2 3 **Article Title:** Transcriptomic profile of normal breast tissue post-mifepristone treatment: 4 secondary outcomes of a randomized controlled trial 5 Deborah Utjés^{1,4}¶, Nageswara Rao Boggavarapu¹¶, Mohammed Rasul^{1,2}, Isabelle Koberg¹, 6 7 Alexander Zulliger¹, Sakthivignesh Ponandai-Srinivasan¹, Carolina von Grothusen¹, 8 Parameswaran Grace Lalitkumar¹, Kiriaki Papaikonomou^{1,4}, Twana Alkasalias^{1,3*} and Kristina 9 Gemzell-Danielsson^{1,4,5*} 10 11 ¹Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden. ²Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International 12 13 University, Erbil, Kurdistan Region, Iraq 14 ³General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdi-15 stan Region, Iraq. 16 ⁴Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 17 Stockholm, Sweden 18 ⁵WHO Collaborating Centre, Division of Gynecology and Reproduction, Karolinska University 19 Hospital, Stockholm, Sweden. 20 ¶Equally contributed authors. 21 * Equally contributed authors 22 23 24 25

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

26 **Corresponding Author:** 27 Twana Alkasalias 28 Assistant professor, Ph.D. in cell and tumor biology, Department of Women's and Children's 29 Health, Karolinska Institutet 30 Biomedicum 4A, Solnavägen 9, 17165, Solna, Stockholm, Sweden 31 Phone: +46 7 39 5581 29 32 Email: twana.alkasalias@ki.se 33 34 35 36 **Author contributions** 37 **DU**: study design, data collection, interpretation, and manuscript writing. **NB**: data acquisition, 38 designed experiments and analyzed RNA seq data. MR, IK, AZ, SPS, and CvG: Experimental 39 work, and manuscript reviewing. PGL: study design, material collection, manuscript writing 40 and reviewing KP: material collection, manuscript writing and reviewing. TA: Conception, 41 study design, data collection & visualization, analysis, interpretation, and manuscript writing. 42 **KGD**: Conception, study design, sample collection, critical comments, manuscript writing and 43 funding. 44 45 46 47 48 49 50

51 Running Title: Impact of mifepristone on breast tissue 52 53 Article type: Clinical trial 54 55 Funding Statement: This study was funded by the Swedish Research Council (2012-01981, 56 2017-00932), the Swedish Cancer foundation (5321-9416) and the joint grant from Stockholm 57 County Council and Karolinska Institutet (ALF). 58 59 **Disclosure Statement:** The authors have no potential conflicts of interest. 60 61 62 Data Sharing Statement: The raw data and processed data files were submitted to Gene 63 Expression Omnibus database with the GEO accession ID GSE252145 (for reviewer access please go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE252145, Enter token 64 65 qfqnyscmvzmzjcp into the box). 66 67 68 **Trial registration:** 69 Clinical Trial Registration Number: NCT01931657 70 URL: https://classic.clinicaltrials.gov/ct2/show/NCT01931657 71 Date of registration: 20/07/2009 72 Date of enrollment of the first subject: 24/11/2009 73 74 75

Capsule:

77 Mifepristone may provoke a protective effect against breast carcinogenesis; an enrichment in

extracellular matrix signaling pathways and an association with breast cancer, particularly

progesterone receptor positive cases, were observed.

Abstract

Progesterone receptor antagonism is gaining attention due to progesterone's recognized role as a major mitogen in breast tissue. Limited but promising data suggest the potential efficacy of antiprogestins in breast cancer prevention. The present study presents secondary outcomes from a randomized controlled trial and examine changes in breast mRNA expression following mifepristone treatment in healthy women. We analyzed 32 paired breast biopsies from 16 healthy premenopausal women at baseline and after two months of mifepristone treatment. In total, twenty-seven differentially expressed genes were identified, with enriched biological functions related to extracellular matrix remodeling. Notably, the altered gene signature induced by mifepristone *in vivo* was rather similar to the *in vitro* signature. Furthermore, this expression gene signature was associated with breast carcinogenesis and significantly correlated with progesterone receptor expression status in breast cancer, as validated in The Cancer Genome Atlas dataset using the R2 platform. The present study is the first to explore the breast transcriptome following mifepristone treatment in healthy breast tissue *in vivo*, enhancing the understanding of progesterone receptor antagonism and its potential protective effect against breast cancer by investigating its action in healthy breast tissue.

Keywords

Mifepristone, progesterone signaling, progesterone receptor antagonist, breast cancer

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Introduction The majority of breast cancers are related to reproductive factors (1), implicating endogenous cyclic hormonal exposure affecting breast tumorigenesis. Progesterone has emerged as a major mitogen since proliferation of breast epithelial cells occur during the progesterone-dominated luteal phase (2-4). Among different epithelial cell subtypes, the luminal progenitors serve as breast cancer precursor cell (5). Progesterone acts primarily via a paracrine mechanism to stimulate proliferation of the dominating progesterone receptor (PR)-negative breast cells (2), largely mediated by the downstream mediators RANK-L and WNT4 (3, 6, 7). High mammographic density (HMD) is another important risk factor of breast cancer (8, 9). Therefore, the architecture and the crosstalk between the stroma including the extracellular matrix (ECM) and epithelial cells in the context of progesterone exposure, play a vital role in breast cancer initiation process. The mitogenic action of progesterone can be counteracted by PR modulators. There is promising but limited data suggesting the potential efficacy of antiprogesterone in breast cancer prevention (10, 11). Nevertheless, numerous studies have investigated the use of a low continuous dose of antiprogesterone in benign gynecological conditions and breast cancer treatment (12). We hypothesized that antagonizing progesterone signaling may protect against breast carcinogenesis, warranting further clinical and molecular investigations. As a secondary outcome of our randomized controlled trial (RCT) (13), we studied the effects of the PRantagonist mifepristone on normal breast tissue following two months of treatment in healthy premenopausal women.

