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ABSTRACT 
Innovative and easy-to-implement strategies are needed to improve the pathogenicity assessment 
of rare germline missense variants. Somatic cancer driver mutations identified through large-
scale tumor sequencing studies often impact genes that are also associated with rare Mendelian 
disorders. The use of cancer mutation data to aid in the interpretation of germline missense 
variants, regardless of whether the gene is associated with a hereditary cancer predisposition 
syndrome or a non-cancer-related developmental disorder, has not been systematically assessed. 
We extracted putative cancer driver missense mutations from the Cancer Hotspots database and 
annotated them as germline variants, including presence/absence and classification in ClinVar. 
We trained two supervised learning models (logistic regression and random forest) to predict 
variant classifications of germline missense variants in ClinVar using Cancer Hotspot data 
(training dataset). The performance of each model was evaluated with an independent test dataset 
generated in part from searching public and private genome-wide sequencing datasets from ~1.5 
million individuals. Of the 2,447 cancer mutations, 691 corresponding germline variants had 
been previously classified in ClinVar: 426 (61.6%) as likely pathogenic/pathogenic, 261 (37.8%) 
as uncertain significance, and 4 (0.6%) as likely benign/benign. The odds ratio for a likely 
pathogenic/pathogenic classification in ClinVar was 28.3 (95% confidence interval: 24.2-33.1, p 
< 0.001), compared with all other germline missense variants in the same 216 genes. Both 
supervised learning models showed high correlation with pathogenicity assessments in the 
training dataset. There was high area under precision-recall curve values of 0.847 and 0.829 for 
logistic regression and random forest models, respectively, when applied to the test dataset. With 
the use of cancer and germline datasets and supervised learning techniques, our study shows that 
cancer mutation data can be leveraged to improve the interpretation of germline missense 
variation potentially causing rare Mendelian disorders.  
 
AUTHOR SUMMARY 
Our study introduces an approach to improve the interpretation of rare genetic variation, 
specifically missense variants that can alter proteins and cause disease. We found that published 
evidence from somatic cancer sequencing studies may be relevant to understanding the impact of 
the same variant in the context of rare inherited (Mendelian) disorders. By using widely available 
datasets, we noted that many cancer driver mutations have also been observed as rare germline 
variants associated with inherited disorders. This intersection led us to employ machine learning 
techniques to assess how cancer mutation data can predict the pathogenicity of germline variants. 
We trained machine learning models and tested them on a separate dataset curated by searching 
public and private genome-wide sequencing data from over a million participants. Our models 
were able to successfully identify pathogenic genetic changes, demonstrating strong performance 
in predicting disease-causing variants. This study highlights that cancer mutation data can 
enhance the interpretation of rare missense variants, aiding in the diagnosis and understanding of 
rare diseases. Integrating this approach into current genetic classification frameworks could be 
beneficial, and opens new avenues for leveraging existing cancer research to benefit broader 
genetic research and diagnostics for rare genetic conditions. 
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BACKGROUND 

Genome-wide sequencing (GWS; including exome and genome sequencing) allows for 

comprehensive detection of coding sequence variants associated with a wide range of diseases, 

spanning from rare Mendelian disorders to common cancers.1–3 Our ability to filter and prioritize 

variants associated with disease lags behind our ability to detect variation.2 Rare missense 

variants are collectively common in every human genome,3,4 and interpreting the clinical impact 

of these variants is especially challenging. The American College of Medical Genetics and 

Genomics (ACMG) and the Association for Molecular Pathology (AMP) developed a widely 

used system for assessing variants by scoring lines of evidence supporting variant pathogenicity 

or benign-ness.4 Even after a decade of implementing and refining the ACMG/AMP 

classification system, variants of uncertain significance (VUS) account for the vast majority of 

missense variant entries in databases like ClinVar.5,6 Despite commendable efforts to generate 

functional data through multiplexed assays of variant effects (MAVEs) and other variant-to-

function maps, missense variant classification in clinical practice continues to often rely on in 

silico evidence and heuristics like rarity and inheritance.7,8 New scalable and easy-to-implement 

strategies that produce evidence complementary to (and not derivative of) existing in silico 

methods are needed to improve the pathogenicity assessment of rare germline missense variants. 

 

Using available but underused genomic databases to identify additional evidence for 

pathogenicity could aid in classifying rare missense variants.8–10 Oncogenic mutations (also 

known as cancer driver mutations) are genetic alterations that contribute to cancer initiation and 

progression.11 Tumour sequencing initiatives like The Cancer Genome Atlas (TCGA) and 

International Cancer Genome Consortium (ICGC) have accelerated the identification of 
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oncogenic mutations.3,12 Germline dysregulation of some proto-oncogenes and tumour 

suppressor genes (TSGs) causes Mendelian disorders (“oncoprotein duality”) (Figure 1A).7,11,13,14 

For instance, the somatic HRASQ61K missense mutation implicated in various types of cancers 

causes Costello syndrome (MIM #218040), a developmental disorder, when it occurs as a 

germline variant (Figure 1B).15,16 These Mendelian disorders may or may not include cancer as a 

major phenotypic feature.5,17–21 Walsh and colleagues previously explored the use of cancer 

mutational hotspots data for interpreting germline variants in genes causing cancer predisposition 

syndromes.13 However, when and to what extent cancer driver mutations are pathogenic in 

germline contexts, for rare Mendelian disorders in general, remains unknown.  

