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• ROC: Receiver Operating Characteristic 
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ABSTRACT 

PURPOSE: To report a deep learning neural network on anterior segment optical coherence 

tomography (AS-OCT) for automated detection of different keratorefractive laser surgeries—

including Laser In-Situ Keratomileusis with femtosecond microkeratome (Femto-LASIK), LASIK 

with mechanical microkeratome, photorefractive keratectomy (PRK), keratorefractive 

lenticule extraction (KLEx), and non-operated eyes—while also distinguishing the targeted 

ametropias, such as myopic and hyperopic treatments, within these procedures. 

 

DESIGN: Cross-sectional retrospective study. 

 

METHODS: A total of 14,948 eye scans from 2,278 eyes of 1,166 subjects were used to 

develop a deep learning neural network algorithm with an 80/10/10 patient distribution for 

training, validation, and testing phases, respectively. The algorithm was evaluated for its 

accuracy, F1-scores, area under precision-recall curve (AUPRC), and area under receiver 

operating characteristic curve (AUROC). 

 

RESULTS: On the test dataset, the neural network was able to detect the different surgical 

classes with an accuracy of 96%, a weighted-average F1-score of 96% and a macro-average 

F1-score of 96%. The neural network was further able to detect hyperopic and myopic 

subclasses within each surgical class, with an accuracy of 90%, weighted-average F1 score of 

90%, and macro-average F1-score of 83%.  

 

CONCLUSIONS: Determining a patient's keratorefractive laser history is vital for customizing 

treatments, performing precise intraocular lens (IOL) calculations, and enhancing ectasia risk 
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assessments, especially when electronic health records are incomplete or unavailable. Neural 

networks can be used to accurately classify keratorefractive laser history from AS-OCT scans, 

a step in transforming the AS-OCT from a diagnostic to a screening tool in the refractive clinic.  
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INTRODUCTION 1 

Optical coherence tomography (OCT), a noncontact imaging technique, has revolutionized 2 

the visualization of biological tissues in vivo (1). Its ability to generate detailed cross-sectional 3 

images with quasi-histological resolution has been pivotal in the noninvasive clinical 4 

assessment of ocular structures, notably the cornea and anterior eye segment (2).  The 5 

evolution of OCT, specifically anterior segment OCT (AS-OCT), aligns closely with the growing 6 

prevalence of corneal refractive surgeries. AS-OCT has emerged as a crucial tool in clinical 7 

practice, offering unparalleled accuracy in pre-operative diagnostics, surgical planning, and 8 

enhanced intra-operative imaging. It also plays a significant role in the post-operative 9 

evaluation and disease management (2), exemplified by its capacity to visualize the laser-10 

assisted in situ keratomileusis (LASIK) flap during the early postoperative period (1). 11 

 12 

In parallel, the field of artificial intelligence (AI), particularly deep learning, has seen a 13 

remarkable integration into AS-OCT applications. This integration marks a notable departure 14 

from the traditional focus on retinal OCT, expanding the scope of AI in ocular diagnostics. 15 

These advancements have proven effective in a range of clinical applications, from automated 16 

measurements such as ICL vault estimation (3,4), to sophisticated disease detection (5–7), 17 

and even in the creation of synthetic yet realistic corneal OCT images using deep learning (8).  18 

 19 

A crucial aspect of clinical ophthalmology involves the accurate determination of a patient's 20 

surgical history, particularly in refractive surgery. This information is essential not only for 21 

tailoring subsequent treatments but also for precise intraocular lens (IOL) calculations in 22 

cataract surgery and informing ectasia risk assessment algorithms (9,10). 23 
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The identification of a patient’s keratorefractive laser surgical history becomes paramount in 24 

cases where electronic health records are unavailable or incomplete. OCT B-scans provide a 25 

wealth of information in this regard. For instance, in LASIK patients, the presence of a flap in 26 

the anterior cornea, with distinct characteristics based on the cutting technique—27 

femtosecond or microkeratome—can be identified. Mechanical keratomes usually produce 28 

meniscal flaps with deeper peripheral penetration and a more variable flap thickness (11,12), 29 

whereas femtosecond keratomes create flaps with uniform square peripheral edges with 30 

consistent and more predictable thickness across the cornea (13–16). In contrast, 31 

keratorefractive lenticule extraction (KLEx) surgeries exhibit a cap interface, without 32 

peripheral corneal surface penetration except at the small side-cut incision, differing from the 33 

