Longitudinal evolution of the transdiagnostic prodrome to severe mental disorders: a dynamic temporal network analysis informed by natural language processing and electronic health records ============================================================================================================================================================================================ * Maite Arribas * Joseph M. Barnby * Rashmi Patel * Robert A. McCutcheon * Daisy Kornblum * Hitesh Shetty * Kamil Krakowski * Daniel Stahl * Nikolaos Koutsouleris * Philip McGuire * Paolo Fusar-Poli * Dominic Oliver ## ABSTRACT **Importance** Modelling the prodrome to severe mental disorders (SMD), including unipolar mood disorders (UMD), bipolar mood disorders (BMD) and psychotic disorders (PSY), should consider both the evolution and interactions of symptoms and substance use (prodromal features) over time. Temporal network analysis can detect causal dependence between and within prodromal features by representing prodromal features as nodes, with their connections (edges) indicating the likelihood of one feature preceding the other. In SMD, node centrality could reveal insights into important prodromal features and potential intervention targets. Community analysis can identify commonly occurring feature groups to define SMD at-risk states. **Objective** To develop a global transdiagnostic SMD network of the temporal relationships between prodromal features, and to examine within-group differences with sub-networks specific to UMD, BMD and PSY **Design** Retrospective (2-year), real-world, electronic health records (EHR) cohort study. Validated natural language processing algorithms extracted the occurrence of 61 prodromal features every three months from two years to six months prior to SMD onset. To construct temporal networks of prodromal features, we employed generalized vector autoregression panel analysis, adjusting for covariates. **Setting** South London and Maudsley NHS Foundation Trust EHRs. **Participants** 6,462 individuals with an SMD diagnosis (UMD:2,066; BMD:740; PSY:3,656). **Main Outcomes** Edge weights (partial directed correlation coefficients, *z*) in autocorrelative, unidirectional and bidirectional relationships. Centrality was calculated as the sum of (non-autoregressive) connections leaving (out-centrality, *cout*) or entering (in-centrality, *cin*) a node. The three sub-networks (UMD, BMD, PSY) were compared using permutation analysis. Community analysis was performed using Spinglass. **Results** The SMD network was characterised by strong autocorrelations (0.04 *≤ z ≤* 0.10), predominantly positive connections, and aggression (*cout*=.103) and tearfulness (*cin*=.134) as the most central features. The UMD sub-network showed few significant differences compared to PSY (3.5%) and BMD (0.8%), and BMD-PSY showed even fewer (0.4%). One positive psychotic (delusional thinking-hallucinations-paranoia) and two behavioural communities (aggression-cannabis use-cocaine use-hostility, aggression-agitation-hostility) were the most common. **Conclusions and Relevance** This study represents the most extensive temporal network analysis conducted on the longitudinal interplay of SMD prodromal features. These findings provide further evidence to support transdiagnostic early detection services across SMD, refine assessments to detect individuals at risk and identify central features as potential intervention targets. Keywords * psychosis * bipolar * depression * network analysis * electronic health record * artificial intelligence * natural language processing * early detection * severe mental disorder * temporal network analysis ## 1. BACKGROUND Severe mental disorders (SMD) include non-psychotic unipolar mood disorders (UMD), non-psychotic bipolar mood disorders (BMD) and psychotic disorders (PSY), and are characterised by high clinical, societal, familial and personal burden.1–3 Electronic health records (EHRs) can provide an opportunity to examine prodromal symptoms contemporaneously, reducing recall bias and enriching our insight into symptom presentation during the prodrome.4 This knowledge can help enhance specialised preventive care for people at-risk of emerging SMD. Temporal network analysis, as an implementation of dynamic systems theory5, allows statistical modelling of the relationships between nodes (prodromal features) as edges within a dynamic network (e.g. prodrome) over time.6 Weak, sparse networks are more modifiable, while strong, dense networks resist change7, needing intensive interventions to alter them8 (e.g. preventing SMD onset). Given that edges in temporal networks satisfy the condition that cause precedes effect, they can suggest directed Granger causality between features9, potentially enhancing our understanding of SMD development.10 Node centrality, representing connection strength in and out of a node,11 may highlight the significance of a prodromal feature in the progression of the disorder and its potential as an intervention target due to its influence from/on other prodromal features.12–15 Communities are subgroups of nodes which are more densely connected amongst each other than with nodes outside of the subgroup16 and could help identify core