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Materials and methods This study reports the secondary outcome of a prospective, double blind, placebo-controlled RCT with the main outcome to study the impact of pretreatment with a continuous low dose of mifepristone on menstrual bleeding patterns in women opting for a levonorgestrel releasing intrauterine device for contraception where the results are published by our group elsewhere (13). The secondary outcome presented here, was to investigate the effect of mifepristone treatment on breast tissue. The study was conducted at Karolinska University Hospital, Stockholm, Sweden from 2009 until 2015 and was approved by the Swedish Medical Products Agency (EudraCT number 2009-009014-40). The study protocol was designed according to the recommendations in the CONSORT statement and was approved by the ethical committee at Karolinska Institutet (Dnr: 2009/144-31/4) prior to recruitment. The trial was registered at clinicaltrials.gov (NCT01931657). **Subjects** Eligible study subjects were healthy premenopausal women aged 18-43 years with regular menstrual cycles lasting 25-35 days and with no contraindications to any of the study treatments. All exclusion criteria are presented in the original study, including use of any hormonal or intrauterine contraception and pregnancy, or breastfeeding two months prior to the study or a history of breast cancer or other malignancies. The trial chart explains the details of the enrolled subjects in the current cohort (Figure S1) and baseline characteristics of the women contributing to paired breast biopsies analyses are presented in Table S1. Treatment Study subjects were randomized into two treatment groups (13). One group was treated with 50 mg mifepristone (one quarter of 200 mg Mifegyne®, Exelgyn) every other day for two

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

months (56 days) starting on the first day of the menstrual cycle. The comparator group received visually indistinguishable B-vitamin tablets (TrioBe® Recip) which were also divided into four parts. For the purpose of the present study, only paired breast samples from the mifepristone treated group were analyzed. Biopsy collection Core needle breast aspiration biopsies were collected at baseline and at the end of the treatment, under ultrasound guidance from the upper outer quadrant of one breast using a 14-gauge needle with an outer diameter of 2.2 mm. The collected breast tissue was divided into two parts, snapfrozen and stored at -180°C until further processing. In order to do a functional validation with an *in vitro* experiment, we used breast tissue samples from three additional healthy and premenopausal women undergoing mammoplasty procedure. This collection was performed according to a separate study, approved by the ethical committee at Karolinska Institutet (Dnr: 2021-04144) prior to recruitment. RNA extraction RNA extraction was performed from 16 paired samples (i.e. 32 samples) using the PurelinkTM RNA Micro kit in conjunction with TRIzol reagent (Life Technologies). For in vitro studies, the RNA extraction from primary breast cells was performed using Quick-DNA/RNATM Microprep Plus; Zymoresearch. RNA quantification was done using the Qubit RNA High Sensitivity Assay Kit (Invitrogen/ Thermo Fischer). cDNA library construction and sequencing Complementary DNA (cDNA) libraries for NGS were constructed from RNA for the 16 paired samples, before and after mifepristone treatment, using the well-established Smart-seq2

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

protocol (14), and been well optimized in our group (15). RNA-sequencing data processing and analysis Quality check of raw sequencing reads was done with FastQC and MultiQC (16). RNA sequencing (RNA-seq) data analysis was performed with the Partek Flow Genomic Analysis Software (Partek Inc., St. Louis, Missouri, USA). The detailed analysis optimized by our group is mentioned in von Grothusen et al (15) Gene ontology and pathway analysis GO analyses for the functional annotation of the DEGs and enriched pathway analysis were conducted using the g:Profiler database (version e101 eg48 p14 baf17f0) with Benjamini-Hochberg FDR multiple testing correction method applying significance threshold of 0.05 (18). Reactome pathway analysis (19) and Metascape-designet database (20) were also used. RT-PCR analysis The extracted RNA samples were converted to cDNA using SuperScript® VILOTM kit (Invitrogen®, Thermo Fisher Scientific, Waltham, USA). We validated technically some significantly altered genes obtained by sequencing using Tagman® gene probes namely CCL18 (assay ID: Hs00268113 m1), MMP2 assay ID: Hs01548727 m1), COL1A1 (assay ID: Hs00164004 m1), COL1A2 (assay ID: Hs01028956 m1), COL3A1 Hs00943809 m1), and 18s (4319413E) as housekeeping gene (Thermo Fisher Scientific, Walthem, USA). We designed a customized primer sequence for ADAMTS2-1 (Forward primer sequence 'cctgacaacccctacttttge'; reverse primer sequence 'tgaggatgtcaggt') and performed RT-PCR using Sybr-green PCR assay. 20ng of cDNA from 10 samples was used in triplicates in the RT-PCR and analyzed on a One Step Plus Real-time PCR system (Applied