 

This study investigates the concept of oncoprotein variant duality, and specifically the degree to 

which germline variant classification could be informed by observations that the equivalent 

tumour mutation drives cancer. The underlying logic of our approach is that cancer driver 

mutations have functional consequences at the protein level, and those functional consequences 

are expected to be present regardless of whether the variant is observed in a 

somatic/mosaic/tissue-specific or constitutional/germline context. Through comparative analysis 

of Cancer Hotspots22,23 (cancer mutations) and ClinVar24 (restricting to germline variants), we 

developed and tested supervised learning models for predicting germline missense variant 

pathogenicity using cancer mutation data.  

 

RESULTS 

Association between cancer mutations from Cancer Hotspots and LP/P classification as 

germline variants 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2024. ; https://doi.org/10.1101/2024.03.11.24304106doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.11.24304106
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Putative driver mutations from Cancer Hotspots were extracted, annotated, and filtered to obtain 

a list of 2,447 missense mutations (“CH mutations”) distributed across 216 genes (Figure 1C). Of 

these 216 genes, 41% are proto-oncogenes, 36% are tumour suppressor genes, and 15% can have 

either role, as determined by the Cancer Gene Census (Supplemental Figure 2A).25 We presumed 

that cancer driver missense mutations in proto-oncogenes and tumour suppressor genes have gain 

of function and loss of function mechanisms, respectively. The Mendelian disease associations in 

the Online Mendelian Inheritance in Man (OMIM) database26 for these genes revealed that 20% 

are associated with hereditary cancer predisposition syndromes (Supplemental Table 1). Among 

the 216 genes, 154 had known modes of inheritance for cancer and an associated Mendelian 

disease reported in OMIM.26 Of these 154 genes, 107 (69%) had a Mendelian disease mechanism 

that was concordant with the cancer mechanism, 26 (17%) were discordant, and 21 (14%) were 

semi-concordant, meaning the gene could function as both a proto-oncogene and a tumor 

suppressor, or had Mendelian diseases with variants exhibiting both gain of function and loss of 

function mechanisms (Supplemental Table 2). Although Cancer Hotspots infers cancer driver 

status of a mutation from probabilistic arguments (statistical enrichment), we found that the 

functional impact was experimentally tested for 990 of these mutations with the majority 

(943/990, 95%) confirmed to result in gain or loss of protein function (Supplemental Methods; 

Supplemental Figure 3).  

 

Overall, 691 missense mutations in 84 genes from Cancer Hotspots had been classified with 

respect to germline pathogenicity in ClinVar: 426 (61.6%) as LP/P, 261 (37.8%) as VUS, and 4 

(0.6%) as LB/B (Figure 1C). The median number of variants observed for each gene was 2 

(interquartile range = 4 ). As expected, all variants were rare (gnomAD allele frequency < 0.001) 
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except for three out of four that were classified as LB/B. Of these 84 genes, 50% are proto-

oncogenes, 37% are tumour suppressor genes, and 10% can have either role, as determined by 

the Cancer Gene Census (Supplemental Figure 2B). Germline variants overlapping with cancer 

(driver) mutations may provide insights into their mechanisms, such as loss of function in tumor 

suppressor genes or gain of function in proto-oncogenes and provide functional context for 

Mendelian diseases. The disease associations in OMIM for these genes also revealed that 38% 

were hereditary cancer predisposition syndromes (e.g., VHL associated with von Hippel-Lindau 

syndrome) and 62% were not known to include cancer as a predominant feature (e.g., FGFR3 

associated with Achondroplasia).26 In both groups, most associated conditions had autosomal 

dominant inheritance (88% and 77%, respectively). A significant difference was observed in the 

proportion of LP/P, VUS, and LB/B variants between these two gene groups (256 LP/P, 231 

VUS, 1 LB/B versus 170 LP/P, 30 VUS, 3 LB/B, respectively), with an LP/P classification more 

likely for variants in genes not associated with hereditary cancer predisposition syndromes (p < 

2.2e-16) (Supplemental Table 1).  

