| 1  | Pandemic ST131 Escherichia coli presenting the UPEC/EAEC and ExPEC/EAEC                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | hybrid pathotypes recovered from extraintestinal infections in a clinical setting of the                                                    |
| 3  | Brazilian Amazon region                                                                                                                     |
| 4  |                                                                                                                                             |
| 5  | Nathália M. S. Bighi <sup>1</sup> , Érica L. Fonseca <sup>1,*</sup> , Fernanda S. Freitas <sup>1</sup> , Sérgio M. Morgado <sup>1</sup> and |
| 6  | Ana Carolina P. Vicente <sup>1</sup>                                                                                                        |
| 7  |                                                                                                                                             |
| 8  | <sup>1</sup> Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, FIOCRUZ,                                          |
| 9  | Rio de Janeiro, Brazil.                                                                                                                     |
| 10 |                                                                                                                                             |
| 11 | Correspondence: Érica L. Fonseca, ericafon@ioc.fiocruz.br                                                                                   |
| 12 |                                                                                                                                             |
| 13 |                                                                                                                                             |
| 14 |                                                                                                                                             |
| 15 |                                                                                                                                             |
| 16 |                                                                                                                                             |
| 17 |                                                                                                                                             |
| 18 |                                                                                                                                             |
| 19 |                                                                                                                                             |
| 20 |                                                                                                                                             |
| 21 |                                                                                                                                             |
| 22 |                                                                                                                                             |
| 23 |                                                                                                                                             |
| 24 |                                                                                                                                             |
| 25 |                                                                                                                                             |

#### 26 Abstract

27 *Escherichia coli* is part of the commensal microbiota of human's and animal's gut. 28 However, they may become pathogenic due to the acquisition of virulence factors that 29 provide the ability to cause intestinal or extraintestinal infections, which makes E. coli the 30 main cause of diarrheagenic diseases and urinary tract infections (UTIs) worldwide, 31 respectively. Some strains, known as hybrids, may harbour a mix of virulence determinants 32 of both diarrheagenic (DEC) and extraintestinal E. coli (ExPEC) pathotypes. Reports of 33 hybrid *E. coli* in Brazil are rare, and the lineages associated with such pathotypes were poorly 34 explored. This study aimed to characterize E. coli strains recovered from extraintestinal 35 infections in a clinical setting of the Brazilian Amazon Region by means of lineage 36 determination, antibiotic resistance profile, and investigation of DEC and ExPEC virulence 37 markers. Fifteen ExPEC strains were recovered from distinct extraintestinal sites from 38 inpatients of the General Hospital of Roraima (GHR), placed in the Brazilian Amazon region. 39 Antibiotic susceptibility test revealed that all strains were multidrug-resistant and most of 40 them, including those recovered from urine, were resistant to fluoroquinolones, the main 41 therapeutic option for treating UTIs, probably due to the presence of Ser83Leu and 42 Asp87Asn substitutions in GyrA. The MLST analysis revealed the polyclonal nature of these 43 ExPEC strains since 11 STs were determined, including local and pandemic lineages, such as 44 ST69 and ST131. Among the 15 isolates, 12 were classified as hybrids, due to the presence of 45 the *aggR* virulence marker of the Enteroaggregative E. coli (EAEC) pathotype together with 46 at least one ExPEC (iutA, KPSMTII, sfaDE, papC, afaBC, iucD) or Uropathogenic E. coli 47 (UPEC) (vat, fuyA, chuA and yfcV) virulence determinants. These UPEC/EAEC (n=10) and 48 ExPEC/EAEC (n=2) hybrid strains were found among distinct lineages, including new STs, 49 and phylogroups (ST131/B2; ST1196/AxB1; ST9403/A; ST12394/A; NEW1-CC14/B2; 50 NEW2-CC155/B1; NEW3-CC155/B1; NEW4-CC131/B2) and, for the first time, a hybrid

| 51 | phenotype was found in the pandemic ST131 lineage in Brazil. Therefore, this study provides  |
|----|----------------------------------------------------------------------------------------------|
| 52 | new information on the epidemiological scenario of hybrid E. coli strains, contributing to a |
| 53 | better understanding of the occurrence and pathogenic potential of these organisms.          |
| 54 |                                                                                              |
| 55 | Keywords: HyPEC; ExPEC; ST69; ST131; virulence marker; pandemic lineage                      |
| 56 |                                                                                              |
|    |                                                                                              |

### 57 INTRODUCTION

58 Escherichia coli inhabits the intestinal tract of humans and other animals as an 59 important member of their microbiota [1]. However, the acquisition by horizontal gene 60 transfer of virulence determinants by certain E. coli clones has enabled them to cause not 61 only intestinal but also extraintestinal infections in different hosts. In this way, based on the 62 body site of infection, the host, and the presence of specific virulence markers, these bacteria 63 can be classified into diarrheagenic (DEC), mainly featured by the presence of specific 64 virulence factors directly related to diarrhoea, and extraintestinal pathogenic (ExPEC) E. coli, 65 defined primarily by their site of isolation [2]. The DEC group encompasses several 66 pathotypes, including enterotoxigenic (ETEC), enteropathogenic (EPEC), enteroinvasive 67 (EIEC), enteroaggregative (EAEC), and Shiga toxin-producing (STEC) E. coli. EPEC and 68 EAEC are considered the major pathotypes of diarrheagenic E. coli causing disease 69 worldwide, including in Brazil. These pathotypes carry genetic determinants involved with 70 disease development and can be used as molecular markers of the pathotype. 71 The ExPEC group includes the pathotypes neonatal meningitis-associated (NMEC), 72 human sepsis-associated (SEPEC), avian pathogenic (APEC), and uropathogenic (UPEC) E.

*coli*, which is the most prevalent pathotype among extraintestinal infections worldwide.