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Biosystems, USA) according to the manufactures protocol. Fold change was calculated using the comparative Ct-method. A paired t-test compared the pre- and post-mifepristone treatment groups. To assess the impact of different doses of mifepristone on breast cells in vitro, a twoway ANOVA test was applied after the square root transformation. Significance was considered at a P-value < 0.05. GraphPad Prism 9.1.2 (GraphPad Software Inc., USA) was utilized for the statistical analyses. *In vitro validation via primary epithelia cell isolation* After breast tissue collection and examination by pathologist, the sample was transferred for tissue digestion and single cells isolation. In brief, the tissue was diced on ice using BSS and DMEM with HEPES. The small tissue fragments were transferred to a mixture of digestion enzymes (hyaluronidase and collagenase 1) and incubated on a rotator at 37°C for 4-18 hours. The digested tissue was then filtered through a 100 µM strainer, and the resulting flowthrough was cultured using a cocktail of Epicult and mammary media. *Immunofluorescence* Following cell isolation, a total of 50,000 cells were seeded per well in 8-well NuncLab-Tek Chamber Slides (Sigma) and incubated for 72 hours at 37°C in a 5% CO2 incubator. Subsequently, the cells were fixed with 4% paraformaldehyde for 15 minutes at room temperature and then blocked with 2% BSA and 0.1% Triton-X (Sigma) in PBS for 30 minutes at room temperature. Subsequently, the cells were incubated with primary antibodies (CD49f, Rat, #MA5-16884, ThermoFisher Scientific; EPCAM, Goat, R and D Systems Cat# AF960, RRID:AB 355745; CK8, Mouse, Santacruz, sc-8020; CK14, Rabbit, Invitrogen, # MA5-32214) in 2% BSA in PBS for 1 hour at RT. After three washes with PBS, the cells were

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

incubated with the respective secondary antibodies (Alexa Fluor; Donkey anti-Rat 488, Donkey anti-Goat 594, Donkey anti-Mouse 488, and Goat anti-Rabbit 594) in 2% BSA in PBS for 30 minutes at RT. Finally, the samples were mounted using ProLong Gold Antifade Mounting Medium with DAPI. *In vitro drug treatment assay* Primary isolated breast epithelial cells were cultured at a density of 5 x 10⁴ cells per well in a 12-well plate. On the following day, these cells were subjected to different concentrations of mifepristone treatment (0, 5, 50, and 100 µM) for a duration of three days. Subsequently, the cells were collected, and their lysates were prepared at three distinct time points: the baseline before the initiation of treatment, after one-day of treatment, and upon the completion of the three-day treatment period. To ensure robustness and reliability, we employed cells from three different donors for this study. For each experiment, we conducted three independent replicates. In silico data analysis We employed the R2 Genomics Analysis and Visualization Platform (21) for conducting comparative transcriptomic analysis. This online resource facilitated the examination and assessment of the enrichment gene signature within the breast cancer cohort obtained from TCGA. The user-friendly interface and comprehensive tools provided by R2 allowed for efficiently exploring and statistically validating each gene within the enriched gene cohort. Our approach involved evaluating the differences between normal breast tissue and breast cancer, along with an exploration of their correlation with PR expression and signaling. To ensure statistical robustness, we applied a T-test with false discovery rate correction as a multiple testing approach, employing a P-value cutoff of 0.05.

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Results Modulation of gene expression by mifepristone enriches ECM signaling pathways in normal breast tissue We compared the gene expression profile in normal breast tissue before and after mifepristone treatment. A false discovery rate (FDR) of \leq 0.05 and fold change (FC) of \geq 2 or \leq -2 was considered statistically significant and identified 27 differentially expressed genes (DEGs) of which 19 genes were upregulated and 8 genes were downregulated (Table S2). We grouped the 27 DEGs and named them Gene signature Enriched to Mifepristone's action on normal Breast (GEM-B). GEM-B represents a set of genes responsive to mifepristone in normal breast tissue. A volcano plot displaying GEM-B among overall gene expression is presented in Figure S2A. To technically validate RNA-seq data at the individual gene level, we employed real-time (RT)-PCR on the same RNA extracted samples for several genes from the GEM-B (Figure S2B). In line with the transcriptome analysis, the mifepristone treated samples exhibited a significant upregulation of the six validated genes by RT-PCR. To explore the biological context of the DEGs, gene functional enrichment analysis were performed using the g:Profiler database. The results of the top five terms in each of the three Gene Ontology (GO) categories (BP: biological process; CC: cellular component, MF: molecular function) annotated in the database are presented in Table 1. The Reactome pathway analysis demonstrated the upregulated DEGs significantly enriched in 54 biological processes. The top ten of those, were mainly associated with ECM organization (Table S3). The same analyses with the downregulated DEGs revealed one significantly enriched term in the GO functional annotation (ontology: MF), namely 'active borate transmembrane transporter activity' with the involvement of solely gene SLC4A1. In the Reactome pathway analysis, there were two genes involved separately in six pathways; gene IL1B (involved in

'CLEC7A/inflammasome pathway', 'Interleukin-1 processing', 'cell recruitment'