 

The odds ratio for these 691 variants having a LP/P classification in ClinVar was 107.6 (95% 

confidence interval (CI): 40.1-288.4, p < 0.0001), when comparing only LP/P and LB/B 

classifications with all other germline missense variants with ClinVar entries in the 216 genes 

(n=5,474) (Supplemental Figure 1; Supplemental Table 3). Even if all VUS were considered as 

LB/B variants, the odds ratio was 28.3 (95% CI: 24.2-33.1, p < 0.001) compared with all other 

variants in ClinVar (n=50,655) (Supplemental Figure 1; Supplemental Table 3). In an even more 

extreme scenario of considering all VUS and CIP variants as LB/B, the odds ratio was 21.0 (95% 

CI: 18.2-24.2, p < 0.001) (n=53,593) (Supplemental Figure 1; Supplemental Table 3). If these 
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variants were restricted to the 107 genes with Mendelian disease mechanism that was concordant 

with the cancer mechanism, 337 cancer mutations would overlap with germline missense 

variants in ClinVar (238 LP/P, 98 VUS, 1 LB/B). The odds ratio for an LP/P classification in 

ClinVar would increase to 46.2 (95% confidence interval: 36.4 - 58.6, p < 0.001), compared to 

all other germline missense variants in the same 107 genes. However, the odds ratio for LP/P 

classification for the “discordant” and “semi-concordant” mechanisms was still 12.5 (95% 

confidence interval: 9.9 - 15.7, p < 0.001). The positive likelihood ratio of 11.5 exceeded 

“moderate evidence” thresholds described previously (i.e., 4.33 and 5.79) (Supplemental Table 

4).27,28 The potential impact of an additional moderate evidence criterion for pathogenicity 

applied to the 261 CH mutations that overlap with germline VUS in ClinVar is shown in 

Supplemental Figure 4, revealing 66 (27%) of the VUS could be hypothetically upgraded to LP.  

 

For the remaining CH mutations that did not overlap with germline variants in ClinVar (n = 

1,756), we explored the degree to which in silico scores used for germline variant adjudication 

supported “pathogenicity”. We grouped these CH mutations by REVEL scores using the 

ClinGen-proposed PP3/BP4 score thresholds (Figure 1C).28 Over half (58.8%; 1,032) had 

REVEL scores indicating at least PP3-level evidence (i.e., evidence in favour of pathogenicity), 

while only 9.6% (168) had at least BP4-level evidence (Figure 1C; Supplemental Figure 5A). 

Findings were similar using AlphaMissense (Supplemental Figure 5B).29 For these CH mutations 

that are absent from ClinVar, the in silico score profiles resemble the ClinVar LP/P germline 

missense variants in the same genes more than the set of LB/B variants or VUS (Supplemental 

Figure 5).  
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Through collaborations with GEL, MSSNG, C4R, and GeneDx, we searched GWS datasets from 

approximately 1.5 million participants (probands and affected or unaffected family members) 

and identified additional instances of germline variants overlapping with CH mutations 

(Supplemental Table 5). Across the four datasets, we found 302 unique overlapping germline 

variants. Of these, 194 were already classified and present in ClinVar (140 LP/P, 1 LB/B, 53 

VUS) and 108 were absent in ClinVar. Out of these 108 variants, 43 had been previously 

assessed and classified in accordance with ACMG/AMP variant interpretation guidelines by our 

collaborators. Among these variants, 30 were classified as LP/P, 12 as VUS, and 1 conflicting 

(LP and VUS by different groups). The classifications of the remaining 65 variants (79% found 

in probands) were uncertain due to limited phenotype information.  

 

Cancer Hotspots database includes most highly recurrent cancer mutations in COSMIC  

We retrieved 231,377 somatic missense mutations by filtering the Cancer Census Genes data 

from COSMIC (Supplemental Figure 6). With the results of the tumour sample count analysis 

using overlapping CH mutations and ClinVar germline variants (Supplemental Methods, 

Supplemental Figure 7), we stringently filtered for COSMIC mutations that were observed in 

>25 tumour samples and absent from Cancer Hotspots, resulting in 125 missense mutations 

across 63 genes (Supplemental Figure 6). This approach, using Cancer Hotspots as a benchmark, 

aimed to identify recurrent (putative) driver mutations in COSMIC, a more heterogeneous 

database with both driver and passenger mutations. Of these genes, 31 are new additions to the 

list of genes from Cancer Hotspots and 11 are associated with rare Mendelian diseases as 

reported in OMIM.26 However, only 12 of these mutations overlapped with germline variants in 

ClinVar. Among them, 2 (16.7%) were LP/P, 8 (66.7%) VUS/CIP and 2 (16.7%) were LB/B 
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(Supplemental Figure 6). Only 2 of these 12 overlapping variants were found in the “new” 31 

cancer genes discovered through COSMIC. While we identified 125 additional missense 

mutations in COSMIC, only a small fraction of these overlapped with germline variants in 

ClinVar. Thus, despite being smaller and less frequently updated than COSMIC, Cancer 

Hotspots effectively captures most putative cancer driver missense mutations relevant to our 

research question. 