prodromal connection pathways across SMD.17 Firstly, we aimed to develop a global transdiagnostic SMD network to quantify the temporal relationships between prodromal features. Secondly, we aimed to examine within-group differences by computing and comparing sub-networks specific to UMD, BMD and PSY. ## 2. METHODS ### 2.1. Data Source Data were from the South London and Maudsley National Health Service Foundation Trust (SLaM). SLaM provides secondary mental healthcare across four socioeconomically diverse South London boroughs (eMethods 1). A Clinical Record Interactive Search (CRIS) tool was implemented in the EHR to facilitate research with full but anonymised clinical information.18 CRIS has already been extensively validated in previous research studies.19–21 CRIS received ethical approval as an anonymised dataset for secondary analyses from Oxfordshire REC C (Ref: 23/SC/0257). ### 2.2. Study Design Retrospective (2-year), real-world, EHR cohort study (Figure 1). The 2 years were chosen to mirror the typical duration of care in clinical services for primary indicated prevention of SMD (72.4% provide care for 24 months or less).22 The index date reflected the date of the first diagnosis within an individual’s SMD group recorded in the EHR (index diagnosis, T-0mo, Figure 1). The antecedent date was defined by a data cut-off at 6 months before the index date (T-6mo), defining the antecedent period, to avoid overlap with the actual onset of SMD. The lookback period (Figure 1) was defined as the 1.5 years before the antecedent date (T-6mo). To minimise violations of the time invariance assumption imposed by network analyses,23 we regularised the 1.5-year lookback period into six three-month follow-up intervals. ![Figure 1.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/10/31/2024.03.08.24303965/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2024/10/31/2024.03.08.24303965/F1) Figure 1. Study design. The look-back period was split into six three-month follow-up intervals (FU 1-6) relative to the index date (T-0mo) of SMD diagnosis. This pipeline (steps 1-4) was followed for both the primary analysis (SMD model) and secondary analysis (sub-networks). ### 2.3. Study Population All individuals accessing SLaM services between 1st January 2008 and 10th August 2021 and receiving a primary (i.e. not comorbid) ICD-10 index diagnosis of any SMD were eligible. SMD was defined as either UMD, BMD or PSY (operationalised as in eTable 1). Individuals with multiple SMD diagnoses were assigned the diagnosis of greatest severity (i.e. UMD .022) and labelled (|*z*| > .03). For visualisation purposes, nodes are clustered into six categories (depressive, manic, negative, positive, substance use and other) according to the type of prodromal feature. **B.** Bootstrapped (250 repetitions; black) vs actual model (n=6,462; red) edge weight estimates (|*z*| > .022). Edges are directed such that “node1 – node2” represent the edge from node1 to edge2. All edges were positive except the one marked with an asterisk (DEL-SLEEP, INS-CANN, AGGR-CANN, TEAR-TOB). **C.** Centrality measures for all nodes AGGR: aggression, AGIT: agitation, ANX: anxiety, CANN: cannabis use, COC: cocaine use, COGN: cognitive impairment, CONC: poor concentration, DEL: delusional thinking, EMOT: emotional withdrawal, GUIL: guilt, HALL: hallucinations (all), HOPE: feeling hopeless, HOST: hostility, INS: poor insight, IRR: irritability, MOOD: mood instability, MOTIV: poor motivation, PAR: paranoia, SLEEP: disturbed sleep, SUIC: suicidality, TEAR: tearfulness, TOB: tobacco use, WGHT: weight loss The strongest autocorrelation was observed for tearfulness (partial directed correlation coefficient, *z*=.12), with all the other autocorrelations between 0.04-0.10 (Figure 3A). The most prominent unidirectional relationships were negative: delusional thinking-disturbed sleep (*z*12=-.02), poor insight-cannabis use (*z*12=-.02), aggression-cannabis use (*z*12=-.02) and tearfulness-tobacco use (*z*12=-.02), with one positive unidirectional relationship between anxiety-cannabis use (*z*12=.02). All other unidirectional relationships were | *z*12| <.02. With respect to bidirectional relationships, positively recurring pairs were observed between aggression-hostility (*z*12=.04, *z*21=.02), delusional thinking-hallucinations (*z*12=.03, *z*21=.03), aggression-agitation (*z*12=.04, *z*21=.03) and delusional thinking-hostility (*z*12=.02, *z*21=.02). Considering centrality (Figure 3C), aggression (*cout*=.103), poor insight (*cout*=.073) and delusional thinking (*cout*=.071) had the strongest out-centrality, whereas tearfulness (*cin*=.134), delusional thinking (*cin*=.071) and hostility (*cin*=.066) had the strongest in-centrality (eTable 10). Results and visualisations for the contemporaneous and between-subject relationships of nodes are presented in eResults 3 and eFigure 3. See eTable 9 for actual model and bootstrapped estimates. ### 3.3 Secondary Analysis (sub-networks) Out of the 61 NLP-derived prodromal features, after applying the relevant exclusions within each sub-sample, 21 features were included for the UMD network, 19 for BMD and 24 for PSY (eMethods 6). A saturated model was fitted with the relevant features at 6 