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

'purinergic signaling in leishmaniasis infection' and gene LAMA1 (involved in 'laminin interactions' and 'MET activates PTK2 signaling'. The analysis was validated via a third database, Metascape-designet database. The data set enrichment from designet pathway indicated similarly the enrichment of ECM-related pathways (Figure S3). The in vivo effect of mifepristone is comparable to its in vitro effect on normal breast tissue To further validate the *in vivo* changes in the transcriptomic signature induced by mifepristone treatment, we isolated primary breast epithelial cells and exposed them to varying concentrations of mifepristone (0, 5, 50, and 100 µM) during two different treatment periods (one and three days), to study the dose response effect as well as the influence of duration of treatment. First, we characterized the primary isolated cells and assessed the enrichment of distinct epithelial cell subtypes including luminal progenitor, mature luminal, basal, and other stromal cells. The expression of four protein markers (EPCAM, CD49f, CK8, and CK14) was examined (22). Notably, we identified diverse expression patterns; some cells exhibited positivity for CD49f or CK14, indicating a basal phenotype. Mature luminal cells expressed EPCAM or CK8. In contrast, other cells were positive for both CD49f and EPCAM, suggesting a luminal progenitor phenotype (Figure 1A). These findings underscore the significance of the heterogeneity within the isolated cells, emphasizing the need to capture the holistic impact of the drug during *in vitro* treatment. Based on our analysis of RNA-seq data from the *in vivo* clinical trial, six candidate genes were selected among the top upregulated and downregulated ones (CCL18, CTSG, ABI3BP, LAMA1, IL1b and WNT2) (Figure 1B and Figure S4). Consistent with our findings from the RNA-seq data, the expression levels of CCL18 and CTSG were upregulated in the in vitro

experiment after longer treatment with higher concentrations, and the same was observed following shorter treatment; except for one patient where CTSG expression showed a non-significantly upregulated trend and remained unaffected, respectively. WNT2 demonstrated upregulation in all patients when treated with low doses over a three-day period. Conversely, it exhibited downregulation at higher concentrations during both treatment periods. Notably, ABI3BP demonstrated considerable inter-patient variability; it was both up- and downregulated following different concentrations seen in both treatment periods. LAMA1 was not aligned with its downregulated pattern seen in the RCT cohort; it was mainly upregulated following treatment *in vitro*. However, the secondly most downregulated DEG, IL1B, was significantly reduced with higher concentrations of mifepristone following longer treatment and the same was seen for two patients following shorter treatment. Interestingly, IL1B showed a significant upregulation with low doses of mifepristone as compared to the untreated cells.

GEM-B is associated with breast carcinogenesis

Given the recognized protooncogenic effect of progesterone in breast carcinogenesis, we aimed to explore the enrichment of the GEM-B signature within breast cancer samples. To achieve this objective, we systematically examined the expression patterns of our GEM-B signature in the breast cancer dataset from The Cancer Genome Atlas (TCGA) using the R2 platform.

The signature was examined comparing the RNA-seq data of primary breast cancer tissue (n=1101) to normal breast tissue (n=113). The results revealed a notable enrichment of GEM-B in the TCGA data cohort when comparing cancerous to normal tissue. Specifically, 21 out of the 27 signature genes exhibited significant and differential expression when comparing breast cancer to normal breast tissue.

However, this enrichment displayed a dichotomy between cancerous and normal tissue. Out of the 21 significantly correlated genes, 11 were enriched in normal breast tissue compared to

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

tumor (ABI3BP, CTSG, DPP4, CCL18, OSR2, GRIA3, MMP2, LAMA1, ASPRV1, IL1B, PRR4), while the remaining 10 genes were significantly enriched in tumor tissue compared to normal (COL1A1, COL5A1, COL1A2, COL3A1, WNT2, C1QTNF3, ADAMTS2, GXYLT2, CCDC157, RP1), shown in Figure 2. Our findings underscore a substantial correlation between GEM-B, comprising approximately 77.7% of the signature (21 out of 27 genes), and breast carcinogenesis. GEM-B is significantly correlated to PR expression status in breast cancer Having investigated the impact of mifepristone on healthy women, we aimed to explore the potential relevance of the transcriptomic changes resulting from mifepristone treatment in our cohort on PR status of the breast cancer cohort. The TCGA breast cancer dataset facilitated the stratification of the PR status across the entire cohort, with 777 patients classified as PR-positive and 337 patients as PR-negative. We conducted an in-depth analysis of the GEM-B gene list, with a focus on delineating the PR status distinctions within the breast cancer datasets. Out of the 27 genes within the GEM-B signature, 20 exhibited significant enrichment when comparing the PR status categories. Notably, the majority of the enriched genes demonstrated a robust correlation with PR expression. Specifically, 17 out of the 20 enriched genes (TPSAB1, TPSB2, C1QTNF3, PIEZO2, CTSG, COL1A2, COL1A1, COL3A1, OSR2, ZNF620, ABI3BP, MMP2, GXYLT2, COL5A1, CCDC157, RP1, ADAMTS2) exhibited higher expression levels in PR-positive cancer tissue compared to PR-negative counterparts, while only 3 genes (CCL18, SLC4A11, LAMA1) displayed heightened enrichment in PR-negative tissue (Figure 3). Discussion In the present study, transcriptomic profiling and subsequent bioinformatics analyses were performed to explore gene expression response associated with antagonizing progesterone in

