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Abstract 

Hospital falls are the most prevalent adverse event in healthcare, posing significant risks to patient 

health outcomes and institutional care quality. The effectiveness of several fall prediction models 

currently in use is limited by various clinical factors. This study explored the efficacy of merging real-

time location system (RTLS) data with clinical information to enhance the accuracy of in-hospital fall 

predictions. The model performances were compared based on the clinical data, RTLS data, and a hybrid 

approach using various evaluation metrics. The RTLS and integrated clinical data were obtained from 

22,201 patients between March 2020 and June 2022. From the initial cohort, 118 patients with falls and 

443 patients without falls were included. Predictive models were developed using the XGBoost 

algorithm across three distinct frameworks: clinical model, RTLS model, and clinical + RTLS model. 

The model performance was evaluated using metrics, such as AUROC, AUPRC, accuracy, PPV, 

sensitivity, specificity, and F1 score. Shapley additive explanation values were used to enhance the 

model interpretability. The clinical model yielded an AUROC of 0.813 and AUPRC of 0.407. The RTLS 

model demonstrated superior fall prediction capabilities, with an AUROC of 0.842 and AUPRC of 

0.480. The clinical + RTLS model excelled further, achieving an AUROC of 0.853 and AUPRC of 0.497. 

Feature importance analysis revealed that movement patterns of patients on the last day of their stay 

were significantly associated with falls, together with elevated RDW levels, sedative administration, 

age. This study underscored the advantages of combining RTLS data with clinical information to predict 

in-hospital falls more accurately. This innovative technology-driven approach may enhance early fall 

risk detection during hospitalization, potentially preventing falls, improving patient safety, and 

contributing to more efficient healthcare delivery. 
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1. Introduction 

Managing patient safety and hospital operations is crucial in the healthcare domain. In-hospital falls are 

among the most common incidents that cause concern in healthcare facilities. This issue not only affects 

patient health outcomes but also has substantial economic implications. For instance, in the United 

States, the overall medical expenditure for fatal falls is estimated to be $754 million1. This figure 

underscores the severe impact of falls on healthcare systems worldwide. Reportedly, 15–50% patients 

suffer fall-related injuries, out of which 1–10% are severe, including fractures2-5. This scenario is 

prevalent in other countries, where 25–55% of the nursing home patients experience falls, leading to 

significant injuries such as fractures, brain hemorrhage or even death, as seen in 1.2–16.2% of cases in 

South Korea being fatal6. These statistics highlight that falls are not mere accidents, but significant 

global risk factors causing severe secondary accidents. 

To minimize falls, several tools have been used to assess their risks upon admission. However, 

these methods are constrained by their dependence on subjective assessments and patients’ recall7-10. 

Furthermore, these tools are limited in their ability to assess the changes of patient’s physical ability, 

which is directly related to fall probability. The hospitalized patients may experience significant 

alterations in their biological conditions and often spend most of their time in beds following admission, 

leading to decreased physical activity and reduced gait speed, which directly increases the risk of falls11-

14. However, a notable limitation of conventional tools is their ineffectiveness in dynamically reflecting 

changes in patient conditions. Therefore, novel objective tools capable of continuous monitoring and 

adaptation to the evolving physical abilities and conditions of patients are required15,16. 

Among the various indicators of a patient's physical abilities, elements such as the amount of 

movement, gait speed, and degree of active movement are directly related to falls13,14. A real-time 

location system (RTLS) is a technology that detects and records the location of sensors in real time and 

has various applications in medical and healthcare settings, including infection path tracking17. Its 

ability to continuously collect time-based location data makes it suitable for objectively tracking 

changes in patient movements and physical activity. Additionally, electronic medical records (EMRs) 

store a wealth of objective information on medical conditions that may reflect a patient's vulnerability. 

Considering the traceability of RTLS for physical ability and objective information about clinical 
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situations contained in EMR, this study aims to overcome the aforementioned issues by developing a 

fall-prediction machine-learning model. This integrated approach develops a comprehensive and 

innovative fall-prediction tool that offers an advanced method for enhancing patient safety and 

healthcare management. 
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2. Results 

2.1 Study design 

Fig. 1 shows the framework of this study, which spanned from March 1, 2020 to June 30, 2022 and 

developed a predictive model for falls during hospital admissions using the EMR and RTLS data from 

the Yongin Severance Hospital. These data were obtained from patients who satisfied the inclusion 

criteria (Fig. 1a). The EMR data included 27 standard features procured during the initial phase of 

patient admission (Fig. 1b). The RTLS data, encompassing geographical coordinates and timestamps, 

were used to generate 28 additional features per patient, reflecting their physical activities (Fig. 1c). 