74 UPEC is particularly associated with urinary tract infections (UTIs) and is a leading cause of

| 75 | both community-acquired and healthcare-associated UTIs. Currently, the most frequently                   |
|----|----------------------------------------------------------------------------------------------------------|
| 76 | reported high-risk ExPEC lineages belonging to the MLST sequence type ST131, ST69,                       |
| 77 | ST10, ST405, ST38, ST95, ST648, ST73 and ST1193, which are known for their high                          |
| 78 | prevalence in extraintestinal infections worldwide and for their significant role in global              |
| 79 | spread of multidrug resistance [3].                                                                      |
|    |                                                                                                          |
| 80 | Studies <i>in vivo</i> revealed that the presence of at least two of five virulence genes ( <i>pap</i> , |
| 81 | afa/dra, sfa, kpsMTII, and iut/iuc) could be enough to cause extraintestinal infection in                |
| 82 | immunocompetent individuals [4], and that E. coli co-harbouring of chuA, fyuA, vat, and yfcV             |
| 83 | virulence genes were able to cause UTIs [5]. Additionally, due to horizontal gene transfer               |
| 84 | events, organisms may emerge as hybrid strains capable of causing intestinal and                         |
| 85 | extraintestinal diseases due to the presence of virulence factors of both ExPEC and DEC                  |
| 86 | pathotypes [6].                                                                                          |
|    |                                                                                                          |
| 87 | Strains harbouring a blend of virulence markers of different pathotypes have been                        |
| 88 | described worldwide in both high-risk and local lineages, however, most of them correspond               |

to hetero-pathogenic strains (characterized by a combination of virulence markers from DEC pathotypes) [7-9]. A recent study in South Africa demonstrated the high prevalence of several different DEC hybrid pathotypes, including strains sharing three virulence markers of three different DEC pathotypes, which were recovered from inanimate surfaces and presented a higher resistance profile compared to the classic pathotypes identified [8]. Another report demonstrated the occurrence of different DEC hybrid strains recovered from healthy individuals in Mexico [9].

In Brazil, few studies have characterized and reported the occurrence of hybrid
strains in extraintestinal infection cases harbouring the combination of DEC and ExPEC or
UPEC virulence markers, such as UPEC/EAEC, UPEC/aEPEC, ExPEC/STEC,

| 99  | ExPEC/aEPEC [10-18]. However, there is a lack of association concerning the STs of such         |
|-----|-------------------------------------------------------------------------------------------------|
| 100 | hybrid strains circulating in the country. Moreover, most of these reports on hybrid strains    |
| 101 | were restricted to São Paulo, a cosmopolitan city of the Southeast Brazilian region, and until  |
| 102 | now, all studies reporting E. coli infections in the Amazon Region were associated only with    |
| 103 | diarrheagenic infections [19-22]. Therefore, further studies are required to investigate the    |
| 104 | distribution and potential impact of these strains on the clinical outcomes of affected         |
| 105 | individuals. For these reasons, the objective of this study was to characterize E. coli strains |
| 106 | recovered from extraintestinal infections in the Brazilian Amazon Region by means of            |
| 107 | lineage determination (MLST), antibiotic resistance profile, and investigation of DEC and       |
| 108 | ExPEC virulence markers.                                                                        |

# 109 METHODS

### 110 Clinical data, bacterial strains and antimicrobial susceptibility test

| 111 | From December 2016 to February, 2018, 15 E. coli isolates were recovered from                 |
|-----|-----------------------------------------------------------------------------------------------|
| 112 | extraintestinal infection cases at the General Hospital of Roraima (GHR), placed in Boa       |
| 113 | Vista. The strains were isolated from blood (n=2), urine (n=7), catheter tip (n=1), vagina    |
| 114 | secretion (n=1), leg secretion (n=1), soft tissue (n=1), and operative wound secretion (n=2). |
| 115 | Species identification was performed with the automated VITEK2, and confirmed by              |
| 116 | sequencing the 16S rRNA and the MLST genes. These strains are part of the Bacterial           |
| 117 | Culture Collection of the Laboratory of Molecular Genetics of Microrganisms, FIOCRUZ.         |

#### 118 Antimicrobial Susceptibility testing

| 119 | The antibiotic susceptibility profile was determined by disc-diffusion method                |
|-----|----------------------------------------------------------------------------------------------|
| 120 | according to clinical and laboratory standards institute (CLSI) guidelines [23] For the      |
| 121 | following antibiotics: gentamicin, amikacin, kanamycin, tobramycin, neomycin,                |
| 122 | streptomycin, imipenem, meropenem, ertapenem, cephalothin, cefoxitin, cefuroxime,            |
| 123 | ceftazidime, ceftriaxone, cefotaxime, cefepime, azithromycin, clarithromycin, erythromycin,  |
| 124 | ampicillin, ampicillin/sulbactam, amoxicillin, amoxicillin/clavulanic acid, carbenicillin,   |
| 125 | penicillin, aztreonam, piperacillin/tazobactam, ticarcillin/clavulanic acid, nalidixic acid, |
| 126 | ciprofloxacin, norfloxacin, levofloxacin, ofloxacin, colistin sulphate, sulphonamide,        |
| 127 | trimethoprim, sulfamethoxazole/trimethoprim, chloramphenicol, fosfomycin, nitrofurantoin,    |
| 128 | tetracycline and minocycline.                                                                |
|     |                                                                                              |

### 129 Genotyping by Multilocus sequence typing (MLST)

| 130 | The genetic relationship among the ExPEC strains was established by MLST based                |
|-----|-----------------------------------------------------------------------------------------------|
| 131 | on the Achtman MLST scheme (adk, fumC, gyrB, icd, mdh, purA and recA)                         |
| 132 | (http://mlst.warwick.ac.uk). Clonal complexes (CCs) were considered when sequence types       |
| 133 | (STs) shared five or more identical alleles taking into account the seven genes considered in |
| 134 | the MLST scheme.                                                                              |
|     |                                                                                               |

## 135 Detection of resistance genes by polymerase chain reaction (PCR) and sequencing

- 136 The isolates were screened by PCR and sequencing for the presence of the genes
- 137 frequently associated with  $\beta$ -lactam resistance in *E. coli* such as
- 138  $bla_{SHV}$ ,  $bla_{GES}$ ,  $bla_{TEM}$ ,  $bla_{CTX-M}$  (class A  $\beta$ -lactamases). The plasmid-mediated
- 139 fluoroquinolone (FQ) resistance qnr genes and the presence of mutations in the quinolone
- 140 resistance-determining region (QRDR) of *gyrA* was also investigated (Table 1).