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

breast tissue of healthy premenopausal women. The study focuses on role of endogenous progesterone, enlightening the impact of mifepristone in driving the gene expression patterns and ECM signaling pathways. The findings indicate a correlation with breast carcinogenesis and PR expression status in breast cancer. The cycle driven intermittent progesterone exposure followed by mammary gland regression have been emphasized as important causes of tumorigenesis, as opposed to gradual and continuous elevations during pregnancy or anovulation including lactational amenorrhea (1, 2). RNA-seq from normal breast tissue in the Komen bank allies with progesterone's mitogenic role. About 87% of the upregulated genes in the luteal phase, emphasize paracrine action of RANKL, WNT4, and epiregulin as well as enriched functions of DNA replication, mitosis, and DNA repair (23). To address rising breast cancer incidence (8), exploring novel preventive agents is crucial. Mifepristone, a widely studied PR modulator in various benign gynecological conditions and breast cancer inhibition (12), may also hold potential in breast cancer prevention. In a rodent model, mifepristone had a reverse effect on murine mammary stem cell expansion and progesterone's paracrine effectors (24), although caution is needed in translating animal-based results to human in vivo conditions. Only two placebo-controlled trials have assessed the effect of mifepristone in normal premenopausal human breast tissue *in vivo*. Exposure to mifepristone for two or three months, significantly reduced Ki-67 expression in breast tissue (10), suggesting inhibition of breast epithelial cell proliferation, and decreased mitotic age surrogate marker and luminal progenitor cell fraction in all analyzed healthy controls (11).

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Our findings highlight the enrichment of several pathways that directly regulate and drive extracellular structure organization and function. ECM displays a pivotal role in tissue homeostasis; consequently, dysregulation and destruction of ECM dynamics can lead to tumorigeneses and cancer development (25, 26). During the menstrual cycle, it undergoes hormonal regulation, affecting cell signaling and cancer pathways in the mammary gland and the surrounding microenvironment (2). Clinically, HMD is positively associated with collagen, ECM density, and the epithelial and stromal compartments, but negatively with fat tissue (8, 9). One of the main structural ECM proteins are collagen which represent a key factor that provide tensile strength to the ECM (26) and in the present study, different collagens (COL1A1, COL1A2, COL3A1, COL5A1) were significantly enriched upon mifepristone treatment. Moreover, both collagen degradation and formation emerged as enriched pathways in our material, reflecting an increased remodeling of the ECM compared to baseline. These findings may reflect an ongoing adaptation to mifepristone and a longer treatment protocol might have revealed the eventual direction in which the equilibrium would shift. Nevertheless, it seems that the regulation of ECM plays a central role in progesterone action and progesterone receptor antagonism in the breast. A fundamental approach for assessing progesterone signaling involves assessment of the PR expression and the subsequent downstream actions within the signaling pathway. The notable enrichment of 20 genes within the GEM-B signature in PR-positive breast cancer tissue underscores the substantial involvement of progesterone in the development of breast cancer. Furthermore, our findings suggest that blocking progesterone signaling by mifepristone may play a significant role in preventing the initiation of breast cancer. This prompts further avenues for in-depth mechanistic studies, shedding light on the potential of mifepristone as both a preventive and therapeutic strategy for breast cancer.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

To the best of our knowledge, the present study is the first to explore the changes in the transcriptomic landscape and its biological functions following progesterone antagonism with mifepristone treatment in healthy breast tissue *in vivo*. The sample population originates from a double-blind RCT (13), limiting the bias in the results and individual paired samples were used, thus reducing the inter-individual variability. Next Generation Sequencing (NGS) was used to identify DEGs, and the results were validated with RT-PCR, confirming the expression pattern for all six randomly chosen genes; reinforcing that data derived from RNA-seq technology is of robust nature and could be applied for further analyses. However, long-term effects after treatment discontinuation were not elucidated due to lack of follow-up data. Based on indications of ECM remodeling following mifepristone treatment, measurements of breast stiffness and density through mammographies could provide further insights. Even though breast cancer seems to arise predominantly from epithelial cells (2), the stroma of mammary gland comprised mainly of the ECM emerged in our study to play a key role which is in line with a plethora of investigations on breast cancer, even suggesting ECM remodeling as a potential therapeutic target (26). In conclusion, our investigation into PR modulation in normal breast tissue, following mifepristone treatment, uncovers crucial alterations in gene expression patterns. The observed shifts in gene expression, in pathways related to ECM organization, point to the complicated involvement of ECM dynamics. The significant correlation of our enriched signature with the PR expression in breast cancer emphasizes the downstream impact of progesterone. Undoubtedly, comprehensive studies specifically designed to delve into the detailed molecular landscape alterations induced by mifepristone treatment could shed light into the molecular

- 423 actions of progesterone. Furthermore, such studies may explore whether antagonizing
- progesterone could accord protective properties in the breast.