This comprehensive approach resulted in a dataset with 55 features, which served as the foundation for 

machine learning analysis. The Extreme Gradient Boost (XGBoost) algorithm was applied based on a 

10-fold cross-validation method for fall prediction during hospital stay (Fig. 1d). 

 

2.2 Differences in baseline clinical characteristics and RTLS profiles based on the fall experience  

The study cohort comprised 118 patients with falls and 443 patients without falls (Fig. 2). Statistical 

comparison of baseline characteristics between fall and non-fall groups revealed significant differences 

in several clinical and RTLS features (Table 1 and Supplementary Table 1). In Table 1, patients 

experiencing falls were predominantly older males with longer hospital stays and higher dosage of 

sedatives or peridol. They were primarily admitted for medical treatment and exhibited higher rates of 

intensive care unit (ICU) admission. Regarding biochemical parameters, there were no significant 

differences between the groups for most variables; however, the red cell distribution width (RDW) 

values were notably higher in the fall group than in the non-fall group. The RTLS data revealed 

significant disparities in the daily speed on the last day, as well as in the mean and median daily speed, 

indicating a slower daily speed in the fall group than in the non-fall group during hospital stay 

(Supplementary Table 1). Here, the terms "Daily top 20% movement ratio" and "Daily top 50% 

movement ratio" refer to the proportion of time during a day when a patient's velocity is within the 

highest 20% and 50%, respectively, among all patient velocity measurements. It was found that for the 

daily top 20% movement ratio, there were notable differences not only in the average and median values 

throughout their hospital stay but also in the values recorded on the last day between the groups, 
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indicating lower proportion of daily top 20% movement ratio in fall groups. Similarly, significant 

differences were also observed for the daily top 50% movement on the last day and in its average value 

between the groups (Supplementary Table 1). These underscores a marked reduction in overall physical 

activity levels in the fall group compared to the non-fall group throughout their hospital stay. 

 

2.3 Performance comparison of the three models for fall prediction 

The performances of the three models derived from the patient cohorts were compared using the test 

set. Based on the comparison of average values, the clinical, RTLS, and clinical + RTLS models 

exhibited area under the receiver operating characteristic curve (AUROC) values of 0.699, 0.813, and 

0.847, respectively, indicating statistically significant performance improvements by integrating 

comprehensive variables. Similarly, the clinical, RTLS, and clinical + RTLS models achieved area 

under the precision-recall curve (AUPRC) values of 0.423, 0.565, and 0.667, respectively, 

demonstrating parallel significant differences. The corresponding Brier scores for the models were 

0.159, 0.133, and 0.120, with clinical + RTLS model exhibiting the best performance (Fig. 3 and Table 

2). 

Based on other metrics for comparing model performances, the clinical + RTLS model 

outperformed the other models, exhibiting statistically significant variations and achieving an accuracy 

of 0.848, positive predictive value (PPV) of 0.681, sensitivity of 0.540, specificity of 0.931, and F1 

score of 0.600 (Supplementary Fig. 1 and Supplementary Table 2). 

 

2.4 Comparison of the model feature importances between the three models 

Fig. 4 shows the feature importance of the clinical + RTLS model, which exhibited the best performance. 

The significance of each feature was assessed and compared across the remaining models 

(Supplementary Fig. 2). The predominant features influencing the clinical model (Supplementary Fig. 

2a) and the RTLS feature model (Supplementary Fig. 2b) were largely retained in the clinical + RTLS 

model. 

In the clinical + RTLS model, SHAP analysis identified the daily total distance moved 

(total_distance), the daily top 50% active movement ratio (top50%_active), and the daily movement 
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speed (daily_speed) as the top three ranked features, with their values on the last day of hospitalization 

being particularly impactful (Fig. 4). It was found that a greater total distance moved on the last day 

significantly increased the likelihood of a fall occurring. Conversely, a lower daily top 50% active 

movement ratio and a slower daily movement speed on the last day were found to be strongly predictive 

of falls. Here, the daily total distance represents the cumulative distance a patient covers throughout a 

day, and the daily top 50% active movement ratio quantifies the proportion of time a patient spends in 

more vigorous activity. A greater total distance moved on the last day significantly increased the 

likelihood of a fall occurring. Conversely, a lower daily top 50% active movement ratio and a slower 

daily movement speed on the last day were found to be strongly predictive of falls. Furthermore, the 

fourth- and fifth-ranked features revealed that the elevated RDW levels of patients who were 

administered sedative drugs greatly affected the fall incidents. 