 

Robust predicted probabilities of pathogenicity generated by supervised learning models  

We used the training datasets to develop two types of supervised learning models with the goal 

to accurately predict the pathogenicity of germline variants in our test dataset. The training 

dataset fit the LRM with a McFadden’s pseudo-R2 value of 0.50 (i.e., higher than the 0.20-0.40 

range that indicates a good model fit30) and generated predicted probabilities of pathogenicity for 

all variants in the training dataset. The predicted probabilities were significantly higher for all 

germline LP/P variants compared with LB/B/VUS variants (U = 1655893, nLB/B/VUS = 11,644, 

nLP/P = 2,095, p < 0.0001) and for germline variants that are present in the Cancer Hotspots 

database compared with those that are absent (U = 32029, nAbsent = 13,316, nPresent = 423, p < 

0.0001) (Figure 3AB). We trained a second supervised learning model, an RFM, since it is gene-

independent and can be broadly applied to variants beyond the 66 gene categories in the LRM. 

The RFM achieved an out-of-bag (OOB) error estimate of 10.8% for predicting outcomes. The 

RFM generated probability scores of pathogenicity and, similar to the LRM, these were 

significantly higher for all germline LP/P variants compared with LB/B/VUS variants, as well as 

for germline variants that overlap with CH mutations compared to those without overlap (U = 

6109589, nLB/B/VUS = 11,644, nLP/P = 2,095, p < 0.0001) (Figure 3CD). To gain a comprehensive 
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understanding of the overall impact of each independent variable on the data, exploratory 

analyses were conducted on the ClinVar dataset (before filtering) (Supplemental Methods; 

Supplemental Figures 6-8). The analyses show variability in the number of variants across genes 

(Supplemental Figure 7), distinct tumour sample count thresholds between LP/P and LB/B/VUS 

variants (Supplemental Figure 8) and indicated that the model fit was not primarily driven by the 

conservation scores (Supplemental Figure 9). 

 

RFM outperformed LRM in correctly predicting pathogenicity of germline missense variants 

overlapping with cancer mutations 

Using the test dataset (n = 332), distinct from training dataset variants, we calculated the area 

under precision-recall curve (AUPRC) values for the LRM and RFM as 0.847 and 0.829, 

respectively (Figure 4A). We also calculated the area under the receiver-operating characteristic 

curve (AUROC) as 0.821 for the LRM and 0.774 for the RFM (Supplemental Figure 10A). The 

higher AUROC for the LRM indicates better ability to discriminate between LP/P and 

LB/B/VUS variants compared to the RFM. Precision-recall curves guided the selection of 

optimal classification thresholds, with an emphasis on minimizing false positives while 

maximizing AUPRCs. The LRM had an optimal threshold of 0.74 (F1 score = 0.690) 

(Supplemental Figure 11A). The RFM had an optimal threshold of 0.39 (F1 score = 0.783) 

(Supplemental Figure 11B), with the higher F1 score compared with the LRM indicating 

superior performance in correctly predicting the pathogenicity of test dataset variants.  

 

We compared the performance of the LRM and RFM pathogenicity scores against the scores of 

other in silico prediction tools by plotting precision-recall curves and comparing the calculated 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2024. ; https://doi.org/10.1101/2024.03.11.24304106doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.11.24304106
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

AUPRCs (Supplemental Figure 12A). The LRM and RFM outperformed the first-generation 

tools31 SIFT and PolyPhen-2, which had AUPRCs of 0.821 and 0.827, respectively 

(Supplemental Figure 12B). Second- (REVEL, CADD, VARITY, VEST4) and third-generation 

(AlphaMissense, PrimateAI, MutPred2)31 tools demonstrated a stronger performance in 

classifying the test dataset variants, with AUPRCs ranging from 0.881 to 0.963 (Supplemental 

Figure 12CD). REVEL, VARITY, and AlphaMissense were the top-performing tools, 

respectively. Given the smaller size of the test dataset compared with the training dataset, cross-

validation techniques were also used to confirm the LRM and RFM’s reliability in estimating 

performance (Figure 4B, Supplemental Figure 10B). The RFM consistently outperformed the 

LRM in terms of AUPRC, exhibiting a higher value than was observed with the test dataset 

alone (0.940 versus 0.738 AUC). Although the LRM had a higher AUROC (0.928) compared to 

the RFM (0.739), AUROC reflects overall discriminative ability across all thresholds, whereas 

AUPRC and F1 scores are more relevant for assessing performance in detecting positive cases. 

We used the RFM and the optimal threshold value of 0.39 to predict pathogenicity of the 65 

variants with unknown classification identified through our collaborations with MSSNG, GEL, 

C4R, and GeneDx. Of these 65 variants, the RFM predicted 92% to be LP/P and 8% as LB/B. 

The average probability score of pathogenicity for the predicted LP/P variants was 0.93 and 80% 

were in probands.  