LASIK hinge (17). In parallel, photorefractive keratectomy (PRK) and Phototherapeutic 34 

Keratectomy (PTK) treatments are characterized by the absence of Bowman’s layer, without 35 

any flap or interface (18).  36 

 37 

This manuscript introduces a deep-learning neural network tailored for AS-OCT, devised for 38 

the automated detection and classification of various keratorefractive laser surgeries. The 39 

aim was for the network to categorize OCT B-scans into broad surgical classes, including non-40 

operated eyes, femto-LASIK, mechanical LASIK, PRK/PTK, and KLEx, and to further 41 

discriminate between myopic and hyperopic corrections within each surgery class. 42 

 43 

METHODS 44 

Study Design and Ethical Compliance 45 

This retrospective study analyzed anonymized OCT data from four international centers: the 46 

American University of Beirut (AUBMC), Lebanon; London Vision Clinic, United Kingdom; 47 
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Muscat Laser Eye Center, Oman; and Aurelios Augenzentrum, Germany. Ethical approval was 48 

granted by the Institutional Review Board at AUBMC (IRB ID: BIO-2022-0038). Exemption from 49 

IRB was granted at the London Vision Clinic and Aurelios Augenzentrum. At Muscat Eye Laser 50 

Center, informed consent was obtained, as per routine, for using anonymized clinical data for 51 

research. Our study conforms to the principles of the Declaration of Helsinki and written 52 

informed consent was obtained from all patients prior to any procedure.   53 

Patient Selection and Data Preparation 54 

The study encompassed preoperative and postoperative AS-OCT scan data from patients who 55 

underwent various types of keratorefractive laser surgeries. Eligibility for inclusion required 56 

that AS-OCT scans be conducted utilizing the MS-39 platform (CSO, Florence, Italy) and that 57 

participants had undergone one of the following keratorefractive surgeries: Femto-LASIK, 58 

LASIK with mechanical microkeratome, PRK/PTK, or KLEx, as well as those classified as non-59 

operated eyes for normal control. KLEx surgeries included corneal lenticule extraction for 60 

advanced refractive correction (CLEAR, Ziemer) and small-incision lenticule extraction (SMILE, 61 

Carl Zeiss Meditec AG). Additionally, the type of ablation (myopic or hyperopic) was 62 

determined by the spherical equivalent correction (SE) value. Exclusion criteria included 63 

patients with multiple laser surgeries in the same eye, significant image artifacts, or minor 64 

refractive corrections (SE less than 1 diopter) since their changes on OCT might be too subtle 65 

to detect.  66 

Data Allocation and Preprocessing 67 

Data were allocated to training, validation, or testing sets, ensuring no patient overlap across 68 

sets to prevent data leakage (19). The division ratio of patients was 80% training, 10% 69 

validation, and 10% testing. Radial B-scan images from varying angles were collected. 70 

Minority classes were oversampled for balanced representation. Image preprocessing 71 
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included cropping to a 10mm corneal section, resizing to 512 x 512 pixels, and normalization 72 

using the training dataset’s color channel statistics. Data augmentation involved random 73 

alterations in rotation, contrast, and brightness. 74 

Deep Learning Model Architecture and Training 75 

A convolutional neural network utilizing the ResNet18 architecture was employed (20). The 76 

model was pre-trained on ImageNet, a comprehensive image database, to facilitate high-level 77 

image feature detection (21). Transfer learning from a pre-trained model expedites training 78 

and reduces data requirements. The ResNet18 convoluted neural network (CNN) connected 79 

to a 512-neuron dense layer with 40% dropout regularization and an 8-neuron output layer, 80 

correlating to the various surgical classes. The model had 11, 710, 024 trainable parameters. 81 

Training involved 100 epochs, weighted cross-entropy loss, AdamW optimization, and a batch 82 

size of 32. Patient class ratios weighted the loss function.  83 

Optimization and Implementation 84 

Optimal learning rates were determined through a range test (22), with discriminative fine-85 

tuning applied to the ResNet18 layers (23). The '1cycle' learning rate scheduler was used for 86 

efficiency (24). The model was implemented in Python using PyTorch (version 1.13.1+cu117) 87 

(25) and parallelized on 2 RTX 3080 GPUs (NVIDIA, USA), donated by Hugging Face (New York, 88 