 

2.5 Comparative evaluation of the model clinical efficacy using net benefit analysis 

A decision curve analysis (DCA) comparing the three models revealed that the clinical model, which 

utilized only EMR variables, exhibited the lowest net benefit and offered minimal clinical advantages 

(Fig. 5). Contrastingly, the clinical + RTLS model, consistent with its performance in other metrics, 

exhibited a superior net benefit across various thresholds compared with the other two models. 
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3. Discussion 

The results of this study indicate a significant advancement in the field of fall prediction during 

hospitalization by utilizing a novel approach that integrates the RTLS variables capturing patient 

movement with the clinical variables obtained from EMR. This comprehensive model, which considers 

both sets of variables, outperforms the models using either dataset by itself. The clinical + RTLS model 

achieved an AUROC of 0.847, AUPRC of 0.667, and Brier score of 0.120, and the clinical benefits of 

the proposed model are further confirmed by DCA. These findings may significantly enhance fall 

prevention by facilitating a more convenient and precise prediction of such incidents. 

The proposed approach remarkably overcomes the limitations of conventional methods that 

lack the ability to continuously and objectively measure patient movement7-9,18,19. By utilizing real-time 

data from RTLS, we engineered variables capturing variations in patient movement and incorporated 

initial clinical scores and medication histories from EMRs to enhance the fall prediction performance. 

Instead of relying on a single model, this study simultaneously presents three independently developed 

models based on clinical features, RTLS data, and a combination of these two. Each dataset facilitates 

commendable predictive performance individually; however, the integrated model demonstrates 

statistically significant superiority, indicating that the initial clinical measurements and RTLS-derived 

features contribute to prediction accuracy. 

SHAP analysis provides insights into the most influential features of the high-performing 

clinical + RTLS model. Among the top five features, three were derived from RTLS (daily total distance, 

daily speed, and daily top 50% active movement ratio) and remaining two were derived from the EMR 

data, indicating a balanced contribution from the two data sources. The RTLS variables, particularly 

the daily total distance, represent the total amount of patient movement in a day. Contrastingly, the daily 

speed represents an average daily measure of the gait speed, a well-known factor associated with falls 

that is emphasized in conventional methods13,20–22. The daily top 50% active movement ratio, which 

indicates the proportion of time spent on moving at a faster pace, serves as an indirect measure of 

physical activity, another key factor in determining fall risk11,23. These RTLS variables are analyzed 

across various time points, including initial hospitalization and the day of the fall, revealing that the 

values on the last day of stay are particularly important. Therefore, the patient movement patterns closer 
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to the time of fall are more critical than those at the beginning of hospitalization. This aligns with the 

existing research advocating the continuous monitoring of patients to prevent falls15,16. Hence, a 

decrease in physical activity and gait speed on days closer to the fall, particularly in patients with more 

movement, is correlated with an increased risk of falling. 

In addition to RTLS variables, high RDW and sedative use are associated with an increased 

risk of falls, corroborating the findings from existing research. Sedatives, which are central nervous 

system depressants typically prescribed for anxiety and sleep disorders, are associated with falls owing 

to their effects such as slowing reaction times and causing dizziness24,25. The relationship between 

sedative use and fall risk highlights the need for careful management of these medications in 

hospitalized patients, particularly in those at a higher risk of falls. An increase in this metric may 

indicate the biological aging process impairing neuromuscular function, which can increase the fall risk 

as it potentially affects the balance, coordination, and overall physical strength26. The correlation 

between higher RDW and fall risk indicates that this hematological parameter could serve as a useful 

biomarker for fall risk assessment. RDW has been known to be closely related to aging phenotypes in 

diverse clinical situations26-28. Integrating RDW with the proposed model, along with other clinical and 

RTLS-derived variables, provides a more comprehensive understanding of the multifactorial nature of 

fall risk in hospital settings. 

The implications of this study can be understood in three ways. First, the model 

generalizability is emphasized because the study was based on a randomly sampled population of all 

hospitalized patients in a tertiary care hospital, rather than being limited to specific wards or disease 

conditions. Second, by capturing the real-time dynamics of patient movements using RTLS, the 

proposed model overcomes the limitations of conventional fall prediction methods, offering a more 

accurate and timely assessment of fall risk. Third, the alignment of the key variables of the model, 

identified via SHAP analysis, with the reported fall risk factors underscores the strong explainability of 

the model. This congruence validates the fundamental requirement for clinically verified knowledge, 

thus enhancing the credibility and utility of the model in clinical settings. 