 

DISCUSSION 

The increasing use of GWS in clinical practice has underscored the need for novel methods to 

interpret germline missense variation.2,5,32 We explored the generalizability of an understudied 

line of evidence that considers overlap with (presumed driver) cancer mutations. Using 2,447 
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cancer missense mutations from the Cancer Hotspots database, we identified significant 

enrichment for LP/P germline variants causing rare Mendelian disorders, regardless of cancer 

being or not being a major phenotype of the disorder. The results from our models support and 

extend these findings, by successfully predicting the pathogenicity of germline missense variants 

using supervised learning models trained with CH mutation data. Our findings indicate that 

statistically significant recurrent cancer mutation data can be leveraged to improve the 

interpretation of germline missense variation potentially causing rare Mendelian disorders. 

 

Walsh and colleagues first proposed modifying the existing PM1 pathogenic evidence criterion 

to apply to germline variants in cancer predisposition genes that overlap with cancer mutations 

from Cancer Hotspots,13 provided the variant was not already in a germline hotspot.4 The results 

of our study support and extend this concept. A majority (62%) of genes considered in our study 

are not known to be associated with hereditary/germline cancer predisposition in a Mendelian 

disease context. We emphasize that this line of evidence is not codified in existing interpretation 

frameworks, including ACMG, ClinGen, and the Association for Clinical Genomic Science 

(ACGS), and is distinct from other criteria specific to missense variants, such as germline 

mutational hotspots (PM1) and instances where a previous pathogenic variant has been 

previously observed (PS1/PM5). This evidence may be most relevant in scenarios involving the 

interpretation of (rare) missense VUS. Cancer mutations may be embryonic lethal as germline 

variants;11 this biological constraint will limit the extent of overlap we observe between cancer 

mutations and germline variants.  
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The stand-alone probability scores of pathogenicity from our supervised learning models were 

not superior to other widely used in silico prediction tools in classifying germline missense 

variants. This was an expected result, since existing in silico tools were likely used a priori to 

inform classifications for these variants. Regardless, this comparison underscores our proposal 

that the LRM and RFM models would be used in addition to, rather than instead of, existing in 

silico tools for variant classification. Since our models are the first to be trained on somatic 

cancer mutation data, they demonstrate proof-of-concept, leverage orthogonal lines of evidence, 

and warrant consideration for use in aggregator tools. The supervised learning models in our 

study can be implemented using the training dataset, and subsequently applied to variants of 

interest prospectively to obtain probability scores of pathogenicity. While the LRM is restricted 

to the 66 genes constituting our training dataset, the RFM is not limited to these genes. Through 

our collaborations with MSSNG, C4R, GEL, and GeneDx, we identified an additional 65 

individuals with suspected rare diseases and a germline variant that overlapped with a Cancer 

Hotspot mutation. Many of these cases remain “unsolved”, and the inclusion of this criterion 

may offer valuable insights for variant interpretation. 

 

This study focused on missense variants because of the existence of a cancer driver missense 

mutation database and because of the large number of missense variants in ClinVar. We explored 

the potential application of using cancer missense mutations to inform germline variant 

interpretation to non-coding variants by leveraging mutation data from COSMIC and other 

putative cancer driver databases (Supplemental Methods). Results were inconclusive due to the 

limited availability of non-coding germline variants clinically classified in public databases. 
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This study has several additional limitations. It primarily focused on a subset of cancer mutations 

from Cancer Hotspots, last updated in 2017. However, only a small fraction of the additional 

highly recurrent missense mutations present in COSMIC in 2024 overlapped with germline 

variants in ClinVar, suggesting that Cancer Hotspots remains a near comprehensive list of 

statistically recurring cancer (driver) mutations. We did not assess the oncogenicity of each 

cancer mutation in Cancer Hotspots.33 There are 41 tumour types represented in Cancer 

Hotspots, with the majority being solid tumours in adults.23 The inclusion of more tumour tissue 

types over time will likely result in the identification of additional driver mutations. This study 

used ClinVar as the set of germline missense variants, and while filtering steps were applied, we 

acknowledge that the quality of ClinVar entries is not equal. Additionally, it is possible that 

overlap with cancer mutations contributed to the clinical interpretation of some germline variants 

in ClinVar, despite such evidence not yet being codified in existing classification 

guidelines.4,34,35 Of note, however, is that the term “Cancer Hotspots database” was only 

mentioned 3 times in the context of missense SNVs in the ClinVar database of 3,614,935 

submitted records (search date: December 2023). In the training dataset, there was variability in 

the LRM’s independent “gene” variable, leading to inconsistent performance across genes. 

