1, 2, 3, 4, 5}. We find the probability threshold (ts) by maximizing sen-
sitivity similar to MoE (see Sec. 4.3). In other words, if the predicted probability for
the artifact-free class is higher than ts, then the patch is assigned artifact-free label.
Otherwise, the artifact label with the highest probability value is assigned (see Eq. (9)).

P̂ψmultiy
=

{
Artifact− free with pψy0

if pψy0
≥ ts

Artifactk with pψyk
max(pψy1

, pψy2
, ..., pψyk

) Otherwise
(9)

4.5 Post-processing
At the inference stage, we utilize predictions for both artifact detection and QC appli-
cations, as illustrated in the post-processing part of Figure 1. Since the predictions of
DL models are patch-based, we need to stitch patches back to see the overall view of the
tissue in the WSI structure. However, stitching smaller patches introduces boundary
artifacts (blockish appearance) [4]. To avoid this problem, we turn to the matrix-filling
approach.

For patch xi with coordinates (x0, y0), the next consecutive patch x(i+1) holds
the difference of sampling stride (s) with coordinates (x1, y1) = (x0+s, y0+s). Here, s
equals the patch size owing to a uniform, non-overlapping grid. For the segmentation
map, we use a matrix (M), a downscale version of the original resolution, to assign
predicted class k.

M [x0 : x0 + s, y0 : y0 + s] = k where s = 224 (patch-size)
M [x1 : x1 + s, y1 : y1 + s] = k where k = {0, 1, ..5}

(10)

Since M is down-scaled to sampling stride size, every filled box can be seen as a
pixel in the final segmentation map (see 1 in Figure 4). We use filled M for the artifact
report to calculate the percentage of predicted patches with artifact class k over the
total patches Ntot in the foreground. See 2 in Figure 4 for an example artifact report
for QC.

Perk =
Nk
Ntot

∗ 100% where Nk = predicted with class k (11)

We denote the artifact-free post-processed region as ρ. It measures the usefulness
of the WSI and can be compared against a predefined threshold τ for assessing its
suitability (accepting or discarding) for developing DL algorithms.

ρ =
Number of artifact-free pixels (Nk0)

Total number of pixels in the foreground (Ntot)
(12)

To highlight the histologically relevant region, we binarize M to Mρ and treat
all artifact classes as a single class as shown in Eq. (13). The binary mask (Mρ)
indicates the potentially histologically relevant RoI (see 3 in Figure 4). Later, we apply
a morphological closing operation to remove small holes in the final mask.
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Mρ(i,j) =

{
1, if M(i,j) = k0 (artifact-free)
0, Otherwise

(13)

Finally, obtain artifact-free WSI by performing the Hadamard product betweenMρ

and the original WSI (I ∈ Rm×n) with the dimensions of m× n (see Eq (14)). Using
the nearest interpolation, we resize the Mρ mask to m×n. Let’s denote the element at
the i-th row and j-th column of Mρ as Mρ(i, j), and the corresponding element in I as
I(i, j). This element-wise operation between Mρ and I removes any regions or areas
with the presence of artifacts (4 in Figure 4) and Iartifact−free can be written as:

(I ⊙Mρ)ij =


Mρ(1,1) · I(1,1) Mρ(1,2) · I(1,2) . . . Mρ(1,n)

· I
(1,n)

Mρ(2,1) · I(2,1) Mρ(2,2) · I(2,2) . . . Mρ(2,n)
· I

(2,n)

...
... . . . ...

Mρ(m,1)
· I

(m,1)
Mρ(m,2)

· I
(m,2)

. . . Mρ(m,n)
· I

(m,n)

 (14)

4.6 Evaluation Metrics
For performance comparison, we report accuracy, sensitivity, and the F1-score. Let
TP, FN, FP, and TN denote true positive and false negative, false positive, and true
negative predictions, respectively. Here, a positive class refers to a patch without
artifacts (artifact-free patch). Then, the confusion matrix (CM) is a tabular repre-
sentation of the model’s predictions using TP, FN, FP, and TN. Accuracy is the
proportion of correct predictions to the total number of predictions and is defined
as Acc. = (TP + TN)/(TP + FN + FP + TN). Sensitivity, also known as recall,
measures the proportion of actual positives correctly identified by the model and is
termed Sens. = TP/(TP + FN). High sensitivity is essential to retaining poten-
tially relevant (artifact-free) RoIs for the diagnostic algorithm. On the other hand,
specificity Specs. = TP/(TP + FP ), quantifies the performance of a model in distin-
guishing negative instances from those falsely labeled as positive. In our application,
high specificity filters out irrelevant information (artifacts) appearing in relevant RoIs.
The F1 score is the harmonic mean of precision and recall and is calculated as
F1 = 2 · (precision · recall)(precision+ recall), where precision = TP/(TP +FP ). For
overall segmentation, dice co-efficient is reported. Dice scores the overlap between the
predicted segmentation and the ground truth and ranges from 0 to 1, where 1 indicates
perfect overlap between the predicted and ground truth segmentation. We use model
weights with the lowest validation loss during the training to report these evaluation
metrics.