The primary limitation of this study is the requirement for multi-cohort validation. The 

proposed approach, involving 1000 iterations with duplication in the test set, serves as a provisional 
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measure to statistically validate the model performance; however, future research should perform 

validation across diverse cohorts. Another limitation is data imbalance owing to the varying patient 

event distributions. Despite mitigating this issue via random sampling, disparities in patient data 

persisted, which may have affected the accuracy and precision of the findings. The reliance on RTLS 

and EMR data, while informative, could omit potential environmental or situational factors influencing 

the fall risk. Further research is necessary to capture these broader aspects and enhance the 

understanding of fall risk in hospital settings. 

To the best of our knowledge, this study is the first to apply RTLS to fall prediction. 

Advancements in IT technologies have enabled the tracking of patient locations within hospitals using 

RTLS. This study seeks to overcome the limitations of previous research on falls by leveraging 

technological progress. By utilizing real-time data on patient location changes, our findings suggest that 

integrating RTLS with EMR can significantly improve fall-prediction accuracy. This IT-enhanced 

approach may facilitate the early detection of fall risks during hospitalization, thereby preventing fall 

incidents, augmenting patient safety, and alleviating the workload of healthcare professionals by 

implementing automated solutions. 
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4. Methods 

4.1 Study participants and data source 

We conducted a retrospective study by extracting the EMR and RTLS data from 22,201 patients 

admitted to Yongin Severance Hospital between March 1, 2020, and June 30, 2022. The patients were 

provided with RTLS-equipped wristbands (Supplementary Fig. 3). The RTLS was designed to update 

its database only when there was a change in patient's location, capturing the date, time, latitude, and 

longitude. 

The initial cohort of patients was refined by excluding individuals with unavailable discharge 

records (n=116) and those admitted because of falls from external sources (n=127), thereby focusing 

our analysis on in-hospital falls. The patient cohort was divided into the following two groups: those 

who experienced falls (fall group) and those who did not (non-fall group). To assess the impact of 

various factors on fall occurrence, we excluded the cases of recurrent falls and focused our analysis 

solely on the first fall. Subsequently, a random-sampling approach was employed to balance the 

representations of both patient groups. The final stage of cohort refinement involved excluding the 

patients based on the completeness of the RTLS data. Patients were excluded if their RTLS records were 

unavailable throughout their hospitalization (n=167) or the RTLS data of fall patients were not recorded 

prior to the fall event (n=4). After establishing this refined cohort, we applied an 8:2 random split to 

separate the data into training and testing datasets (Fig. 2). This study was approved by the Institutional 

Review Board of Yonsei University Severance Hospital (No. 9-2021-0037). 

 

4.2 Features engineering using clinical information extracted from EMR 

We collected and selected the initial EMR data of all admitted patients, including the standard set of 

measurements performed during admission considering the anthropometric variables, such as height, 

weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), and biochemical parameters 

including glucose, creatinine, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), bilirubin, blood urea nitrogen (BUN), calcium and lipid profiles, and complete 

blood count (CBC). The initial value was selected for model development in the case of repeated 

measurements. Hospitalization variables, such as the duration of admission and presence of ICU care, 
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were also determined. For non-fall patients, the study period was from admission to discharge, whereas 

for fall patients, it was from admission to the day of the fall. Additionally, we considered the dosage of 

two types of drugs—peridol and sedatives—owing to their influence on the movement of patients, 

resulting in 27 attributes. The department codes were categorized into four types based on the medical 

department characteristics, as outlined in Supplementary Table 3. Descriptions and abbreviations of 

EMR features are provided in Supplementary Table 4. 

 

4.3 RTLS-assisted feature engineering 

Variables from the RTLS records were formulated to measure the dynamics of daily patient movements, 

as shown in Fig. 6. Fig. 6a illustrates an example of the RTLS dataset for a hypothetical patient, where 

L and T represent the recorded location of the patient and time point, respectively. This dataset serves 

as the foundation for subsequent feature engineering steps. In all equations, k denotes the kth arbitrary 

row for each point of the same patient and n denotes the nth arbitrary day for each patient. 