Future work will focus on conducting gene-level model evaluations once larger datasets become 

available, providing more statistical power to assess gene-specific effects.36 None of the in silico 

prediction tools used in this study address variant pathomechanism (i.e., gain of function, loss of 

function). We recognize the potential relevance of this consideration, particularly for germline 

missense variants with a gain of function mechanism, where in silico tools like REVEL 

demonstrate worse performance.37 The absence of this consideration may limit the applicability 

of the findings in cases where different disease mechanisms are at play between cancer mutations 
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and germline variants (e.g., variants in MYD88, where germline variants can lead to 

immunodeficiency through loss of function38,39, but acts as a proto-oncogene in cancer40). Even 

when the germline phenotype is cancer-related there may be discrepancies in mechanism (e.g., 

TERT loss of function in the germline versus increased expression somatically in certain 

tumours).41 Further increasing the size of the test dataset was not possible; to compensate, cross-

validation was used to evaluate model performance. Last, while we identified additional 

germline variants that overlap with CH mutations in private genomic datasets, we were not able 

to formally reclassify variants and return new information back to those individuals. However, 

the identified variants in the GEL Research Environment were shared with GEL for further 

review.  

 

Our results demonstrate a modeling approach that uses overlapping cancer mutations to facilitate 

the interpretation of pathogenic germline missense variants. The presence of a variant in Cancer 

Hotspots suggests that additional published evidence from somatic cancer studies exists that may 

be relevant to understanding the impact of the same variant in a germline context. There are clear 

definitions of somatic mutational hotspots33, that can be applied to future published cancer 

datasets, enabling better applications of our tool. As we navigate the complexities of variant 

interpretation, leveraging the growing wealth of genomic data in both cancer and germline 

contexts will contribute to refining our understanding and improving diagnostic capabilities in 

the field of rare diseases.  

 

METHODS 

Extracting cancer mutation data from Cancer Hotspots 
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We obtained cancer mutation data for 3,122 single nucleotide variants (SNVs) from the Cancer 

Hotspots22,23 database (www.cancerhotspots.org), representing a set of true cancer driver 

mutations. This database consists of mutational hotspots identified in large scale cancer 

genomics data, defined as single amino acid positions in protein-coding genes that are mutated 

more frequently than would be expected in the absence of selection.13,23 This method assigns a 

statistical significance to the recurrence of mutation at a given amino acid and is corrected for 

background mutational rate of the position, gene, and sample both within and across cancer types 

in the affected cohort.22,23 Somatic mutational hotspots are therefore not common germline 

benign variants in a population.13,22,23 A Python script was developed to extract genomic 

coordinates in GRCh37, reference and alternate alleles, and tumour sample counts for each 

mutation. Only missense mutations (n=2,576) were used for our analyses. We annotated the 

cancer missense mutations using ANNOVAR and a custom pipeline2 developed by The Centre 

for Applied Genomics (Toronto, Canada). ClinVar annotations (date accessed: Jan 2022) were 

used to identify clinical classifications of those germline variants that are also cancer mutations 

in Cancer Hotspots. We conservatively excluded any mutations with corresponding germline 

variants with “conflicting interpretations of pathogenicity” (CIP) or considered a “risk factor” for 

disease (n = 129). The remaining 2,447 recurrent missense mutations (n=216 total genes) from 

Cancer Hotspots are hereafter referred to as the “CH mutations”.  

 

Comparing cancer mutations with germline variants  

Separately, we extracted from ClinVar (date accessed: Jan 2022) all missense variants in the 216 

genes from the list of CH mutations (n = 51,346 SNVs) (Supplemental Figure 1). We selected 

missense variants with a “germline” allele origin, i.e., excluding those labeled as “somatic” or 
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“unknown”. These variants were then grouped into three categories based on their ACMG 

classification in ClinVar: “likely pathogenic” or “pathogenic” (LP/P) (n = 3,149), “likely benign” 

or “benign” (LB/B) (n = 2,755), and “variant of uncertain significance” (VUS) (n = 45,442). We 

annotated these variants using ANNOVAR to include REVEL42, phyloP43 (20way mammalian 

and 7way vertebrate), and phastCons44 (20way mammalian and 7way vertebrate) scores. For 

each variant, we noted the presence or absence of an overlap with a CH mutation. These variants 

are hereafter to as the “ClinVar dataset” and were used to calculate the odds ratios of a germline 

variant that overlaps with a CH mutation having an LP/P classification. This data was also used 

to apply mathematical framework described by Tavtigian et al. to define ACMG/AMP evidence 

strength for the use of cancer mutational hotspot data for germline variant interpretation.27  

 

Identifying overlap with cancer mutations in other genomic databases 

We queried the CH mutations in four controlled-access GWS databases, in collaboration with 

MSSNG45, Genomics England46 (GEL), Care4Rare47 (C4R), and GeneDx9,48, to identify 

matching germline missense variants (at the nucleotide level).  