Acknowledgments

- We would like to thank research midwife Eva Broberg for patient recruitment support and Dr
- 428 Birgitte Wilczek for offering her kind help in collecting breast biopsies. Our thanks also go to
- Dr. Angelique Flöter Rådestad and Dr. Inkeri Leonardsson Schultz for their contribution in
- 430 providing breast samples from healthy women who underwent reduction mammoplasty
- 431 surgeries.

425

426

432

433

References

- Coelingh Bennink HJT, Schultz IJ, Schmidt M, Jordan VC, Briggs P, Egberts
- 435 JFM, et al. Progesterone from ovulatory menstrual cycles is an important cause of breast
- 436 cancer. Breast cancer research: BCR. 2023;25(1):60.
- 437 2. Atashgaran V, Wrin J, Barry SC, Dasari P, Ingman WV. Dissecting the Biology
- of Menstrual Cycle-Associated Breast Cancer Risk. Frontiers in oncology. 2016;6:267.
- 439 3. Hilton HN, Clarke CL, Graham JD. Estrogen and progesterone signalling in the
- normal breast and its implications for cancer development. Molecular and cellular
- 441 endocrinology. 2018;466:2-14.
- 442 4. Pedroza DA, Subramani R, Lakshmanaswamy R. Classical and Non-Classical
- 443 Progesterone Signaling in Breast Cancers. Cancers. 2020;12(9).
- 5. Skibinski A, Kuperwasser C. The origin of breast tumor heterogeneity.
- 445 Oncogene. 2015;34(42):5309-16.
- 446 6. Brisken C. Progesterone signalling in breast cancer: a neglected hormone
- coming into the limelight. Nature reviews Cancer. 2013;13(6):385-96.
- Trabert B, Sherman ME, Kannan N, Stanczyk FZ. Progesterone and Breast
- 449 Cancer. Endocrine reviews. 2020;41(2):320-44.
- 450 8. Britt KL, Cuzick J, Phillips KA. Key steps for effective breast cancer
- prevention. Nature reviews Cancer. 2020;20(8):417-36.
- 452 9. Ironside AJ, Jones JL. Stromal characteristics may hold the key to
- mammographic density: the evidence to date. Oncotarget. 2016;7(21):31550-62.
- 454 10. Engman M, Skoog L, Söderqvist G, Gemzell-Danielsson K. The effect of
- 455 mifepristone on breast cell proliferation in premenopausal women evaluated through fine
- 456 needle aspiration cytology. Human reproduction (Oxford, England). 2008;23(9):2072-9.
- 457 11. Bartlett TE, Evans I, Jones A, Barrett JE, Haran S, Reisel D, et al.
- 458 Antiprogestins reduce epigenetic field cancerization in breast tissue of young healthy women.
- 459 Genome medicine. 2022;14(1):64.

- 460 12. Islam MS, Afrin S, Jones SI, Segars J. Selective Progesterone Receptor
- 461 Modulators-Mechanisms and Therapeutic Utility. Endocrine reviews. 2020;41(5).
- 462 13. Papaikonomou K, Kopp Kallner H, Söderdahl F, Gemzell-Danielsson K.
- 463 Mifepristone treatment prior to insertion of a levonorgestrel releasing intrauterine system for
- improved bleeding control a randomized controlled trial. Human reproduction (Oxford,
- 465 England). 2018;33(11):2002-9.
- 466 14. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R.
- 467 Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171-81.
- 468 15. von Grothusen C, Frisendahl C, Modhukur V, Lalitkumar PG, Peters M,
- 469 Faridani OR, et al. Uterine fluid microRNAs are dysregulated in women with recurrent
- implantation failure. Human reproduction (Oxford, England). 2022;37(4):734-46.
- 471 16. Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis
- 472 results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8.
- 473 17. Love MI, Huber W, Anders S. Moderated estimation of fold change and
- dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
- 475 18. Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al.
- g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic acids
- 477 research. 2016;44(W1):W83-9.
- 478 19. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, et al.
- 479 Reactome knowledgebase of human biological pathways and processes. Nucleic acids
- 480 research. 2009;37(Database issue):D619-22.
- 20. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
- 482 Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
- 483 Nature communications. 2019;10(1):1523.
- 484 21. R2: Genomics Analysis and Visualization Platform [Available from:
- 485 http://r2.amc.nl.
- 486 22. Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CM, Boedicker M,
- 487 et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex
- 488 epithelial lineages. Nature communications. 2020;11(1):1711.
- 489 23. Pardo I, Lillemoe HA, Blosser RJ, Choi M, Sauder CA, Doxey DK, et al. Next-
- 490 generation transcriptome sequencing of the premenopausal breast epithelium using specimens
- from a normal human breast tissue bank. Breast cancer research : BCR. 2014;16(2):R26.
- 492 24. Ranjan M, Lee O, Cottone G, Mirzaei Mehrabad E, Spike BT, Zeng Z, et al.
- 493 Progesterone receptor antagonists reverse stem cell expansion and the paracrine effectors of
- 494 progesterone action in the mouse mammary gland. Breast cancer research : BCR.
- 495 2021;23(1):78.
- 496 25. Walker C, Mojares E, Del Río Hernández A. Role of Extracellular Matrix in
- 497 Development and Cancer Progression. International journal of molecular sciences.
- 498 2018;19(10).