## 141 Molecular Characterization of Hybrid Strains

| 142        | The presence of DEC and ExPEC virulence determinants was screened by PCR                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------|
| 143        | (Table 1). Those strains presenting at least one of the DEC pathotypes virulence markers                                    |
| 144        | were considered hybrid strains [13]. The DEC virulence factors screened were <i>eae</i> and $bfpB$                          |
| 145        | genes, associated with epithelial adhesion in EPEC; the $aggR$ gene, a universal regulator of                               |
| 146        | EAEC virulence involved with the aggregative adhesion fimbriae (AAF) production; the $stx1$                                 |
| 147        | and stx2 genes, related to the Shiga toxins production in STEC; the estH, estP and elT,                                     |
| 148        | involved with the production of heat-stable and heat-labile toxins in ETEC; the <i>invE</i> gene that                       |
| 149        | encodes a regulatory protein that controls the transcriptional of invasion genes in EIEC                                    |
| 150        | pathotype; the vat, fuyA, chuA and yfcV, all markers of UPEC; and ExPEC markers iutA,                                       |
| 151        | KPSMTII, sfaDE, papC, afaBC, iucD.                                                                                          |
| 152<br>153 | RESULTS AND DISCUSSION                                                                                                      |
| 154        | The phenotypic analysis revealed that all <i>E. coli</i> ExPEC strains (n=15) were classified as                            |
| 155        | multidrug-resistant (MDR) according to resistance classification criteria [24] (Table 1).                                   |
| 156        | Among the $\beta$ -lactam antibiotics, all isolates were resistant to at least one of these antibiotics,                    |
| 157        | and such phenotype could be explained by the presence of the $bla_{\text{TEM}}$ gene in 14/15 isolates.                     |
| 158        | In fact, <i>bla</i> <sub>TEM</sub> is frequently associated with plasmids in <i>E. coli</i> , and it was the most prevalent |
| 159        | gene among ExPEC recovered from UTI cases in São Paulo, Brazil [25]. However, although                                      |
| 160        | the <i>bla</i> <sub>CTX-M</sub> has been frequently associated with ExPEC in Brazil and worldwide [26], this                |
| 161        | gene was not found in our sample, as well as the other screened $\beta$ -lactamase genes $bla_{GES}$ and                    |
| 162        | $bla_{\rm SHV}$ .                                                                                                           |
| 163        | Moreover, a high prevalence of fluoroquinolone resistance was observed (73%)                                                |
| 164        | among the ExPEC strains. Although none of them carried any qnr allele, all FQ-resistant                                     |
| 165        | isolates presented mutations in the Quinolone Resistance-Determining Region (QRDR) of                                       |
| 166        | gyrA that led to the amino acid substitution Ser83Leu and Asp87Asn, known to be involved                                    |

with FQ resistance emergence [27]. Interestingly, these substitutions were recently reported
as the determinants of FQ resistance in ExPEC strains recovered from UTI cases in São Paulo
[12].

170 The MLST analysis revealed a great diversity, in which 11 STs were assigned to the 171 15 ExPEC strains: ST69, ST131, ST8886, ST1196, ST9403, ST3180, ST12394, and four 172 different new sequence types belonging to CC155 (n=2), CC14 (n=1) and CC131 (n=1), 173 demonstrating the polyclonal nature of these hybrid strains. The most prevalent lineage 174 among our sample was ST131, a pandemic clonal complex of the B2 phylogroup often 175 associated with an arsenal of resistance and virulence genes, contributing to the success of 176 this clone in spreading through clinical settings worldwide. The ST69 is another pandemic 177 lineage belonging to the phylogroup D usually associated with clinics and food/environment 178 contamination in several countries [27]. As found here, Lara and Colleagues have 179 demonstrated the occurrence of ExPEC ST69 presenting the hybrid pathotype UPEC/EAEC 180 in Brazil [10]. However, in spite of ST131 prevalence in Brazil, this is the first report of this 181 lineage presenting a hybrid pathotype (UPEC/EAEC) in that country (Table 2). 182 Considering the *E. coli* virulome, 9/19 virulence factors characterizing DEC and 183 ExPEC pathotypes were found in the studied samples in different frequencies and 184 combinations (Table 2). The presence of at least one extraintestinal virulence marker was 185 observed in all isolates, corroborating the nature of the infection sites from which they were 186 recovered. The *iucD* gene, which is part of the operon involved with aerobactin siderophore 187 synthesis, was the most prevalent ExPEC marker among the isolates (12/15). This gene is 188 associated with iron uptake systems, facilitating its survival and pathogenicity and playing a 189 crucial role in the bacteria's ability to cause infections and evade the host's immune response. 190 Among the 15 ExPEC isolates analysed, 12 (80%) had at least one marker used to define ExPEC and DEC pathotypes, being characterized as hybrid strains. The three strains 191

classified as non-hybrids belonged to the pandemic lineages ST131/phylogroup B2 (EC44)
and ST69/phylogroup D (EC39) and to the local ST8886 (EC40). Only 13 entries in
Enterobase (<u>https://enterobase.warwick.ac.uk/species/index/ecoli</u>) have been found for
ST8886, and in most cases, they corresponded to strains recovered from environmental sites
in USA in 2015 and only one recovered from an animal source in Canada in 2022. Thus, this
study reported the first clinical case belonging to this lineage.

198 Concerning the hybrid strains, it was verified the presence of UPEC/EAEC (n=10) 199 and ExPEC/EAEC (n=2) (when UPEC markers were absent, or the strain had been recovered 200 from a different body site other than urine). The aggR gene, considered a diarrheagenic factor 201 that defines the EAEC pathotype, was found in all hybrid isolates, indicating that they would 202 have the ability to cause intestinal disorders despite presenting in extraintestinal infections. 203 EAEC is recognized as an important cause of diarrhoea worldwide and can be considered the 204 most common DEC pathotype in *E. coli* in Brazil. However, *E. coli* strains with a hybrid 205 enteroaggregative/uropathogenic (UPEC/EAEC) genotype have sporadically emerged as a 206 cause of extraintestinal infections in Brazil [10-18]. Here we demonstrated the high 207 prevalence of such hybrid pathotypes in distinct lineages causing infections in the Amazon 208 region.