The differences between the consecutive rows in the dataset were initially calculated. The 

earlier date and time between two consecutive rows, referred to as the index date and time, respectively, 

served as the reference points. Here, Latk and Lngk denote the latitude and longitude at location Lk, 

respectively. Consequently, the variation in distance was redefined using the haversine formula, 

considering the Earth’s radius (r) as 6371 km (1.1). This formula accounts for the curvature of the Earth 

and provides a more accurate measurement of the distance between two points29. The change in time 

was defined as Δ time (1.2). The ratio of these two values is defined as velocity, which represents a 

vector incorporating the magnitude and direction of movement (1.3). The results presented in Fig. 6b 

were derived using these computations. For calculation, the units of distance and time were meters and 

seconds, respectively. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 = 2𝑟 arcsin (√sin2 (
𝐿𝑎𝑡𝑘+1−𝐿𝑎𝑡𝑘

2
) + cos(𝐿𝑛𝑔𝑘) cos(𝐿𝑛𝑔𝑘+1) sin2 (

𝐿𝑎𝑡𝑘+1−𝐿𝑎𝑡𝑘

2
) ) (1.1) 

𝛥 𝑡𝑖𝑚𝑒𝑘 = 𝑇𝑘+1 − 𝑇𝑘     (1.2) 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘

𝛥 𝑡𝑖𝑚𝑒𝑘
     (1.3) 

Subsequently, the basic metrics were aggregated to create features. The sums of daily distance 
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and Δ time were defined as the daily total distance (2.1) and daily total estimated time (2.2), respectively. 

The ratio of these two sums was defined as the daily speed (2.3). Additionally, the daily maximum 

velocity and standard deviation were defined as the daily maximum movement velocity (2.4) and daily 

standard deviation of the velocity (2.5), respectively; the latter was used to examine fluctuations in 

patient movements30. These calculations yielded the results presented in Fig. 6c1. After excluding the 

total daily estimated time, the following four daily movement metrics were formulated: 

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦 = ∑ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘) 
𝑘 ∈ 𝑛 𝑡ℎ 𝑑𝑎𝑦      (2.1) 

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦 = ∑ (𝛥 𝑡𝑖𝑚𝑒𝑘)     
𝑘 ∈ 𝑛 𝑡ℎ 𝑑𝑎𝑦        (2.2) 

𝑑𝑎𝑖𝑙𝑦 𝑠𝑝𝑒𝑒𝑑𝑛 𝑡ℎ 𝑑𝑎𝑦 =
𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦
     (2.3) 

𝑑𝑎𝑖𝑙𝑦 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑛 𝑡ℎ 𝑑𝑎𝑦 = 𝑀𝐴𝑋𝑛 𝑡ℎ 𝑑𝑎𝑦(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘)      (2.4) 

𝑑𝑎𝑖𝑙𝑦 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑛 𝑡ℎ 𝑑𝑎𝑦 = 𝜎𝑛 𝑡ℎ 𝑑𝑎𝑦(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘)      (2.5) 

From the velocity data of the entire study population, we analyzed the distribution of all 

velocities and identified the following three significant thresholds: the top 20% of velocities at 1.18 m/s 

corresponding to the normal walking speed of adults31, median velocity at 0.26 m/s, and lower 20% of 

velocities at 0.02 m/s representing minimal movement. We calculated the duration for which each 

patient moved at a speed above these thresholds. Accordingly, the daily top 20% and 50% active 

movement ratios were defined as the duration for which each patient moved at a speed above 1.18 m/s 

(3.1) and 0.26 m/s (3.2), respectively. The daily not moving ratio (3.3) was defined as the duration for 

which each patient moved at a speed below 0.02 m/s, indicating minimal or no movement. The 

calculation results are shown in Fig. 6c2. The following three daily activity ratios were engineered based 

on the velocity thresholds: 

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑝 20% 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ 𝑑𝑎𝑦 =
𝛴𝑘: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘≥ 1.18 (𝛥 𝑡𝑖𝑚𝑒𝑘)

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦
 ×  100  (3.1) 

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑝 50% 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ 𝑑𝑎𝑦 =
𝛴𝑘: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘≥ 0.26 (𝛥 𝑡𝑖𝑚𝑒𝑘)

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦
 ×  100  (3.2) 

𝑑𝑎𝑖𝑙𝑦 𝑛𝑜𝑡 𝑚𝑜𝑣𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ 𝑑𝑎𝑦 =
𝛴𝑘: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑘≤ 0.02 (𝛥 𝑡𝑖𝑚𝑒𝑘)

𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒𝑛 𝑡ℎ 𝑑𝑎𝑦
 ×  100    (3.3) 

Finally, these metrics were compiled across multiple days during the stay of each patient (Fig. 
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6d). We included values from the first and last days, as well as the averages and medians of each feature 

over the duration to demonstrate the dynamics of patient movement. This resulted in a comprehensive 

set of 28 RTLS-based features for each patient. Further descriptions of each RTLS feature are 

summarized in Supplementary Table 5. 