502

503

504

505

- 499 26. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in
- development and disease. Nature reviews Molecular cell biology. 2014;15(12):786-801.

Figure Captions Figure 1. A) Characterization of normal primary breast cell (Basal, luminal progenitor & Mature cells). The upper panel displays immunofluorescent images depicting breast cells stained with CD49f (green) and EPCAM (red), while the lower panel showcases cells stained with CK14 (red) and CK8 (green). Scale bars indicate 50 µm. DAPI was used to detect the nuclei. B) Assessment of relative gene expression in normal primary breast cells. Real time PCR analysis was conducted on selected genes (CCL18, CTSG, ABI3BP, WNT2, IL1b, and

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

LAMA1) to evaluate their expression levels in normal primary breast cells treated with varying concentrations of mifepristone (control, 5µM, 50µM, 100µM) for a three-day duration. Statistical significance is denoted as follows: *p<0.0001; **p<0.01; ****p<0.0001. Figure 2. GEM-NB signature enrichment in breast cancer. Utilizing the R2 platform and the TCGA breast cancer dataset, the expression patterns of each gene within the GEM-NB signature were examined. Comparative analysis involved RNA-seq data between two the groups of primary breast cancer tissue (n=1101) and normal breast tissue (n=113). Figure 3. Mifepristone driven transcriptomic changes in the context of PR status in breast cancer. Employing the R2 platform and the TCGA breast cancer dataset, seventeen genes within the GEM-NB signature show significant enrichment in PR positive cohort, whereas three genes were enriched in PR negative cohort. The results are presented as a heatmap illustrating the mean log2 values for each gene, with P values indicated on a log10 scale. The analysis involved RNA-seq data from 1114 breast cancer tissues, comparing PR-positive cases (n=777) to PRnegative cases (n=337). **Supplemental figure 1.** Study flow diagram. *Paired biopsies = baseline plus follow-up breast biopsies from the same patient. Supplemental figure 2. A) Volcano plot showing the distribution of the differentially expressed genes (DEGs) between breast samples from baseline and after mifepristone treatment. X-axis represent log2 fold change and Y-axis represent logFDR (adjusted p-value). Black vertical lines show log fold change of - 2 and 2 while the horizontal black line represents