Most of UPEC/EAEC hybrid strains belonged to the pandemic and widespread ST131 (one of them was assigned to a new ST of the CC131) (Table 2). They were recovered from distinct extraintestinal sites and presented a heterogeneous profile of virulence markers. The unique non-hybrid ST131 strain was the EC44, which was a UPEC recovered from UTI that presented both UPEC and ExPEC virulence markers. On the other hand, local STs (ST9403, ST3180 and ST12394) belonging to different phylogroups (A, B1 and B2) and recovered from distinct body sites, including blood, were also classified as UPEC/EAEC hybrid strains.

| 216 | Interestingly, in spite of the diversity of infection sites, most of the ExPEC strains were        |
|-----|----------------------------------------------------------------------------------------------------|
| 217 | recovered from urine, and all but one were resistant to the tested fluoroquinolones (Table 2),     |
| 218 | which are the first choice antibiotics for treating UTIs. These findings probably accounted for    |
| 219 | treatment failure, compromising the success of clinical outcomes.                                  |
| 220 | Interestingly, in spite of the UPEC/EAEC EC49 strain being a new local ST of                       |
| 221 | CC14/phylogroup B2, this isolate exhibited the highest number of ExPEC and UPEC                    |
| 222 | virulence markers, besides the EAEC marker $aggR$ (Table 2). This demonstrates that not only       |
| 223 | pandemic high-risk clones display an enhanced pathogenicity and that emerging strains may          |
| 224 | possess a high level of virulence fitness.                                                         |
| 225 | The other class of hybrids (ExPEC/EAEC) corresponded to strains (n=2) that                         |
| 226 | carried ExPEC virulence markers and the <i>aggR</i> EAEC marker. The strains belonged to a new     |
| 227 | ST from CC155/phylogroup B1 (EC52) and to the local ST1196 belonging to phylogroup                 |
| 228 | AxB1 (EC47) (Table 2). A recent study in Mozambique demonstrated that a hybrid                     |
| 229 | ExPEC/EAEC strain recovered from blood belonged to the pandemic ST131 lineage and                  |
| 230 | presented a remarkable virulence profile [28]. These findings revealed that ExPEC/EAEC             |
| 231 | hybrids are associated with distinct lineages. Interestingly, both ExPEC/EAEC strains              |
| 232 | identified here were recovered from urine although no UPEC virulence marker had been               |
| 233 | identified. This was also the case of the non-hybrid EC39 strain, belonging to the pandemic        |
| 234 | ST69/phylogroup D, that had been characterized as a UPEC pathotype due to the site of              |
| 235 | infection (urine), although all UPEC virulence markers were absent (Table 2). These                |
| 236 | findings suggest that their ability to infect the urinary tract would be related to other          |
| 237 | mechanisms that were not investigated in this study. In fact, UPEC employs various virulence       |
| 238 | strategies, such as binding to urinary tract epithelial cells, iron acquisition, toxin production, |
| 239 | and evasion of the host's immune system. These virulence factors are commonly encoded by           |
|     |                                                                                                    |

| 240 | genes found in | pathogenicity | <i>islands</i> | (PAIs), | which are | often 1 | mobilized | through | horizontal |
|-----|----------------|---------------|----------------|---------|-----------|---------|-----------|---------|------------|
|     | 0              |               |                | · //    |           |         |           | 0       |            |

- 241 gene transfer and could have been lost from those UPEC strains [14]. Furthermore, the
- 242 presence of UPEC factors in strains recovered from sites other than urine, such as the non-
- 243 hybrid EC40 strain (Table 2), demonstrates their ability to colonize and survive in the urinary
- tract, but also that other virulence determinants were involved in the establishment of
- 245 extraintestinal infections in those cases.

#### 246 CONCLUSION

247 This study contributes to a better understanding of the occurrence and pathogenic

248 potential of hybrid strains of *E. coli*. Besides, the association of pathotype and lineage

- 249 definition provides new information in the scenario of the global epidemiology of ExPEC
- 250 hybrid strains.

251

#### 252 Funding information

- 253 This work was supported by Oswaldo Cruz Institute grant, Fundação Coordenação de
- 254 Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de
- 255 Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de
- 256 Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Processo SEI-
- **257** 260003/019688/2022.
- 258

#### 259 **Conflicts of interest**

260 The authors declare that there are no conflicts of interest.

261

#### 262 Ethical statement

- 263 This study was approved by the Oswaldo Cruz Foundation Ethics Committee (CAAE:
- 264 39978114.5.0000.5248).

#### 265

#### 266 References

| 267 | 1. | Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between      |
|-----|----|-----------------------------------------------------------------------------------------|
| 268 |    | commensalism and pathogenicity. Curr Top Microbiol Immunol 2013;358:3-32.               |
| 269 | 2. | Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, et al. Extraintestinal              |
| 270 |    | Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens     |
| 271 |    | 2021;10:1355.                                                                           |
| 272 | 3. | Kocsis B, Gulyás D, Szabó D. Emergence and Dissemination of Extraintestinal             |
| 273 |    | Pathogenic High-Risk International Clones of Escherichia coli. Life (Basel) 2022;       |
| 274 |    | 12:2077.                                                                                |
| 275 | 4. | Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, et al. Isolation and          |
| 276 |    | molecular characterization of nalidixic acid-resistant extraintestinal pathogenic       |
| 277 |    | Escherichia coli from retail chicken products. Antimicrob Agents Chemother              |
| 278 |    | 2003;47:2161-2168.                                                                      |
| 279 | 5. | Spurbeck RR, Dinh PC Jr, Walk ST, Stapleton AE, Hooton TM, et al.                       |
| 280 |    | Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the |
| 281 |    | urinary tract. Infect Immun 2012;80:4115-4122.                                          |
| 282 | 6. | Braz S, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and       |
| 283 |    | Versatile Bacterium. Front Cell Infect Microbiol 2020;10:1–9.                           |
| 284 | 7. | Lee W, Sung S, Ha J, Kim E, An ES, et al. Molecular and Genomic Analysis of the         |
| 285 |    | Virulence Factors and Potential Transmission of Hybrid Enteropathogenic and             |
| 286 |    | Enterotoxigenic Escherichia coli (EPEC/ETEC) Strains Isolated in South Korea. Int J     |
| 287 |    | Mol Sci 2023;24:12729.                                                                  |