USA).  89 

Evaluation and Statistical Analysis 90 

The model’s performance was evaluated against the validation set after each epoch to 91 

monitor for overfitting. The model at the iteration with minimal validation loss was further 92 

assessed on the independent test set.  93 

Comprehensive statistical evaluations were facilitated by the TorchMetrics package (version 94 

0.9.3), incorporating a suite of metrics. Among these, receiver operating characteristic (ROC) 95 
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curves plot the true positive rate against the false positive rate at varied threshold settings, 96 

elucidating the model's discriminative capacity between classes. Precision-recall (PR) curves, 97 

mapping the precision (the ratio of true positive results to all positive predictions) against 98 

recall (the ratio of true positive results found in all relevant instances), are particularly 99 

insightful for models trained on imbalanced datasets. 100 

The F1 score, harmonizing precision and recall, was computed in two variations: macro and 101 

weighted. The macro F1 score averages the F1 scores of each class, treating all classes equally 102 

regardless of their sample size. Conversely, the weighted F1 score accounts for class 103 

imbalance by weighting each class's F1 score by its presence in the dataset, offering a measure 104 

that reflects the model's performance across the unevenly distributed classes. 105 

Further, we calculated both macro and weighted one-vs-one AUC scores to evaluate the 106 

model's performance. The macro-AUC score averages the area under the ROC curve for each 107 

class, disregarding class imbalance, thus providing a generalized metric of the model's ability 108 

to classify each class against the rest. The weighted one-vs-one AUC score, on the other hand, 109 

computes the AUC for each pairwise class comparison, weighting the contribution of each 110 

class pair by the prevalence of the respective classes in the dataset. This nuanced metric offers 111 

insight into the model's classification prowess, particularly in distinguishing between similar 112 

classes in an imbalanced dataset. 113 

Additional metrics, such as overall accuracy and confusion matrices, rounded out the 114 

evaluation, providing a multidimensional view of the model’s predictive performance. 115 

Model Output Contextualization 116 

In our analysis, we initially developed an 8-class model to meticulously classify 117 

keratorefractive surgeries by both procedure type and the ametropia addressed. The 118 

categories delineated were pre-operative, myopic Femto-LASIK, hyperopic Femto-LASIK, 119 
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myopic mechanical LASIK, hyperopic mechanical LASIK, myopic PRK or PTK, hyperopic PRK or 120 

PTK, and KLEx. This detailed classification scheme allowed for a nuanced understanding of the 121 

model’s ability to distinguish among a broad spectrum of keratorefractive surgeries. 122 

Subsequently, to streamline the model’s utility for broader applications, we condensed the 8-123 

class model into a 5-class variant. This consolidation was achieved by merging categories 124 

based on the type of procedure while disregarding the specific ametropia treated. Hence, 125 

myopic and hyperopic Femto-LASIK were combined into a single Femto-LASIK category, 126 

similarly for mechanical LASIK, and PRK/PTK categories, leading to a simplified classification 127 

comprising pre-operative, Femto-LASIK, mechanical LASIK, PRK/PTK, and KLEx. This approach 128 

underscores that the model’s robustness in the detailed 8-class variant directly substantiates 129 

its validity for the more generalized 5-class model. 130 

Given that the model's decision-making process is based on individual B-scan images and 131 

considering that multiple radial B-scans are available per patient, a majority selection 132 

algorithm was incorporated for eye-level classification. This entails aggregating individual B-133 

scan predictions in a voting mechanism to determine the predominant classification for each 134 

eye. 135 

 136 

RESULTS 137 

A total of 14,948 OCT B-scans from 2,278 eyes of 1,166 patients were used for the analysis. 138 

Table 1 provides the number of B-scans, patients, and eyes for each of the surgical classes. 139 

The training set consisted of 12,109 OCT B-scans from 1812 eyes of 930 patients. The 140 

validation set consisted of 1452 scans of 233 eyes of 118 patients. Training was performed 141 

with a starting learning rate of 10e-3 and for a total of 40 minutes. The model with the lowest 142 
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validation loss was selected and tested using the testing set of 1387 eye-scans from 233 eyes 143 

of 118 patients. 144 

 145 

Class Patients Eyes Images 

Preop 410 807 3174 

Femto-LASIK – Myopic 170 329 1172 

Femto-LASIK – Hyperopic 90 173 1256 

Mechanical LASIK – Myopic 137 272 3551 

Mechanical LASIK – 

Hyperopic 
43 85 1150 

PRK/PTK – Myopic 147 285 1422 

PRK/PTK – Hyperopic 59 111 2433 

KLEx 110 216 790 

Total 1166 2278 14948 

Table 1: Database patient distribution across the different surgical classes and ametropia 146 

treated. 147 

 148 

For the analysis of the testing set, the 5-way prediction model for surgical classes achieved an 149 

accuracy of 96%, a macro F1 average of 96% and a weighted F1 average of 96% (Fig. 1A and 150 