For computational complexity evaluation, we have considered FLOPS, parameters,
and inference time. FLOPS measures the number of floating-point operations required
by a specific algorithm. The number of parameters refers to the learnable parameters
in the model that are used to perform operations, where high parameters result in more
FLOPS. Finally, inference time is the time the DL model consumes to make predictions
over a patch. These metrics, combined, provide a comprehensive understanding of the
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Fig. 4: Overview of deep learning (DL) pipeline emphasizing the post-
processing stage during the inference. Pre-processing: The whole slide image
(WSI) is split, and every patch is stored with its corresponding coordinate. Inference:
Every patch is assigned a label using a mixture of experts or multiclass DL models.
Post-processing: The matrix-based filling method assigns a color to every pixel (in the
downscaled version of WSI) at the corresponding coordinate location. Post-processing
provides: 1). Segmentation map; 2). Artifact report for quality control; 3). Artifact-
free region of interest map, and 4). Artifact-refined WSI for computational analysis.

DL model’s performance and computational efficiency, which are crucial for assessing
the practical applicability in real-world scenarios.

4.7 Implementation Details
The code was implemented using Python. The patch extraction was accomplished
using the Pyvips 1 library. During the patching, We used torch multiprocessing 2 to
carry out process pooling for faster pre-processing. The extracted patches were stan-
dardized to the mean and standard deviation of ImageNet [83] due to transfer learning
over ImageNet weights. To compensate for the scarcity of labeled data, augmenta-
tion is applied at each epoch during the training [34, 84]. We used random geometric

1https://libvips.github.io/pyvips/
2https://pytorch.org/docs/stable/multiprocessing.html
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transformations, including rotations and flips both horizontally and vertically. Our DL
models consist of a feature extractor and a classifier with three fully connected (FC)
layers. We used state-of-the-art architectures MobileNetv3 [32] and ViT-Tiny [33] as
backbones for feature extractors. MobileNetv3 was borrowed from the Pytorch 3 DL
framework, and ViT-Tiny was taken from the Timm 4 library. Both of these back-
bones were initialized with ImageNet weights. We referred to best hyperparameter
settings from works [16, 58, 78], and fixed final parameters to cross-entropy loss, SGD
optimizer, ReduceLRonPlateau scheduler initialized with 0.01, batch size of 128, and
early stopping of 20 epoch over the validation loss to avoid overfitting, drop out of
0.2 and fixed random seed for reproducibility. All training and inference experiments
were done on Nvidia A100 40GB GPU. The source code is available at Github.

5 Experimental Results and Discussion
This section presents experimental results for training and validating DL pipelines of
the EMC cohort and discusses their performance on validation, testing, and external
data.

Table 2: Performance of artifact processing pipelines on the
validation set of EMC dev cohort 3.1. Various DL pipelines,
including the mixture of experts (MoE) and multiclass models using
SOTA DCNN and ViT architectures, are deployed. A simple binary
formulation is used for a fair comparison, and accuracy for the artifact-
free class is reported. The best results are marked in bold, and the
second-best results are underlined in each column.

DL architecture Acc.(%) F1 Acc.afree F1afree Sens.afree

MoE 92.08 91.87 97.82 88.66 90.12
Multiclass 93.48 93.43 94.96 78.64 96.89

D
C

N
N

s

Binary 95.92 95.26 - - 94.68
MoE 94.81 94.53 97.84 89.06 91.92
Multiclass 94.29 94.48 96.79 83.80 86.84

V
iT

s

Binary 97.45 97.46 - - 87.25

5.1 Validation on the EMC dev Cohort
This experiment aims to evaluate the performance of the proposed MoE and multiclass
models for artifact detection. These pipelines consist of four DL approaches using
MoE and multiclass models based on DCNNs (MobileNetv3 [32]) and ViTs (ViT-
Tiny [33]). For simplicity, we will refer to DCNNs or ViTs in the discussion. For a
baseline comparison, we also trained binary classification models (DCNN and ViT)
using the entire EMC dev dataset in a binary fashion. In other words, we wanted to

3https://github.com/pytorch/pytorch
4https://timm.fast.ai/
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compare the benefits and drawbacks of the simpler classification model against a MoE
and their computational and performance trade-offs for efficient DL pipelines.