| 288 | 8. | Rakhalaru P, Munzhedzi L, Abia ALK, Kabue JP, Potgieter N, et al. Prevalence        |
|-----|----|-------------------------------------------------------------------------------------|
| 289 |    | and Antimicrobial Resistance Profile of Diarrheagenic Escherichia coli from Fomites |
| 290 |    | in Rural Households in South Africa. Antibiotics (Basel) 2023;12:1345.              |
| 291 | 9. | Méndez-Moreno E, Caporal-Hernandez L, Mendez-Pfeiffer PA, Enciso-                   |
| 292 |    | Martinez Y, López RR, et al. Characterization of Diarreaghenic Escherichia coli     |
| 293 |    | Strains Isolated from Healthy Donors, including a Triple Hybrid Strain. Antibiotics |
| 294 |    | (Basel) 2022;11:833.                                                                |
| 295 | 10 | Lara FBM, Nery DR, Oliveira PM, Araujo ML, Carvalho FRQ, et al. Virulence           |
| 296 |    | Markers and Phylogenetic Analysis of Escherichia coli Strains with Hybrid           |
| 297 |    | EAEC/UPEC Genotypes Recovered from Sporadic Cases of Extraintestinal                |
| 298 |    | Infections. Front Microbiol 2017;8:146.                                             |
| 299 | 11 | . Schüroff PA, Abe CM, Silva JW, Coelho CP, Andrade FB, et al. Role of              |
| 300 |    | aggregate-forming pilus (AFP) in adherence and colonization of both intestinal and  |
| 301 |    | urinary tracts. Virulence 2022;13:1423-1433.                                        |
| 302 | 12 | Nascimento JAS, Santos FF, Valiatti TB, Santos-Neto JF, Santos ACM, et al.          |
| 303 |    | Frequency and Diversity of Hybrid Escherichia coli Strains Isolated from Urinary    |
| 304 |    | Tract Infections. Microorganisms 2021;9:693.                                        |
| 305 | 13 | Nascimento JAS, Santos FF, Santos-Neto JF, Trovão LO, Valiatti TB, et al.           |
| 306 |    | Molecular Epidemiology and Presence of Hybrid Pathogenic Escherichia coli among     |
| 307 |    | Isolates from Community-Acquired Urinary Tract Infection. Microorganisms 2022;      |
| 308 |    | 10:302.                                                                             |
|     |    |                                                                                     |

| 309 | 14 Tanabe RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dias RCB. Ors                                                                 | si H. de Lira DRP.   | . Vieira MA. <i>et al</i> | <b>Characterization</b> |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|---------------------------|-------------------------|
| 000 | <b>1</b> $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ | $\mathbf{D}$ ias $\mathbf{R} \mathbf{C} \mathbf{D}$ , $\mathbf{O} \mathbf{C}$ | , ii, ut Lii a Dii i |                           |                         |

- 310 of Uropathogenic Escherichia coli Reveals Hybrid Isolates of Uropathogenic and
- 311 Diarrheagenic (UPEC/DEC) E. coli. *Microorganisms* 2022;10:645.
- 312 15. Furlan JPR, Ramos MS, Dos Santos LDR, Rosa RS, Stehling EG. Multidrug-
- resistant Shiga toxin-producing Escherichia coli and hybrid pathogenic strains of
- bovine origin. *Vet Res Commun* 2023; online ahead of print.
- 315 16. Munhoz DD, Richards AC, Santos FF, Mulvey MA, Piazza RMF. E. coli
- 316 Common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain
- 317 within diverse host environments. *Gut Microbes* 2023;15:2190308.
- 318 17. de Lira DRP, Cavalcanti AMF, Pinheiro SRS, Orsi H, Dos Santos LF, et al.
- 319 Identification of a hybrid atypical enteropathogenic and enteroaggregative Escherichia
- 320 coli (aEPEC/EAEC) clone of serotype O3:H2 associated with a diarrheal outbreak in
- 321 Brazil. *Braz J Microbiol* 2021;52:2075-2079.
- 322 18. Valiatti TB, Santos FF, Santos ACM, Nascimento JAS, Silva RM, et al. Genetic
- 323 and Virulence Characteristics of a Hybrid Atypical Enteropathogenic and
- 324 Uropathogenic Escherichia coli (aEPEC/UPEC) Strain. *Front Cell Infect Microbiol*325 2020;10:492.
- 326 19. Vicente AC, Teixeira LF, Iniguez-Rojas L, Luna MG, Silva L, *et al.* Outbreaks of
  327 cholera-like diarrhoea caused by enterotoxigenic Escherichia coli in the Brazilian
  328 Amazon Rainforest. *Trans R Soc Trop Med Hyg* 2005;99:669-674.
- 329 20. Benevides-Matos N, Pieri FA, Penatti M, Orlandi PP. Adherence and virulence
  330 genes of Escherichia coli from children diarrhoea in the Brazilian Amazon. *Braz J*331 *Microbiol* 2015;46:131-137.