follow-up intervals in each sub-sample (UMD, BMD, PSY) (Figure 4). Similarly to the primary analysis, saturated networks showed excellent fit and better fit than sparse models for the three networks (UMD: Δ*X*2(706)=1585, p<.0001; BMD: Δ*X*2(602)=1557, p<.0001; PSY: Δ*X*2(862)=2717.5, p<.0001). Further model fit results, including recoverability (eResults 4), and bootstrapping estimates (eTable 11, eFigure 4) can be found in the Supplement. ![Figure 4](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/10/31/2024.03.08.24303965/F4.medium.gif) [Figure 4](http://medrxiv.org/content/early/2024/10/31/2024.03.08.24303965/F4) Figure 4 Temporal relationships between nodes in sub-networks Temporal network graphs displaying positive (blue) and negative (red) relationships between nodes from actual model estimates for sub-networks (**A.** UMD, **B.** BMD, **C.** PSY). Edges are displayed as lines, with the thickness representing the strength of the edge weight estimate (partial directed correlation coefficient, *z*). Edges are thresholded (UMD: |*z*| > .026, BMD: |*z*| > .045, PSY: |*z*| > .03) and labelled (UMD: |*z*| > .04, UMD: |*z*| > .06, UMD: |*z*| > .05). For visualisation purposes, nodes are clustered into six categories (depressive, manic, negative, positive, substance use and other) according to the type of prodromal feature. D. Centrality measures for all nodes in sub-networks (green: UMD, blue: BMD, red: PSY) AGGR: aggression, AGIT: agitation, ANX: anxiety, AROUS: arousal, CANN: cannabis use, COC: cocaine use, COGN: cognitive impairment, CONC: poor concentration, DEL: delusional thinking, ELAT: elation, EMOT: emotional withdrawal, GUIL: guilt, HALL: hallucinations (all), HOPE: feeling hopeless, HOST: hostility, INS: poor insight, IRR: irritability, LONE: feeling lonely, LOW: low energy, MOOD: mood instability, MOTIV: poor motivation, NIGHT: nightmares, PAR: paranoia, SLEEP: disturbed sleep, SUIC: suicidality, TEAR: tearfulness, TOB: tobacco use, WGHT: weight loss Considering centrality, in the UMD sub-network, aggression (*cin*=.163), low energy (*cin*=.141), and feeling lonely (*cin*=.109) had the strongest in-centrality, whereas mood instability (*cout*=.102), guilt (*cout*=.094) and cannabis use (*cout*=.092), had the strongest out-centrality (eTable 13A). In the BMD sub-network, paranoia (*cin*=.274), cannabis use (*cin*=.248) and agitation (*cin*=.226) had the strongest in-centrality, whereas elation (*cout*=.209), anxiety (*cout*=.209), feeling hopeless (*cout*=.202) and poor insight (*cout*=.202) had the strongest out-centrality (eTable 13B). In the PSY sub-network, arousal (*cin*=.145), elation (*cin*=.098) and agitation (*cin*=.038) had the strongest in-centrality, whereas agitation (*cout*=.073), aggression (*cout*=.072) and hallucinations (*cout*=.072) had the strongest out-centrality (eTable 13C). Edge weight results for each sub-network are reported in eResults 5. Moreover, results and visualisations for the contemporaneous and between-subject relationships of nodes for all sub-networks are in eResults 6. See eTable 12 for the actual model and bootstrapped estimates and eFigure 5 for un-thresholded sub-networks graphs. ![Figure 5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/10/31/2024.03.08.24303965/F5.medium.gif) [Figure 5.](http://medrxiv.org/content/early/2024/10/31/2024.03.08.24303965/F5) Figure 5. Heat-maps for pairwise edge comparisons (UMD-BMD, BMD-PSY, UMD-PSY) in temporal sub-networks in permutation analysis. Magnitude and direction of effect size is colour-coded such that for the pairwise comparison Group1-Group2, yellow indicates the edge estimate is more positive in Group1>Group2 and blue indicates the opposite Group1 0.01 (SMD, PSY), > 0.02 (UMD) and > 0.035 (BMD), for visualisation purposes. Positive edges are displayed in black, and negative edges in red. ## 4. DISCUSSION This study represents the most extensive temporal network analysis to date modelling the temporal dynamics between prodromal features in SMD, with respect to both the breadth of features and the large sample. First, our findings provide evidence for the existence of dynamic relationships between prodromal features which are transdiagnostic across SMD (in the context of secondary mental health care). Understanding these dynamics can be used to identify risk states to prevent the progression to SMD onset.39 We identified one positive psychotic community (delusional thinking-hallucinations-paranoia) and two behavioural communities (aggression-cannabis use-cocaine use-hostility and aggression-agitation-hostility) as the most common pathways leading to SMD onset17. Furthermore, we found minimal differences among diagnosis-specific sub-networks, highlighting substantial overlap in the dynamic progression of prodromal stages of UMD, BMD and PSY. This finding aligns with previous findings of transdiagnostic overlap in duration, first presentation and frequencies of prodromal features across SMD,40 and extends them by showing transdiagnostic temporally causal relationships between these features. Echoing our earlier findings,40 BMD and PSY exhibited the most similar pattern of relationships between prodromal features, with UMD being the most dissimilar. These findings