We will first focus on discussing the performance aspect. Table 2 presents clas-
sification results over the EMC dev validation subset. We have reported metrics for
artifact-free classes to compare them fairly against baseline (binary) models. For
better classification performance, we desire high sensitivity to avoid misclassifying
artifact-free patches as artifacts and retain potential histologically relevant tissue for
automated diagnostics. This is because the artifact detection application is not affected
by one artifact class being classified as another. In the end, patches with the presence
of any artifacts will be excluded from downstream (diagnostic) applications. Though
the baseline models yield the best overall accuracy, they relatively underperform and
exhibit lower sensitivity in classifying the artifact-free class. The MoEs outperform
multiclass models and baseline models in detecting artifact-free class. Overall, both
MoE pipelines give superior results for the positive class and avoid false negatives.
However, the DCNN-based multiclass model gives the best sensitivity score. To present
an unbiased view, we test MoEs and multiclass models on unseen data from the same
EMC dev cohort.

Table 3: Generalization results on the test set of EMC dev cohort 3.1. The
table presents results over unseen data, with and without probabilistic thresholding. All
metrics are calculated for the classification performance over artifact-free class. The best
results in each column are marked in bold, and the second-best results are underlined.

DL architecture Without probabilistic threshold With probabilistic threshold
Acc. (%) F1 Sens. ts F1 Sens.

MoE 97.82 88.66 89.12 0.326 86.15 97.93DCNNs Multiclass 93.58 85.21 94.72 0.341 83.53 95.47
MoE 95.61 88.91 90.45 0.052 84.90 97.83ViTs Multiclass 92.55 82.51 89.94 0.015 70.15 96.54

We present generalization results in Table 3. The table reports mixed results when
probabilistic thresholding is not applied. To improve the sensitivity over new data,
we learn a probability threshold (ts) using ROC curves of the validation set (see
Section 4.3), as displayed in Figure 5. We target a 98% sensitivity and obtain different
ts values for each DL pipeline, as reported in Table 3. Interestingly, the DCNN-based
pipelines assign higher probability scores to the artifact-free class, indicating better
confidence and stronger learning of histologically relevant morphology than the ViT-
based models. Figure 6 reflects similar insight that ViT-based pipelines carry weak
differentiation between artifacts and artifact-free patches (see black dotted line). It is
fascinating to see that probabilistic thresholding significantly improves the ability to
detect artifact-free class, hinting that the proposed MoEs would be the best choice
with the least false negatives.

To evaluate the computational aspect, Table 4 indicates the computational com-
plexity of all four DL pipelines. Undoubtedly, MoEs have nearly five times more
parameters and lower throughput than multiclass models. This is because each MoE
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combines five binary experts. Comparatively, DCNN-based pipelines can be efficient
at the inference stage due to very little patch processing time per second. We have to
make a trade-off in selection, either choosing multiclass DCNN with better computa-
tional efficiency but relatively lower performance or based on the best performance. We
prioritize classification performance and opt for the two best-performing DL pipelines
from Table 3; therefore, we will use MoEs for the following experiments.

Table 4: A comparative analysis of computa-
tional complexity. Lower values of parameters and
flops indicate computationally efficient models, and
higher throughput is desired for faster inference.

DL Pipelines
Parameters

(M)
w� Flops

(B)
w� Throughput

(p/sec.)
~w

MoE (DCNNs) 17.65 1.13 178
MoE (ViTs) 27.62 5.38 128
Multiclass (DCNN) 3.53 0.22 832
Multiclass (ViT) 5.53 1.08 419

Table 5: Results for quantitative evaluation for assessing the robust-
ness of the proposed mixture of experts (MoE) approach. Qualitative
evaluation is performed on external (out-of-distribution) data. The table
reports classification performance corresponding to patch-wise classification
and dice scores for overall segmentation maps obtained through artifact pro-
cessing pipelines.