| 332 | 21. Taborda RLM, Silva LAD, Orlandi PP, Batista FS, Rodrigues RS, et al.                |
|-----|-----------------------------------------------------------------------------------------|
| 333 | Characterization of enteroaggregative Escherichia coli among diarrheal children in      |
| 334 | Western Brazilian Amazon. Arq Gastroenterol 2018;55:390-396.                            |
| 335 | 22. Rodrigues RS, Lima NCDS, Taborda RLM, Esquerdo RP, Gama AR, et al.                  |
| 336 | Antibiotic resistance and biofilm formation in children with Enteropathogenic           |
| 337 | Escherichia coli (EPEC) in Brazilian Amazon. J Infect Dev Ctries 2019;13:698-705.       |
| 338 | 23. Clinical and Laboratory Standards Institute. Performance Standards for              |
| 339 | Antimicrobial Susceptibility Testing supplement M100. 32nd Ed. Wayne, PA: CLSI;         |
| 340 | 2021.                                                                                   |
| 341 | 24. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, et al.                |
| 342 | Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria an       |
| 343 | international expert proposal for interim standard definitions for acquired resistance. |
| 344 | Clin Microbiol Infect 2012;18:268–281.                                                  |
| 345 | 25. Santos-Neto JF, Santos ACM, Nascimento JAS, Trovão LO, Santos FF, et al.            |
| 346 | Virulence Profile, Antibiotic Resistance, and Phylogenetic Relationships among          |
| 347 | Escherichia coli Strains Isolated from the Feces and Urine of Hospitalized Patients.    |
| 348 | Pathogens 2022;11:1528.                                                                 |
| 349 | 26. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M $\beta$ -lactamases:    |
| 350 | temporal and geographical shifts in genotype. J Antimicrob Chemother 2017;              |
| 351 | 72:2145–2155.                                                                           |
| 352 | 27. Riley LW. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin    |
| 353 | Microbiol Infect 2014;20:380-390.                                                       |
| 354 | 28. Santona A, Sumbana JJ, Fiamma M, Deligios M, Taviani E, et al. High-risk            |
| 355 | lineages among extended-spectrum $\beta$ -lactamase-producing Escherichia coli from     |

| 356        | extraintestinal infections in Maputo Central Hospital, Mozambique. Int J Antimicrob |
|------------|-------------------------------------------------------------------------------------|
| 357        | Agents 2022;60:106649.                                                              |
| 358<br>359 |                                                                                     |
| 360        |                                                                                     |
| 361        |                                                                                     |
| 362        |                                                                                     |
| 363        |                                                                                     |
| 364        |                                                                                     |
| 365        |                                                                                     |
| 366        |                                                                                     |
| 367        |                                                                                     |
| 368        |                                                                                     |
| 369        |                                                                                     |
| 370        |                                                                                     |
| 371        |                                                                                     |
| 372        |                                                                                     |
| 373        |                                                                                     |
| 374        |                                                                                     |
| 375        |                                                                                     |
| 376        |                                                                                     |
| 377        |                                                                                     |
| 378        |                                                                                     |
| 379        |                                                                                     |
| 380        |                                                                                     |
| 381        |                                                                                     |

| Primer name      | Primer sequence (5' – 3')                    | Target                                                            |
|------------------|----------------------------------------------|-------------------------------------------------------------------|
|                  | Antibiotic resistance ge                     | nes                                                               |
| SHV F            | TTCATGGCGTTACCTTTGAC                         | Class A $\beta$ -lactamase <i>bla</i> <sub>SHV</sub> genes        |
| SHV R            | CCGACAGAGTGCGGTATTTA                         |                                                                   |
| GES F            | ATGCGCTTCATTCACGCAC                          | ESBL Class A $\beta$ -lactamase <i>bla</i> <sub>GES</sub> genes   |
| GES R            | CTATTTGTCCGTGCTCAGGA                         |                                                                   |
| TEM F            | GTATCCGCTCATGAGACAATA                        | Class A $\beta$ -lactamase <i>bla</i> <sub>TEM</sub> genes        |
| TEM R            | TCTAAAGTATATATGAGTAAACTTGGTCTG               |                                                                   |
| CTX-M F          | CGCTTTGCGATGTGCAG                            | ESBL Class A $\beta$ -lactamase <i>bla</i> <sub>CTX-M</sub> genes |
| CTX-M R          | ACCGCGATATCGTTGGT                            |                                                                   |
| QnrVC F          | AAGTGAACTTCTCACATCAGG                        | Quinolone resistance <i>qnrVC</i> genes                           |
| QnrVC R          | ATGATTACCCCTAATTGCTCC                        |                                                                   |
| QnrA F           | GATTTCTCACGCCAGGATTT                         | Quinolone resistance <i>qnrA</i> gene                             |
| QnrA R           | TCKGAGCCCATCAAGGAAG                          |                                                                   |
| QnrB F           | GATCGWGAAAGYCAGAAAGG                         | Quinolone resistance <i>qnrB</i> gene                             |
| QnrB R           | CCACARYTCRCAYTTTTC                           |                                                                   |
| QnrC F           | TGCAGACCTACGAGATGCTT                         | Quinolone resistance <i>qnrC</i> gene                             |
| QnrC R           | TTCACGCCAGTTAAATCCAC                         |                                                                   |
| QnrS F           | ACGTGTTAACTTGCGTGAT                          | Quinolone resistance <i>qnrS</i> gene                             |
| QnrS R           | GCAATTTTGATACCTGATG                          |                                                                   |
| GyrA F           | CGTTGGTGACGTAATCGGTA                         | ORDR of gyrA gene                                                 |
| GyrA R           | GTGTTCCATCAGCCCTTCA                          |                                                                   |
|                  | Virulence genes                              |                                                                   |
| Eae F            | GTGGCGAATACTGGCGAGACT                        |                                                                   |
| Eae R            | CGACGGTGAAAAGAATGGGG                         | EPEC virulence marker                                             |
| BfpB F           | CGATAAAACTGATACTGGGCAGC                      |                                                                   |
| BfpB R           | GTGCTTCCCGAACAGTCACT                         |                                                                   |
| AggR F           | CGATACATTAAGACGCCTAAAG                       | EAEC virulence marker                                             |
| AggR R           | TCTGATACATTAAATTCATCTGC                      |                                                                   |
| Stx1 F           | CAGTTAATGTGGTGGCGAAGG                        |                                                                   |
| Stx1 R           | CACCAGACAATGTAACCGCTG                        | STEC virulence marker                                             |
| Stx2 F           | ATCCTATTCCCGGGAGTTTACG                       |                                                                   |
| Stx2 R           | GCGTCATCGTATACACAGGAGC                       |                                                                   |
| EstH F           | GCTAAACCAGTAGAGTC                            |                                                                   |
| EstH R           | CACCCGGTACAAGCAGG                            |                                                                   |
| EstP F           | AGTCAGTCAACTGAATCAC                          | ETEC virulence marker                                             |
| EstP R           | ATTTTCTCAGCACCAATAC                          |                                                                   |
| elT F            | CACACGGAGCTCCTCAG                            |                                                                   |
| elT R            | CAAACTAGTTTTCCATACTG                         |                                                                   |
| invE F           | CGATAGATGGCGAGAAATTATATCCCG                  | EIEC virulence marker                                             |
| invE R           | CGATCAAGAATCCCTAACAGAAGAATCA                 |                                                                   |
| Vat F            | TCAGGACACGTTCAGGCATTCAGT                     |                                                                   |
| Vat R            | GGCCAGAACATTTGCTCCCTTGTT                     |                                                                   |
| FyuA F           | GTAAACAATCTTCCCGCTCGGCAT                     |                                                                   |
| FyuA R           | ΤĠĂĊĠĂŦŦĂĂĊĠĂĂĊĊĠĠĂĂĠĠĠĂ                     | LIPEC virulence marker                                            |
|                  | IUACUAI IAACUAACCUUAAUUUA                    |                                                                   |
| ChuA F           | CTGAAACCATGACCGTTACG                         |                                                                   |
| ChuA F<br>ChuA R | CTGAAACCATGACCGTTACG<br>TTGTAGTAACGCACTAAACC |                                                                   |