 

4.4 Data imputation 

The process of enhancing the accuracy of in-hospital fall prediction commenced by addressing the issue 

of missing data, which is a common problem in data analysis that can lead to erroneous estimations. 

Detailed counts of missing values in the EMR data are presented in Supplementary Table 4. The KNN 

algorithm, known as the KNN imputation technique, was employed as the initial step to effectively 

impute missing values32. 

 

4.5 Development and optimization of the prediction model 

The modeling was performed using the XGBoost algorithm. To further refine the selected model, we 

incorporated 10-fold cross-validation (CV) and GridSearch for hyperparameter optimization. The 

Youden index was derived from an optimal model to assess the diagnostic ability. Using 27 clinical and 

28 RTLS features, we developed the following three distinct models: the first using only clinical 

features (clinical model), the second using only RTLS features (RTLS model), and the third combining 

both the feature sets (clinical + RTLS model). 

 

4.6 Performance assessment 

To quantify and compare the performances of the three models on the test set, we employed 

bootstrapping with 1000 iterations to assess the performance at each iteration using various metrics. 

The performances were compared using the AUROC, AUPRC, and Brier scores. Subsequently, a 

detailed comparison was performed using the Youden index, which encompasses the accuracy, PPV, 

sensitivity, specificity, and F1 score. 

Additionally, we employed DCA to compare the three models and determine clinical utility33. 

The net benefit refers to the balance between the true- and false-positive predictions for assessing the 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.11.24304095doi: medRxiv preprint 

https://paperpile.com/c/AihW0V/j3OQ
https://paperpile.com/c/AihW0V/eLm4
https://doi.org/10.1101/2024.03.11.24304095


model's predictive accuracy. Furthermore, SHAP values were used to identify the relative importance 

of the variables influencing the three models34. 

 

4.7 Statistical analysis 

To discern the statistical variations in patient characteristics, the data were first assessed using the 

Shapiro–Wilk test for normality. For binary attributes, the chi-square test was used to determine the 

statistical significance. For continuous variables, a suitable test was determined based on data 

distribution. The t-test and Mann–Whitney U test were applied when the data adhered to a normal and 

non-normal distribution, respectively. The Kruskal–Wallis test performed a nonparametric comparison 

of the distributions of outcome values across the three models. Subsequently, a post-hoc analysis was 

performed using the Bonferroni adjustment in conjunction with Dunn's test to compare the significance 

across specific subgroups. Different levels of statistical significance are denoted in the plots as follows: 

an asterisk (*) for p-values less than 0.05, double asterisks (**) for p-values < 0.01, and triple asterisks 

(***) for p-values < 0.001.  
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Table 1. Baseline characteristics of patients. 

 Overall 

(n=561) 

Fall 

(n=118) 

Non-fall 

(n=443) 
P-value 

Sex    0.003 

Female 266 (47.4%) 41 (34.7%) 225 (50.8%)  

Male 295 (52.6%) 77 (65.3%) 218 (49.2%)  

Age (years) 71.0 [60.0-80.0] 73.0 [65.0-81.0] 70.0 [59.0-79.0] 0.014 

Duration (days) 5.0 [3.0-11.0] 7.5 [3.0-16.0] 5.0 [2.0-9.0] 0.003 

Department code    0.019 

Medicine 335 (59.7%) 81 (68.6%) 254 (57.3%)  

Major surgery 167 (29.8%) 29 (24.6%) 138 (31.2%)  

Minor surgery 58 (10.3%) 7 (5.9%) 51 (11.5%)  

Others 1 (0.2%) 1 (0.8%) 0 (0.0%)  