 

The MSSNG database represents a cohort of autistic individuals / individuals with autism and 

their family members. All germline missense variants in this database were extracted and 

converted to GRCh37 using LiftOver. Germline variants in MSSNG, and CH mutations, were 

imported to R version 4.1.0 (R Foundation for Statistical Computing) to identify overlapping 

variants by genomic coordinate, reference allele, and alternate allele. The GEL, C4R, and 

GeneDx databases represent phenotypically heterogeneous cohorts of individuals with suspected 

rare genetic diseases and their family members. In the GEL Research Environment, a bash shell 
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script was used to extract variants  from variant call format (VCF) files by genomic coordinates. 

The CH mutations were queried against germline variants in the VCF files of all participants in 

the Rare Disease program of GEL using this script. The participant IDs for each CH mutation 

that overlapped with a germline variant in GEL were used to retrieve phenotype data along with 

their classifications using the Labkey platform. In collaboration with C4R and GeneDx, the CH 

mutations were sent to the respective study teams and queried within their databases. Results of 

overlapping variants and participant IDs were returned. Variant classification and phenotype data 

from C4R was explored by searching the Genomics4RareDisease (G4RD) database with 

participant IDs.49  

 

Identifying cancer mutations from other cancer databases and comparing with germline 

variants  

We downloaded approximately 1.1 million coding mutations from the COSMIC database50 listed 

in the Cancer Gene Census25 and filtered for confirmed somatic missense mutations (n = 231, 

477). To align with the stringent criteria used in the Cancer Hotspots database, we further filtered 

based on the presence of mutations in COSMIC across a defined number of tumor samples. This 

step ensured the retention of only those mutations observed across a substantial number of 

tumors, indicative of potential driver mutations as defined in Cancer Hotspots. For this filtering 

process, we used tumor sample counts of CH mutations that overlap with germline variants in 

ClinVar (Supplemental Methods). Plotting these values by ClinVar classification groups (LP/P 

and LB/B/VUS), we generated receiver operating characteristic (ROC) curves to determine the 

optimal tumor sample count cut-off for distinguishing between LP/P and LB/B/VUS variants. 

The identified optimal count was then used to filter the COSMIC mutations. We then conducted 
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further filtered to identify “new” mutations in COSMIC, i.e., those absent in Cancer Hotspots, 

and compared these mutations with germline variants in ClinVar, to identify additional 

overlapping variants. 

 

Training dataset used for supervised learning models 

We developed supervised learning models to predict pathogenicity of unclassified germline 

variants, based on a set of variants with known classifications in ClinVar. To construct the 

training variant set, we used the ClinVar dataset including n = 51,346 SNVs in the 216 genes 

from the list of CH mutations. Different nucleotide variants resulting in the same amino acid 

change were grouped together. VUS with REVEL scores >0.29 were excluded from the training 

dataset. This cut-off is the upper-most bound for BP4 evidence level for REVEL scores.28 The 

remaining VUS were included and treated as LB/B variants (Figure 2; see below regarding 

weighting), to address class imbalance arising from fewer LB/B versus LP/P variants in the 

dataset. Variants were then restricted to a set of 66 genes, determined by the updated list of 428 

CH mutations overlapping with germline variants (Figure 2). The resulting training dataset 

comprises 13,881 variants.  

 

Developing supervised learning models 

Two types of supervised learning models were fit to the training dataset in R: a logistic 

regression model (LRM) and a random forest model (RFM). Pathogenicity status (LB/B, LP/P) 

was used as the dependent variable and the following were used as independent variables: 1) 

overlap with a cancer missense mutation from Cancer Hotspots (2 categories: present = 1, absent 

= 0), 2) the protein-coding gene associated with a variant (with 66 categories representing each 
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gene), 3) the number of tumour samples with a specific amino acid change at a residue position 

from Cancer Hotspots, 4) the number of tumour samples with a mutated residue from Cancer 

Hotspots, 5 & 6) the phyloP conservation scores43 (20way mammalian and 7way vertebrate), and 

7 & 8) the phastCons conservation scores44 (20way mammalian and 7way vertebrate).  

 

The 'stats' R package was used to fit the LRM. REVEL scores for the included VUS (all <= 0.29) 

were used as prior weights (weight = 1 - REVEL score) compared to true LB/B variants (weight 

= 1). The predicted probabilities and standard performance metrics including Akaike Information 

Criterion (AIC) and McFadden's pseudo-R2 were used to assess the fit of the model. The same 

training dataset was used for the RFM using the 'randomForest' package in R. However, the gene 

variable was excluded due to a categorical variable limit of 32 levels. 350 classification trees 

were generated, and four independent variables were randomly selected as candidates for each 

split in the classification trees.  