## 382 Table 1. Primers used in this study

| yfcV R<br>iutA F<br>iutA R<br>KpsMTII F<br>KpsMTII R<br>sfaDE F<br>sfaDE R<br>papC F<br>papC R<br>afaBC F<br>afaBC R<br>iucD F | GTAATCTGGAATGTGGTCAGG<br>GGCTGGACATCATGGGAACTGG<br>CGTCGGGAACGGGTAGAATCG<br>GCGCATTTGCTGATACTGTTG<br>CATCCAGACGATAAGCATGAGCA<br>CTCCGGAGAACTGGGTGCATCTTAC<br>CGGAGGAGTAATTACAAACCTGGCA<br>GTGGCAGTATGAGTAATGACCGTTA<br>ATATCCTTTCTGCAGGGATGCAATA<br>GGCAGAGGGCCGGCAACAGGC<br>CCCGTAACGCGCCAGCATCTC<br>TCCTCATTTTCCTGGCATC | ExPEC virulence marker |  |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| <u>1ucD R</u>                                                                                                                  | AGITIATTTCCGCCGCTTCT                                                                                                                                                                                                                                                                                                      |                        |  |
| 384                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 385                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 386                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 387                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 388                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 389                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 390                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 391                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 392                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 393                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 394                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 395                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 396                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 397                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 398                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 399                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 400                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |
| 401                                                                                                                            |                                                                                                                                                                                                                                                                                                                           |                        |  |

# **Fable 2.** Clinical and genetic information of the hybrid *E. coli* strains in this study

| Strain | Strain Infection<br>site |      | CC  | Phylogroup | Antibiotic resistance profile                       | Pat  | hotype Genetic Ma | rkers      | Hybrid<br>Classification |
|--------|--------------------------|------|-----|------------|-----------------------------------------------------|------|-------------------|------------|--------------------------|
|        |                          |      |     |            |                                                     | DEC  | EXPEC             | UPEC       |                          |
| EC39   | Urine                    | 69   | 69  | D          | NEO, CEF, CLA, ERI, CB, AMP, PEN, SXT, SUL,         | -    | kpsMTII           | -          | -                        |
|        |                          |      |     |            | TMP                                                 |      |                   |            |                          |
| EC40   | Blood                    | 8886 | -   | B2         | NEO, CXM, AZI, CLA, ERI, AMP, PEN, SXT,<br>SUL, TMP | -    | -                 | fyuA, yfcV | -                        |
|        |                          |      |     |            | KAN, NEO, STR, CEF, FOX, CXM, CAZ, CRO,             |      |                   |            |                          |
| EC41   | Leg                      | 131  | 131 | B2         | CTX, FEP, AMP, AMX, CB, PEN, TIM, CLA, ERI,         | aggR | iucD              | fyuA, yfcV | UPEC/EAEC                |
|        | secretion                |      |     |            | NAL, CIP, NOR, LEV, OFX, SXT, SUL, TMP, MIN         |      |                   |            |                          |
|        |                          |      |     |            | GEN, TOB, KAN, NEO, STR, CEF, FOX, CXM,             |      |                   |            |                          |
| EC42   | Urine                    | 131  | 131 | B2         | CAZ, CRO, CTX, FEP, AMP, SAM, AMX, AMC,             | aggR | iucD              | yfcV       | UPEC/EAEC                |
|        |                          |      |     |            | CB. PEN. TIM. ATM. CLA. ERI. NAL. CIP. NOR.         |      |                   |            |                          |