ICU admission 35 (6.2%) 13 (11.0%) 22 (5.0%) 0.028 

SBP (mmHg) 128.6 (21.5) 128.7 (23.6) 128.5 (21.0) 0.946 

DBP (mmHg) 77.2 (13.8) 77.2 (13.6) 77.2 (13.9) 0.999 

Pulse rate (/min) 75.7 (15.5) 79.0 (15.1) 74.8 (15.6) 0.009 

BMI (kg/m2) 23.7 (3.9) 23.0 (3.9) 23.8 (3.8) 0.04 

Sedative 126 (22.5%) 51 (43.2%) 75 (16.9%) <0.001 

Peridol 42 (7.5%) 15 (12.7%) 27 (6.1%) 0.026 

Albumin, (g/dL) 3.9 (0.6) 3.8 (0.6) 3.9 (0.7) 0.137 

ALP (IU/L) 97.5 (86.9) 98.7 (76.4) 97.1 (90.2) 0.853 

ALT (IU/L) 31.8 (75.6) 24.6 (24.0) 34.1 (85.7) 0.058 

AST (IU/L) 40.6 (60.7) 37.1 (36.3) 41.8 (66.7) 0.336 

Total bilirubin (mg/dL) 0.9 (1.6) 0.9 (1.6) 0.9 (1.6) 0.802 

BUN (mg/dL) 22.1 (17.4) 23.4 (15.6) 21.7 (17.9) 0.324 

Calcium (mg/dL) 8.7 (0.7) 8.7 (0.7) 8.7 (0.6) 0.875 

Total cholesterol (mg/dL) 150.6 (45.9) 145.8 (45.3) 152.2 (46.1) 0.187 

Creatinine (mg/dL) 1.3 (1.8) 1.5 (2.1) 1.2 (1.7) 0.181 

Glucose (mg/dL) 141.4 (74.1) 149.2 (77.1) 138.9 (73.1) 0.205 

HCT (%) 36.5 (6.8) 35.5 (6.7) 36.9 (6.8) 0.059 

Hemoglobin (g/dL) 12.2 (2.4) 11.9 (2.4) 12.3 (2.4) 0.09 

Phosphate (mg/dL) 3.4 (1.0) 3.3 (0.8) 3.5 (1.1) 0.053 

Total protein (g/dL) 6.4 (0.8) 6.4 (0.8) 6.4 (0.8) 0.474 

RDW (%) 13.7 (2.4) 14.4 (2.8) 13.5 (2.2) 0.003 

Uric acid (mg/dL) 5.1 (2.2) 5.2 (2.2) 5.0 (2.2) 0.462 

Average of daily total 

distance (m) 

4610.1 [2821.7-

6530.0] 

4410.2 [2586.5-

5979.2] 

4683.6 [2832.7-

6640.5] 
0.225 

Average of daily speed 

(m/s) 
0.07 [0.05-0.11] 0.06 [0.04-0.09] 0.08 [0.05-0.11] 0.023 

Average of daily max 

velocity (m/s) 
20.3 [14.2-31.2] 19.9 [14.5,29.3] 20.4 [14.2-32.3] 0.441 

Average of daily standard 

deviation of velocity (m/s) 
2.2 [1.7-3.2] 2.3 [1.6-3.2] 2.2 [1.7-3.2] 0.854 
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Data are presented as median (IQR) for non-normally distributed variables, mean (SD) for normally 

distributed variables, and n (%) for categorical variables. Units are specified next to each variable. The 

Shapiro–Wilk test was used to evaluate the normality of continuous variables. For binary attributes, the 

statistical significance was assessed using the chi-square test. For non-binary continuous variables, the 

t-test was employed to meet the normality criteria, whereas the Mann–Whitney U test was applied to 

data not adhering to a normal distribution. ICU: intensive care unit; SBP: systolic blood pressure; DBP: 

diastolic blood pressure; BMI: body mass index; ALP: alkaline phosphatase; ALT: alanine 

aminotransferase; AST: aspartate aminotransferase; BUN: blood urea nitrogen; HCT: hematocrit; RDW: 

red blood cell distribution width. 
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Table 2. Comparative performances of the three models. 

Model 
Youden 

index 
AUROC AUPRC Brier score 

Clinical model 0.298 
0.699 

(0.592-0.794) 

0.423 

(0.250-0.590) 

0.159 

(0.124-0.196) 

RTLS model 0.428 
0.813 

(0.703-0.903) 

0.565 

(0.365-0.741) 

0.133 

(0.093-0.174) 

Clinical + RTLS 

model 
0.376 

0.847 

(0.764-0.917) 

0.667 

(0.472-0.816) 

0.120 

(0.083-0.162) 

 

Displayed values are the performance metrics for the clinical, RTLS, and clinical + RTLS models, with 