DL Pipeline Cohort WSIs F1afree Sens.afree Spec.afree Dice
s1 92.86 93.48 53.76 0.909EMCinf s2 89.11 89.61 52.71 0.784

s3 70.91 55.07 99.09 0.487SUHinf s4 85.51 79.78 44.57 0.572

s5 60.05 43.99 80.53 0.532

M
oE

of
D

C
N

N
s

INCLIVAinf s6 37.39 23.55 98.97 0.506
s1 93.17 93.01 60.92 0.939EMCinf s2 89.34 87.97 63.18 0.795

s3 68.79 54.51 79.56 0.367SUHinf s4 87.97 85.63 26.38 0.482

s5 78.92 66.02 79.71 0.559M
oE

of
V

iT
s

INCLIVAinf s6 45.49 42.49 42.91 0.412

5.2 Quantitative Evaluation
We perform this experiment to assess the robustness of DL pipelines over external
(OoD) data. For this purpose, we chose six WSIs (s1-6) from external validation data
(see Section 3.2). Note that all these WSIs were prepared and scanned by different
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laboratories and scanning hardware. Thus, they exhibit vast differences in staining,
tissue types, and image acquisition protocols, as displayed in Figure 7. We did not
incorporate color normalization in the artifact processing pipeline due to their additive
computational cost and latency [78].

Quantitative assessment is crucial to objectively evaluate the numerical perfor-
mance, enabling us to compare both proposed MoEs of DCNNs and ViTs. We require
histological correctness that only an expert can provide in the form of ground truths.
Therefore, all WSIs were roughly annotated by FK, UK, and AM for different arti-
facts. Table 5 presents the results for classification and segmentation performance.
Since certain artifacts, such as folded tissue, have blurry areas surrounded [10]; one
artifact class is likely to be predicted as another. Thus, for simplicity purposes, we
report metrics for artifact-free (positive) classes only.
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Fig. 5: ROC curves for deep learning pipelines over the validation subset. All
plots highlight the area under the curves (AUC) score and best probability thresholds
for maximizing F1 and sensitivity metrics.
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Fig. 6: Classification plots for deep learning pipelines over the validation
subset. All subplots highlight the delineation (black dotted line) with the estimated
value of ts for probabilistic thresholding.

Both MoE pipelines experience a drop in sensitivity over breast cancer (SUH inf )
and skin cancer (INCLIVAinf ) WSIs. This behavior could be due to misclassify-
ing ambiguous regions or susceptibility to specific tissue types. Since SUH inf and
INCLIVAinf WSIs are OoD data for our DL pipelines, it is interesting to see that
we get high specificity scores. In short, both pipelines ensure that most of the actual
artifacts present in the data are accurately flagged. Dice score in Table 5 shows good
segmentation results on the EMC inf cohort. Nevertheless, EMC inf is bladder cancer
tissue and may carry more similarity in structural appearance.

Quantitative metrics can miss subtle nuances masked by overall performance
scores. Therefore, we observe false predictions of both DCNNs-based MoE and ViT-
based MoE over better performance (s1, s4, and s5) and the worst (s2, s3, and s6)
performance in OoD data. Figures 8 and 9 show ground truths and predictions masks
for the better results in each cohort, and Figures 10 and 11) shows the same for the
worst results in each cohort. Both MoEs densely predict artifacts in all three exam-
ples. Here, false negative instances pertain to regions identified as artifacts but were
labeled artifact-free. Conversely, false positives are cases classified as artifact-free but
were labeled as any artifact class. Figure 10 highlights that DCNN-based MoE might
be overdoing their job predicting certain artifacts like air bubbles. For instance, in s6,
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s1

s2

s3

s4

s5

s6

Fig. 7: Hue-Saturation plot shows massive variation in the external (out-of-
distribution) data. Random patches from all six WSIs (s1-6) are used to calculate
hue and saturation values to observe the depth of H&E staining. WSI acquisition pro-
cedures from different laboratories and scanning hardware affect the final appearance
of histological images (as shown on the right).

the entire WSI has a hazy appearance, with air trapped under most of the tissue. The
false predictions for s6 show that those examples lack cellular features. Likewise, for
false positives in the case of s2, those specific examples were the boundary of another
artifact region and contained some presence of blood. In case s2 and s3, annotations
had some noise, and with the chosen mask overlap, the obtained ground truth was not
accurate enough. On the other hand, the ViT-based MoE (in Figure 11) appears to be
slightly overdoing damage detection. In most false predictions here, we might be deal-
ing with potentially noisy and imprecise ground truth annotations. Therefore, relying
on only quantitative analysis is not concrete and conclusive. We require a thorough
qualitative analysis by field experts to scrutinize further the strengths and weaknesses
of both MoEs in detecting artifacts.