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

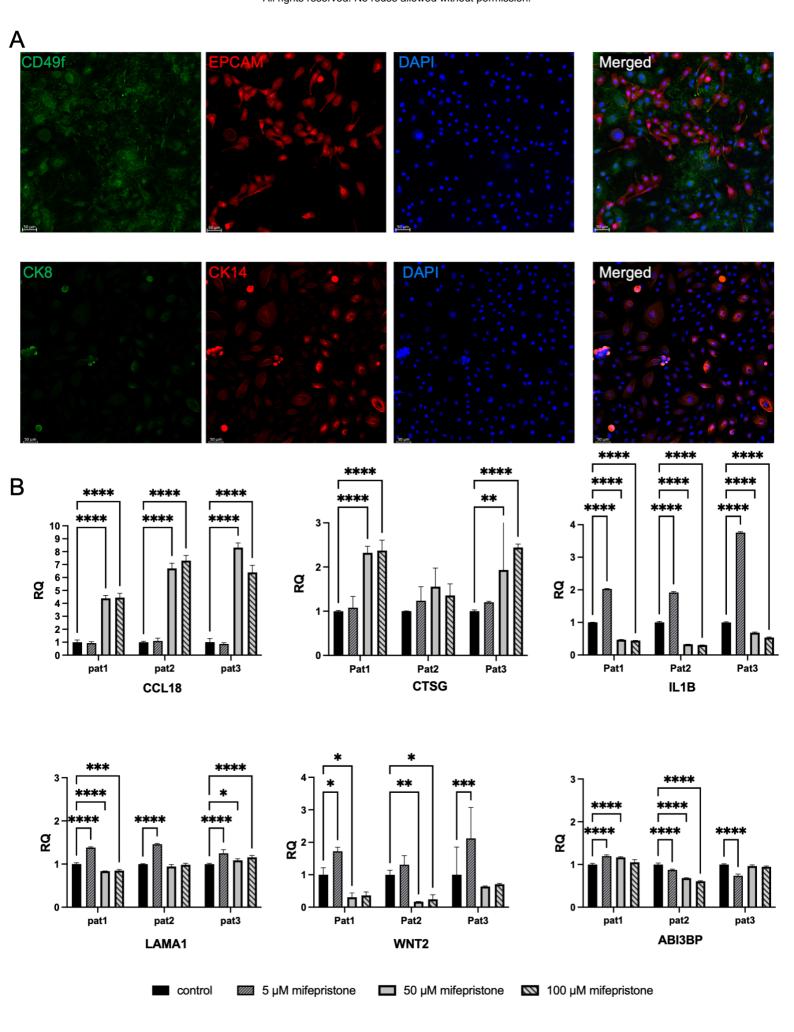
574

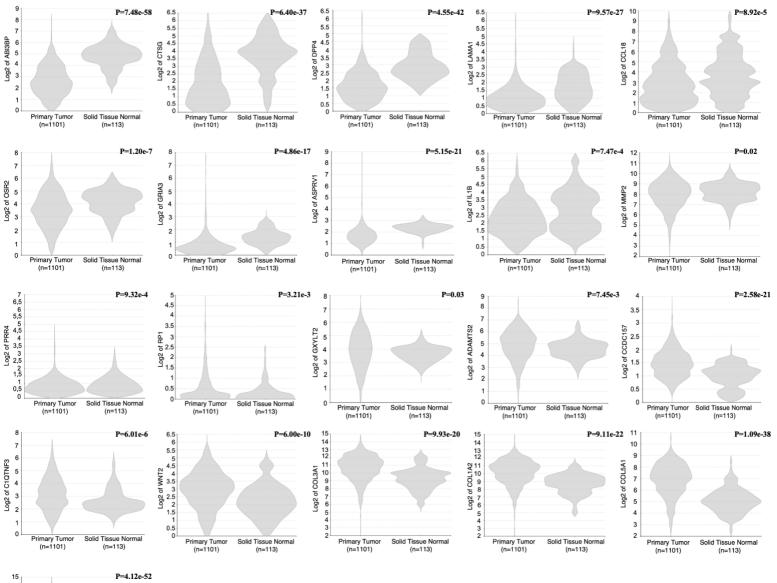
575

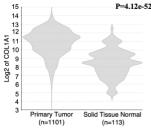
576

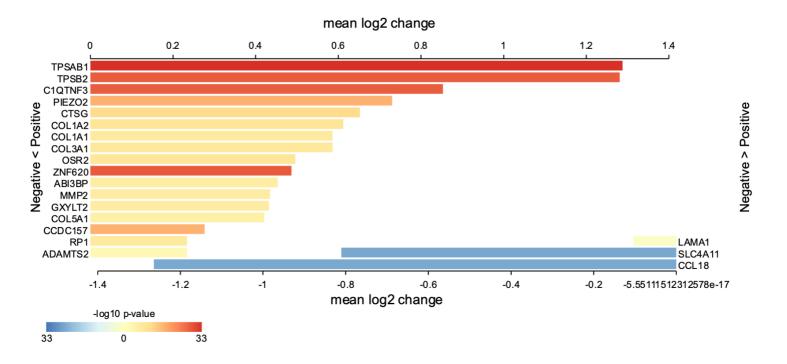
577

578


579


a p-value of 0.05. The points represent genes; red for the upregulated DEGs, blue for the downregulated DEGs and grev for the non-differentially expressed genes. B) Assessment of relative gene expression before and after mifepristone treatment. Utilizing the RNA isolated from the breast tissue obtained from RCT, Real time PCR analysis was conducted on selected genes (ADAMTS2-1, CCL18, MMP2, COL1A1, COL1A2 and COL3A1) show a significant upregulation with mifepristone treatment in breast. This is in line with RNA sequencing data. *p<0.05; **p<0.01; ***p<0.001. **Supplemental figure 3.** Network of enriched terms for GEM-NB genes as determined by Metascape-designet analysis; showing the significance enrichment of extracellular matrix remodeling pathways. (A) Nodes colored by cluster ID; nodes that share the same cluster ID are typically close to each other. (B) Nodes colored by p-value, where terms containing more genes tend to exhibit more significant p-values. **Supplemental figure 4.** Assessment of relative gene expression in normal primary breast cells. Real time PCR analysis was conducted on selected genes (CCL18, CTSG, ABI3BP, WNT2, IL1b, and LAMA1) to evaluate their expression levels in normal primary breast cells treated with varying concentrations of mifepristone (control, 5μM, 50μM, 100μM) for one day duration. Statistical significance is denoted as follows: *p<0.0001; **p<0.001; ***p<0.001; ****p<0.0001. **Tables Table 1.** Top 15 enriched gene ontology terms of differentially expressed upregulated genes as determined by Gene Ontology (GO) analyses. FDR (padj) **Term ID** Description


Biological Process		
GO:0030198	Extracellular matrix organization	2.21E-08
GO:0043062	Extracellular structure organization	2.21E-08
GO:0030199	Collagen fibril organization	6.95E-07
GO:0032963	Collagen metabolic process	1.76541E-05
GO:0071230	Cellular response to amino acid stimulus	0.000123191
Cecllular		
Component		
GO:0062023	Collagen-containing extracellular matrix	4.78E-12
GO:0031012	Extracellular matrix	4.59E-11
GO:0098643	Banded collagen fibril	1.13E-08
GO:0005583	Fibrillar collagen trimer	1.13E-08
GO:0098644	Complex of collagen trimers	1.08E-07
Molecular		
Function		
GO:0048407	Platelet-derived growth factor binding	2.76E-08
	Extracellular matrix structural constituent conferring tensile	
GO:0030020	strength	4.1495E-06
GO:0005201	Extracellular matrix structural constituent	1.75112E-05
GO:0004252	Serine-type endopep.dase activity	1.75112E-05
GO:0017171	Serine hydrolase activity	2.17779E-05


FDR=false discovery rate

- **Supplemental table 1.** Baseline characteristics of women contributing to paired breast biopsies, before and after mifepristone treatment, expressed as median (range).
- **Supplemental table 2.** Differentially expressed genes with mifepristone treatment.
- Supplemental table 3. Top 10 enriched pathways of the upregulated differentially expressed
 genes as determined by Reactome pathway analysis.