Table 2A). The 8-way prediction model for surgical classes and ametropia treated achieved an 151 

accuracy of 90%, a macro F1 average of 83%, a weighted F1 average of 90% (Fig. 1B and Table 152 

2B). ROC curves and PR curves for the 8-way prediction model are shown in figures 2A and 153 

2B, respectively. The one-vs-one ROC AUC scores were 97.18% (macro) and 97.89% 154 

(weighted), and one-vs-rest ROC AUC scores were 97.64% (macro) and 98.63% (weighted). 155 
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 156 

Figure 1A:  5-way classification confusion matrix on the test set. 157 
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 158 

Figure 1B: 8-way classification confusion matrix on the test set. 159 

 160 

 PRECISION RECALL F1-SCORE 
NUMBER 
OF EYES 

PRE-OPERATIVE 0.97 1.00 0.98 83 

FEMTO-LASIK 0.96 0.96 0.96 50 

MECHANICAL LASIK 1.00 0.79 0.89 34 

PRK/PTK 0.92 1.00 0.96 44 

KLEx 1.00 1.00 1.00 22 
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ACCURACY   0.96 

233 MACRO AVG 0.97 0.95 0.96 

WEIGHTED AVG 0.96 0.96 0.96 

Table 2A: 5-way classification results on the test set. 161 

 PRECISION RECALL F1-SCORE 
NUMBER 
OF EYES 

PRE-OPERATIVE 0.97 1.00 0.98 83 

FEMTO-LASIK – MYOPIC 1.00 0.79 0.88 33 

FEMTO-LASIK – HYPEROPIC 0.71 1.00 0.83 17 

MECHANICAL LASIK – MYOPIC 1.00 0.77 0.87 26 

MECHANICAL LASIK – 
HYPEROPIC 

0.57 0.50 0.53 8 

PRK/PTK – MYOPIC 0.82 0.97 0.89 32 

PRK/PTK – HYPEROPIC 0.70 0.58 0.64 12 

KLEx 1.00 1.00 1.00 22 

     

ACCURACY   0.90 

233 MACRO AVG 0.85 0.83 0.83 

WEIGHTED AVG 0.91 0.90 0.90 

Table 2B: 8-way classification results on the test set. 162 

 163 
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164 

Figure 2A: 8-way ROC on the test set. 165 
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 166 

Figure 2B: 8-way PR curve on the test set. 167 

 168 

DISCUSSION 169 

This study has successfully developed a deep learning neural network that demonstrates 170 

proficiency in identifying a spectrum of keratorefractive laser surgeries from OCT B-scans. By 171 

leveraging transfer learning, the model adeptly managed dataset imbalances, showcasing a 172 

robust ability to classify between operative and non-operative eyes and to distinguish among 173 

specific types of surgeries. 174 

 175 

In the 5-way prediction model, the network achieved an impressive accuracy of 96%. Yet, 176 

LASIK surgeries performed with mechanical keratomes experienced slightly higher 177 
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misclassification rates. This trend may reflect the dataset's composition, wherein mechanical 178 

LASIK procedures generally precede those done with femtosecond technology, resulting in 179 

older, well-healed surgical flaps that pose detection challenges for the model. This scenario 180 

highlights the complexity of detecting certain procedures, especially older ones, where the 181 

passage of time may diminish the distinctiveness of surgical signatures on OCT scans. 182 

 183 

In the 8-way prediction, the network displayed capability in discerning the correction type 184 

within each surgical class, although with slightly diminished accuracy (90%), especially for the 185 

hyperopic variations of mechanical LASIK and PRK. These specific surgeries, being less 186 

common in our dataset, underscore the challenges posed by class imbalance and data 187 

scarcity. Attempts to mitigate this through transfer learning and adjusted loss function 188 

weighting were somewhat effective. The detection challenges are further exacerbated in 189 

hyperopic PRK cases due to the peripheral nature of the ablation and reduced OCT signal at 190 

the cornea’s edges due to increased angle of incidence, complicating the identification of 191 