5.3 Qualitative Evaluation
In this experiment, we perform qualitative evaluations by three field experts to delve
deeper into the DL pipelines’ behavior and see the holistic view after artifact refine-
ment. While quantitative metrics provide valuable numerical insights into a model’s
performance, they often fall short of capturing the intricacies of segmentation results.
Therefore, assessing whether the model was misclassified due to genuine limitations
or imperfections in the ground truth is vital.

Three field experts (P1, P2, and P3) assessed segmentation maps for six WSIs
(s1-s6) from three cohorts used in the above experiment. They scored them based
on visual interpretation, including how well artifacts were detected, how artifact-free
regions were preserved, and the overall diagnostic usability of WSIs after the artifact
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Fig. 8: Visualization of DCNNs-based mixture of experts’ predictions with
better performance over out-of-distribution data. Image shows original WSIs
(s1,s4, and s5) along with ground truth for artifacts (combined), artifact segmentation
map, and a few examples of false predictions. False negative refers to patches detected
as artifacts but were artifact-free, and false positive refers to patches detected as
artifact-free but belonged to any artifact class.

processing, where field experts scored them from 1 (worst) to 10 (best). Each expert
who rated these WSIs was a domain specialist on a specific cancer type (See box plot
in Figure 12). Figure 12 represents the score variability for each task across the six
WSIs. The central line in each box represents the median, while the box’s upper and
lower edges correspond to the interquartile range.

Cohen’s Kappa coefficient measures the agreement between experts, where ’1’ indi-
cates perfect agreement between experts and ’0’ indicates agreement no better than
chance. Figure 13 reveals levels of agreement for each assessment category among the
different pairs of experts for DCNNs-based MoE and ViT-based MoE. Vertical dotted
lines present the average consensus across three assessment categories for each pair (in
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Fig. 9: Visualization of ViTs-based mixture of experts’ predictions with
better performance over out-of-distribution data. Image shows original WSIs
(s2,s3, and s6) along with ground truth for artifacts (combined), artifact segmentation
map, and a few examples of false predictions. False negative refers to patches detected
as artifacts but were artifact-free, and false positive refers to patches detected as
artifact-free but belonged to any artifact class.

corresponding color). Both subplots highlight substantial agreement for overall usabil-
ity and high average agreement between P1 and P2 (red dashed line) in Figure 13.
In contrast, artifact-free preservation has relatively lower agreement, echoing simi-
lar findings across all pairs. Based on the remarks obtained from field experts (see
Figure 12), generally, better results were obtained for bladder cancer WSIs (s1,s2).
Although MoEs were too sensitive in detecting blurry areas, their folded and damaged
regions were well segmented. In breast cancer WSIs (s3,s4), adipose tissue was pre-
dicted as air bubbles (with DCNNs-based MoE) or damaged (with ViTs-based MoE).
Note that the training data did not include adipose tissue, primarily fat cells. This sit-
uation can be more evident in breast samples because there is more adipose tissue in
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Fig. 10: Visualization of DCNNs-based mixture of experts’ predictions with
worst performance over out-of-distribution data. Image shows original WSIs
(s2,s3, and s6) along with ground truth for artifacts (combined), artifact segmentation
map, and a few examples of false predictions. False negative refers to patches detected
as artifacts but were artifact-free, and false positive refers to patches detected as
artifact-free but belonged to any artifact class.

them than in other cancer types. While adipose tissue can provide valuable contextual
information and aid in certain aspects of diagnosis, its absence does not necessarily
preclude accurate assessment of breast cancer.