 

Evaluating supervised learning models with test dataset  

Both LRM and RFM performance was evaluated using a test dataset of 332 germline missense 

variants that were absent from the training dataset. These variants were obtained from new 

ClinVar submissions from Feb 2022 to Aug 2022 (n = 189), the Leiden Open Variation Database 

(LOVD)51 (n = 35), G4RD database54 (n = 1), GEL database52 (n = 93), SickKids Cancer 

Sequencing (KiCS) dataset53 (n = 2), and from manual review of literature pertaining to the 

genes of interest that was published from 2021-2022 (n = 19). The test dataset variants impact 

genes that are represented in the training dataset. We used the predicted classifications of each 

model across all possible classification thresholds to plot precision-recall curves and calculate 
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the area under the curve (AUPRC). The highest performing model and optimal threshold were 

used to assess the pathogenicity of an additional set of variants with unknown classification 

identified in other genomic databases through collaborations. The variants in the test dataset 

were annotated using scores from other in silico prediction tools, including SIFT54, PolyPhen-

255, REVEL42, CADD56, VARITY57, AlphaMissense29, PrimateAI10, VEST458, and MutPred259. 

Some tools were selected because they are commonly used for variant interpretation in the 

diagnostic laboratory, are referenced in ACMG/AMP guidelines,4 and/or are incorporated into 

annotation tools like ANNOVAR. The remaining tools (e.g., AlphaMissense) were selected 

because of their strong potential to be incorporated into clinical interpretation workflows in the 

future. We also plotted precision-recall curves using these scores to calculate the AUPRCs and 

compared them with the LRM and RFM. 

 

Evaluating supervised learning models with cross-validation  

Cross-validation was conducted using the 'caret' package in R, with the 'createFolds' function 

employed to generate the folds for model training and evaluation. The training dataset was 

divided into k folds, where the model was trained on k-1 fold and tested on the remaining one. 

The training dataset was divided into 8 and 10 folds for the LRM and RFM, respectively. The F1 

score and AUPRC, using a threshold of 0.5, was calculated for each fold, and averaged over the 

k folds to obtain an estimate of each model's generalization ability.  

 

Statistical methods 

Standard descriptive statistics, odds ratios, and Mann-Whitney U tests were performed using R 

and GraphPad Prism 9 with two-tailed statistical significance set at p < 0.05. 
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DISPLAY ITEMS 

 
Figure 1. Germline variant and somatic cancer mutation overlap. (A) The presence of either 
gain-of-function or loss-of-function mutations in cancer driver genes can lead to cancer (left) or 
rare Mendelian disorders (right) in different contexts. Most cancers result from somatic 
mutations that accumulate in a tissue-specific manner, whereas germline mutations are present in 
all cells of the body and cause a type of rare Mendelian disorder (e.g., neurodevelopmental 
disorder). (B) The HRASQ61K mutation is an example of a known cancer mutation that drives 
different types of cancers that also causes Costello syndrome, a developmental disorder, when 
observed as a germline variant. (C) Workflow for extracting cancer mutations from Cancer 
Hotspots. Recurrent cancer mutations were filtered to 2,447 missense mutations. See main text 
for details. REVEL scores thresholds correspond to supporting evidence for pathogenicity (PP3) 
and for benign-ness (BP4). Created with Lucidchart.  
 
Figure 2. Training dataset for supervised learning models. The training dataset is comprised 
of 13,881 germline missense variants from ClinVar (green), including 691 overlapping with 
cancer mutations (blue). Different single nucleotide changes causing the same amino acid change 
were grouped together accounting for the difference in the overlap shown in Figure 1. Variants 
of uncertain significance (VUS) with REVEL scores ≤ 0.290 were included in the dataset and 
treated as likely benign/benign (LB/B) variants (see text for justification). LP/P, Likely 
pathogenic/Pathogenic. Created with BioRender.  
 
Figure 3. Fit of training dataset using supervised learning models. (A) Plot of predicted 
probabilities of pathogenicity for all likely benign/benign/variant of uncertain significance 
(LB/B/VUS) and likely pathogenic/pathogenic (LP/P) in the training dataset assigned by the 
logistic regression model. Mann-Whitney U test: U = 1655893, nLB/B/VUS = 11,644, nLP/P = 2,095. 
(B) Comparison of predicted probabilities for germline variants with absence or presence of 
overlap with cancer mutations. Mann-Whitney U test: U = 32029, nAbsent = 13,316, nPresent = 423. 
(C) Plot of probability scores of pathogenicity for LB/B/VUS and LP/P in the training dataset 
assigned by the random forest model. Mann-Whitney U test: U = 6109589, nLB/B/VUS = 11,644, 
nLP/P = 2,095.  (D) Comparison of probability scores for germline variants with absence or 
presence of overlap with cancer mutations. Mann-Whitney U test: U =12913, nAbsent = 13,316, 
nPresent = 423. Created with GraphPad Prism.  
 
Figure 4. Evaluation of supervised learning models. Precision-recall curve comparing the 
performance of the logistic regression model (blue) and the random forest model (purple) using 
the (A) test dataset and (B) cross-validation set. The models' performance was evaluated using k-
fold cross-validation, with k=8 for logistic regression and k=10 for random forest. AUC, area 
under the curve.  
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