Bowman’s layer changes. In such cases, a hyperopic PRK B-scan will be very similar to a normal 192 

patient. However, the model did not confuse both classes and the main errors arose in 193 

distinguishing myopic and hyperopic variations among each surgery. 194 

 195 

An essential aspect of refining our model's accuracy involves understanding the subtle 196 

distinctions between different keratorefractive treatments, particularly when distinguishing 197 

between myopic and hyperopic corrections. This involves analyzing corneal epithelial 198 

thickness variations. Myopic ablations typically present with a compensatory thicker central 199 

epithelium (26), whereas hyperopic ablations exhibit thinner central epithelium due to 200 

induced corneal steepening (27,28). In PRK corrections, hyperopic treatments typically spare 201 
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Bowman’s layer in the very center, while myopic PRK treatments ablate Bowman’s layer along 202 

all of the optical zone. 203 

To illustrate these distinctions further, Figure 3 presents OCT B-scans of various 204 

keratorefractive procedures, applanated along the anterior corneal curvature, highlighting 205 

the range of surgeries addressed in this study. Applanation enhances the visualization of 206 

variations in epithelial thickness and provides tomographic views of flap and cap interfaces. 207 

 208 

Figure 3: OCT B-scans depicting various keratorefractive procedures, applanated along the 209 

anterior corneal curvature. Arrows outline the flap/cap interfaces. 210 

 211 

A. Pre-operative scan demonstrates peripheral signal reduction due to an increased angle 212 

of incidence, leading to diminished visualization of the peripheral Bowman’s bilaminar 213 

membrane. 214 
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 215 

B. Femto-LASIK with myopic correction showcases a centrally thickened epithelium, a 216 

characteristic result of myopic ablation. 217 

 218 

C. Femto-LASIK with hyperopic correction reveals peripheral epithelial thickening, 219 

indicative of the corneal steepening associated with hyperopic ablation. 220 

 221 
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D. Hyperopic LASIK using a mechanical keratome is characterized by a peripherally curved 222 

meniscal flap, distinguishing it from planar square-edged femtosecond-created flaps. 223 

 224 

E. PRK with myopic ablation, characterized by the absence of Bowman’s membrane. 225 

 226 

F. PRK with hyperopic ablation is notable for peripheral epithelial thickening, contrasting 227 

with myopic ablation. After hyperopic correction, the Bowman’s bilaminar membrane 228 

typically remains intact centrally. 229 
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 230 

G. SMILE (KLEx) surgery. Unlike LASIK, the cap does not penetrate through the surface of 231 

the cornea in this section. 232 

 233 

The sole reliance on B-scans is a notable limitation of this study. While radial B-scans yield a 234 

wealth of information, integrating tomographic parameters such as pachymetry, epithelial 235 

thickness, and corneal curvature could enrich the model's understanding of the cornea's 236 

refractive status. The majority voting mechanism used for classification does not consider 237 

spatial dependencies inherent in these scans, which could be addressed by a network 238 

architecture that integrates all B-scans collectively. 239 

Enhancements to the data preprocessing approach, such as applanating the cornea, could 240 

sharpen our focus on variations in central and paracentral epithelial thickness—key indicators 241 

for distinguishing between myopic and hyperopic corrections (27,28). Furthermore, exploring 242 

the estimation of the extent of ablation performed on the cornea as well as the presence of 243 

a mixed astigmatism correction could serve as valuable features for future investigations. 244 

Furthermore, evolving our model to detect multiple sequential surgeries, including a primary 245 

LASIK followed by a PRK touch-up, or even enhancements via flap lift, also emerges as an 246 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.08.24304001doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.08.24304001
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

23 

important next step. Such developments would require a meticulously labeled dataset, 247 

encompassing cases with these specific surgical histories. 248 

 249 

Despite the outlined limitations, the model demonstrates significant promise, with minimal 250 

errors observed in its classifications. Future work will aim to automate the segmentation of 251 

LASIK flaps and lenticule cap interfaces, enhancing the utility of this model in post-operative 252 

assessments. 253 

 254 

In conclusion, this study presents a significant advancement in the application of deep 255 

learning in refractive surgery, specifically in the identification and classification of 256 

keratorefractive laser surgeries through OCT. Our model demonstrates robust performance 257 

and offers a promising foundation for further refinement and application. By addressing the 258 

outlined limitations and exploring the proposed enhancements, future iterations of this 259 

model have the potential to substantially improve post-operative assessments and contribute 260 

to more personalized patient care strategies.  261 
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