The particular examples of skin cancer WSIS (s5,s6) had significant air bubbles,
leaving a hazy and unclear appearance over the foreground tissue. At the same time,
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Fig. 11: Visualization of ViTs-based mixture of experts’ predictions with
worst performance over out-of-distribution data. Image shows original WSIs
(s2, s3, and s6) along with ground truth for artifacts (combined), artifact segmentation
map, and a few examples of false predictions. False negative refers to patches detected
as artifacts but were artifact-free, and false positive refers to patches detected as
artifact-free but belonged to any artifact class.

both artifact processing pipelines were overdoing air bubble prediction, and the epi-
dermis was predicted as blood. The performance of both MoEs is worst in these cases;
one of the reasons could be the severity of artifacts and significant variation in stain-
ing in the WSI. While there is generally substantial agreement among field experts for
overall diagnostic usability, there are areas, such as artifact-free preservation, where
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Fig. 12: Scores for qualitative evaluation by field experts (P1, P2 and P3)
for different Tasks. The boxplot provides a visual representation of the experts’
assessments for predictions of OoD WSIs. The scores were provided on a scale of 1 to
10, with higher scores indicating better performance.

(a)

(b)

Agreement by Chance between Field Experts for DCNNs-based Mixture of Experts (MoE)

Agreement by Chance between Field Experts for ViTs-based Mixture of Experts (MoE)

Fig. 13: Qualitative evaluation of artifact detection by the mixture of
experts (MoE) models over OoD data. Plots (a) represent Cohen‘s kappa score
(on the x-axis) for DCNNs-based MoE and a pair of field experts on the y-axis, and (b)
show scores for ViTs-based MoE. Both subplots show agreement by chance for each
task. Each pair’s average agreement of all three tasks is plotted as a vertical dashed
line.
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discrepancies emerge and may be more challenging to achieve. Moreover, considering
inter-rater variability, DCNNs-based MoE indicates potential effectiveness for artifact
detection and overall diagnostic usability.

By triangulating quantitative and qualitative analysis findings, we conclude that
DCNNs-based MoE provides better generalizability and robustness with the trade-off
of higher computational cost.

6 Conclusion and Future Directions
In this work, we established end-to-end deep learning (DL) pipelines, taking whole
slide images (WSIs) as input and providing artifact-refined WSIs to enable computa-
tional pathology (CPATH) systems to make reliable predictions. For the development
of DL pipelines, we propose a mixture of experts (MoE) scheme and multiclass mod-
els. The MoE scheme uses five base learners (experts) with underlying state-of-the-art
DL architectures (MobileNetv3 or ViT-Tiny). The MoE captures the intricacies of
different artifact morphologies and dynamically combines predictions using a fusion
mechanism to generate predictive probability distribution. Later, a meta-learned prob-
abilistic threshold is applied to improve sensitivity for histologically relevant regions.
In rigorous experiments, we performed generalizability and robustness tests over DL
pipelines by testing on external cohorts of different tissue types. During the inves-
tigation, we found that the MoE scheme with underlying DCNNs attains the best
classification and segmentation performance with some computational trade-offs com-
pared to multiclass models. However, if high inference speed is the desired requirement,
then multiclass models are a better choice with some degree of performance trade-off.
Furthermore, during the qualitative evaluation, field experts rated the outcomes and
achieved a substantial agreement for the overall usability of DCNNs-based MoE.

Our artifact processing DL pipelines can provide various outcomes, such as a seg-
mentation map, artifact report, artifact-free mask with potential region of interest
with the histologically relevance, and artifact-refined WSI for further computational
analysis. Overall, the proposed DL solution is efficient and has a great advantage in
equipping the CPATH system with the necessary tools to isolate anomalies (or noise)
from affecting automated clinical applications.

The proposed work has a limitation in that the DL models were trained on a dataset
prepared from a single cohort of data. In future work, we will overcome these limi-
tations by pooling datasets from different cohorts in training and adopting an active
learning strategy to adapt meta-learned thresholding parameters for improved sensitiv-
ity. Also, by adopting tailored fusion mechanisms for different cancer types. Moreover,
artifact-refined WSIs can be tested with the corresponding diagnostic or prognostic
algorithms to assess the usefulness of artifact processing pipelines for clinical practice.

Data and Code Availability
The code is available at Github. The training and development dataset can be
downloaded from Zenodo.
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Abbreviations

WSI Whole slide image
DL Deep learning
CPATH Computational pathology
MoE Mixture of experts
SOTA state-of-the-art
DCNN Deep convolutional neural networks
ViT Vision transformer
OoD Out-of-distribution
DP Digital pathology
QC Quality control
RGB Red, Green, Blue
HSI Hue, Saturation, Intensity
SVM Support vector machine
H&E Hematoxylin and Eosin
EMC Erasmus medical centre
SUH Stavanger University Hospital
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