95% confidence intervals (CIs) in parentheses. RTLS: real-time location system; AUROC: area under 

the receiver operating characteristic curve; AUPRC: area under the precision-recall curve. 
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Main figure titles and legends 

Fig. 1. Overall research flow. 

a, Patient selection and data extraction. Selection of study participants admitted to Yongin Severance 

Hospital and extraction of data from the EMR and RTLS databases. b, Preprocessing 27 features from 

the EMR database. c, Preprocessing 28 features from the RTLS database reflecting the physical 

activities of patients. d, Development of a machine-learning-based prediction model for falls during 

hospitalization based on the preprocessed data by employing the XGBoost algorithm. EMR: electronic 

medical record, RTLS: real-time location system, KNN imputation: k-nearest neighbor imputation, 

XGBoost: the extreme gradient boost algorithm. 

 

Fig. 2. Patient selection flowchart. 

RTLS: real-time location system. 

 

Fig. 3. Graphical performance evaluation of the three models. 

Performance comparison of the three models using AUROC, AUPRC, and Brier score metrics based on 

1000 bootstrap resampling. Results are presented with 95% confidence intervals. Statistical significance 

was assessed using the Kruskal–Wallis test followed by Dunn's post-hoc test, with significance levels 

indicated on the graph. The clinical, RTLS, and clinical + RTLS models are denoted in green, blue, and 

red, respectively. AUROC: area under the receiver operating characteristics curve; AUPRC: area under 

the precision recall curve; CI: confidence interval. 

 

Fig. 4. Visualizing feature importance for the combined clinical + RTLS model using SHAP values. 

Impact of the top 20 features on model prediction, ranked based on SHAP values. The y-axis displays 

features in the order of decreasing impact, whereas the x-axis quantifies their SHAP values, with the 

color intensity ranging from blue for lower values to red for higher values. total_distance(m)_last: total 

distance moved (in meter) on the last day of RTLS recording; top50%_active_last: ratio of time spent 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.11.24304095doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.11.24304095


in the top 50% of active movements on the last day of RTLS recording; max_velocity(m/s)_median: 

median of daily maximum velocities recorded throughout hospitalization; velocity_std(m/s)_last: 

standard deviation of velocities on the last day of RTLS recording; top20%_active_last: ratio of time 

spent in the top 20% of active movements on the last day of RTLS recording; velocity_std(m/s)_mean: 

mean of daily velocity standard deviations throughout hospitalization; not_moving_ratio_median: 

median of the daily ratios of time spent without movement throughout hospitalization; 

max_velocity(m/s)_mean: mean of daily maximum velocities recorded throughout hospitalization; AST: 

aspartate aminotransferase; HCT: hematocrit, RDW: red cell distribution width; SHAP value: Shapley 

additive explanations value. 

 

Fig. 5. DCA of each model performance. 

Decision curve analysis comparing the models based on net benefit across decision thresholds. Net 

benefit quantifies the trade-off between the benefit of true positives and harm of false positives. The 

clinical, RTLS, and clinical + RTLS models are denoted in green, blue, and red, respectively. RTLS: 

real-time location system. 

 

Fig. 6. Overall flow of RTLS features engineering. 

a, Original RTLS dataset from patient ID A001. Example of a virtual patient's movements across five 

locations within the facility (L1 to L5) tracked by the RTLS dataset following the sequence indicated 

by arrows. b, Physical variables derived from an individual. Calculation process for distance, Δ time, 

and velocity using the latitude, longitude, date, and time via Eq. 1 (1.1–1.3). c, Feature Engineering. c1: 

Feature engineering of daily movement metrics using distance, Δ time, and velocity to engineer daily 

total distance, daily total estimated time, daily speed, daily maximum movement velocity, and daily 

standard deviation of velocity using Eq. 2 (2.1–2.5), respectively. c2: Feature engineering of the daily 

activity ratio. Engineering the daily top 20% active movement ratio, daily top 50% active movement 

ratio, and daily not moving ratio using Δ time and velocity via Eq. 3 (3.1–3.3). Temporal aggregation 
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for feature engineering. Aggregation of seven core features into 28 RTLS features by calculating the 

first and last day values, along with the mean and median values for each feature.   
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Fig. 1. Overall research flow. 
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Fig. 2. Patient selection flowchart. 
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Fig. 3. Graphical performance evaluation of the three models. 
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Fig. 4. Visualizing feature importance for the combined clinical + RTLS model using SHAP values. 
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Fig. 5. DCA of each model performance. 
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Fig. 6. Overall flow of RTLS feature engineering. 
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