#### LEV, OFX, SXT, SUL, TMP, MIN, TET

|      |              |       |     |      | NEO, STR, CEF, FOX, CXM, CAZ, CRO, CTX,     |      |                     |            |            |
|------|--------------|-------|-----|------|---------------------------------------------|------|---------------------|------------|------------|
| EC43 | Catheter tip | 131   | 131 | B2   | FEP, AMP, AMX, CB, PEN, TIM, AZI, CLA, ERI, | aggR | iutA, kpsMTII, iucD | yfcV       | UPEC/EAEC  |
|      |              |       |     |      | NAL, CIP, NOR, LEV, OFX, SXT, SUL, TMP, TET |      |                     |            |            |
|      |              |       |     |      | GEN, TOB, KAN, NEO, CEF, FOX, CXM, CAZ,     |      | iutA, kpsMTII,      |            |            |
| EC46 | Soft tissue  | NEW 4 | 131 | B2   | CRO, CTX, FEP, AMP, SAM, AMX, AMC, CB,      | aggR | papC, iucD          | fyuA, yfcV | UPEC/EAEC  |
|      |              |       |     |      | PEN, TIM, ATM, CLA, NAL, CIP, NOR, LEV, OFX |      |                     |            |            |
| EC47 | Urine        | 1196  | _   | AxB1 | KAN, NEO, CEF, AMP, CB, PEN, AZI, CLA, ERI, | aggR | iutA. afaBC         | _          | EXPEC/EAEC |
| 2017 | 0            | 1170  |     |      | NAL, CIP, NOR, LEV, OFX                     |      |                     |            | 2          |
|      |              |       |     |      |                                             |      |                     |            |            |
| EC48 | Vagina       | 9403  | -   | А    | KAN, NEO, STR, AMP, CB, PEN, AZI            | aggR | iutA, kpsMTII,      | fyuA, yfcV | UPEC/EAEC  |
|      | secretion    |       |     |      |                                             |      | papC, iucD          |            |            |
|      |              |       |     |      | GEN, TOB, KAN, NEO, STR, CEF, FOX, CXM,     |      |                     |            |            |
| EC44 | Urine        | 131   | 131 | B2   | CAZ, CRO, CTX, FEP, AMP, SAM, AMX, AMC,     | -    | iutA, kpsMTII,      | fyuA, yfcV | -          |
|      |              |       |     |      | CB, PEN, TIM, ATM, AZI, CLA, ERI, NAL, CIP, |      | papC iucD           |            |            |
|      |              |       |     |      | NOR, LEV, OFX, SXT, SUL, TMP, TET           |      |                     |            |            |
|      |              |       |     |      | TOB, KAN, NEO, STR, CEF, FOX, CXM, CAZ,     |      |                     |            |            |

| EC45 | Urine     | 131   | 131 | B2         | CRO, CTX, FEP, AMP, SAM, AMX, AMC, CB,       | aggR | iutA, kpsMTII,      | fyuA, yfcV | UPEC/EAEC  |
|------|-----------|-------|-----|------------|----------------------------------------------|------|---------------------|------------|------------|
|      |           |       |     |            | PEN, TIM, TZP, ATM, AZI, CLA, ERI, NAL, CIP, |      | afaBC, iucD         |            |            |
|      |           |       |     |            | NOR, LEV, OFX, SXT, SUL, TMP                 |      |                     |            |            |
|      |           |       |     |            |                                              |      |                     |            |            |
|      |           |       |     |            | KAN, NEO, STR, CEF, CTX, AMP, SAM, AMX,      |      | iutA, kpsMTII,      | vat, fyuA, |            |
| EC49 | Urine     | NEW 1 | 14  | B2         | AMC, CB, PEN, TIM, AZI, CLA, ERI, NAL, CIP,  | aggR | papC, afaBC, iucD   | yfcV       | UPEC/EAEC  |
|      |           |       |     |            | NOR, LEV, OFX, SXT, SUL, TMP                 |      |                     |            |            |
| 7050 |           | 2100  | 14  | Da         | VANANES STRODO AND DEN AZU SUA               | D    |                     | C 11       |            |
| EC20 | -         | 3180  | 14  | <b>B</b> 2 | KAN, NEO, STR, CRO, AMP, PEN, AZI, CLA,      | aggR | iutA, kpsM111, iucD | yfc V      | UPEC/EAEC  |
|      |           |       |     |            | ERI, NAL, CIP, NOR, LEV, OFX, CHL            |      |                     |            |            |
|      |           |       |     |            | KAN, NEO, STR, CEF, CRO, AMP, SAM, AMX,      |      |                     |            |            |
| EC51 | Blood     | NEW 2 | 155 | B1         | CB, PEN, TIM, CLA, ERI, SXT, SUL, TMP, MIN,  | aggR | iutA, iucD          | fyuA       | UPEC/EAEC  |
|      |           |       |     |            | TET                                          |      |                     |            |            |
|      |           |       |     |            |                                              |      |                     |            |            |
| EC52 | Urine     | NEW 3 | 155 | B1         | AMP, PEN, CLA, NAL, CIP, NOR, LEV, OFX, MIN  | aggR | iutA, afaBC, iucD   | -          | EXPEC/EAEC |
|      |           |       |     |            | AMK, GEN, TOB, KAN, NEO, STR, CEF, FOX,      |      |                     |            |            |
| EC53 | wound     | 12394 | 46  | А          | CXM, CAZ, CRO, CTX, FEP, AMP, SAM, AMX,      | aggR | iutA, iucD          | fyuA       | UPEC/EAEC  |
|      | secretion |       |     |            | CB, PEN, TIM, ATM, AZI, CLA, ERI, NAL, CIP,  |      |                     |            |            |
|      |           |       |     |            | NOR, LEV, OFX, TMP, MIN, TET                 |      |                     |            |            |
|      |           |       |     |            |                                              |      |                     |            |            |
|      |           |       |     |            |                                              |      |                     |            |            |
|      |           |       |     |            |                                              |      |                     |            |            |

Abbreviations: AMK, amikacin; GEN, gentamicin; TOB, tobramycin; KAN, kanamycin; NEO, neomycin; STR, streptomycin; CEF, cephalothin; FOX, cefoxitin; CXM, cefuroxime; CAZ, ceftazidime; CRO, ceftriaxone; CTX, cefotaxime; FEP, cefepime; AMP, ampicillin; SAM, ampicillin/sulbactam; AMX, amoxicillin; AMC, amoxicillin/clavulanate; CB, carbenicillin; PEN, penicillin; TIM, ticarcillin/clavulanate; TZP, piperacillin/tazobactam; ATM, aztreonam; AZI, azithromycin; CLA, clarithromycin; ERI, erythromycin; NAL, nalidixic acid; CIP, ciprofloxacin; NOR, norfloxacin; LEV, levofloxacin; OFX, ofloxacin; SXT, trimethoprim/sulfamethoxazole; SUL, sulphonamide; TMP, trimethoprim; MIN, minocycline; tetracycline; CHL, chloramphenicol.

## ExPEC strains presenting hybrid pathotypes in the Amazon region