support the emergence of transdiagnostic early detection strategies41 that have previously been conceptualised in the clinical staging model42–47 and the Clinical High At Risk Mental State (CHARMS48) criteria, which have started to be implemented clinically.48–52 Second, insights from our diagnosis-specific sub-networks might inform the development and refinement of at-risk psychometric tools. For example, CHARMS criteria currently use assessments developed for full-threshold disorders to define UMD and BMD risk states53,54. These assessments could be refined to improve their specificity for at-risk populations36. To detect individuals at clinical high risk for psychosis (CHR-P), current assessments show low specificity55, which may be improved by incorporating additional features from our analyses. The prominence of positive symptoms in PSY affirms the relevance of existing assessments,56–58 which primarily focus on these symptoms. However, our findings also support the expansion of these tools for other SMD. In our network models, communities represent commonly occurring dynamic pathways of prodromal features, which gould guide these refinements. For example, hallucinations consistently emerge in the most frequent communities across all sub-networks but co-occur with different symptoms in each case. Specifically, in UMD, hallucinations are associated with irritability, while in BMD, they are linked to irritability along with aggression, poor insight and poor motivation. This finding aligns with the inclusion of hypomanic symptoms as diagnostic risk factors59 in psychometric instruments60–62 for bipolar at-risk states63. In PSY, hallucinations are linked with disturbed sleep and anxiety. Sleep issues have already been reported in in CHR-P individuals64,65 and those with psychosis66,67. Our findings extend this by providing evidence that, in the PSY prodrome, sleep disturbances may be a consequence of hallucinations, which may inform early detection strategies. Third, our networks were densely connected with predominantly positive associations between prodromal features; presenting with one feature typically predicts the emergence, rather than absence, of the same or another feature in the future. As a result of this sequential symptom build-up, interventions need to target highly central features to disrupt the SMD prodrome network and reduce the risk of further prodromal features emerging. We have identified features with high centrality that represent potential preventive intervention targets. Typical symptoms of depression including mood instability and guilt were highly central in the UMD prodrome. Cannabis use also showed high centrality, aligning with previous research showing that cannabis consumption is associated with an increased risk of developing depression later in life.68,69 However, suicidality was not a central feature, likely highlighting its lower prominence during the prodrome relative to the later stages of the full disorder.70 For BMD, manic symptoms (e.g. elation) were highly predictive of other features, but positive psychotic symptoms (i.e. paranoia) were highly predicted by other features, whereas the reverse was observed in PSY. This finding supports the idea that developing interventions which distinctly target these symptoms may halt the progression of these disorders. Aggression and agitation were central features across all diagnosis-specific networks and part of the most prominent behavioural communities across SMD. However, this finding requires careful interpretation as our NLP algorithm for aggression does not distinguish between forms of violence directed to others or oneself, and individuals with PSY are more likely to be victims of violence than the general population.2,71 This study, while comprehensive, has several limitations. First, the network features are prodromal as they are detectable in secondary care before these diagnoses. However, despite our extensive range of prodromal, sociodemographic and treatment variables, there may still be unaccounted factors that influence the temporal evolution of SMD prodromes, such as functioning.72 While Granger causality in this study provides insights into temporal predictive relationships between prodromal features, it does not account for the underlying mechanisms or confounding factors that may drive SMD progression. Future work should investigate symptom trajectories, and aspire to construct explanatory causal models of their phenomenological and neurobiological alterations, which would enable a deeper mapping of causality.73–75 Second, to reduce the missingness in the dataset, we used a relatively short look-back period. However, this two-year period before disorder onset aligns with the typical duration of clinical care for at-risk individuals.76 Third, the final population presents a selection bias towards those receiving more frequent secondary care, limiting generalizability. Similarly, specific features, such as disorganised symptoms, may be underrepresented due to the need for consistent clinical visits. However, there were minimal differences between included and excluded individuals, in terms of demographics, clinical variables and presenting symptoms. EHR and NLP-related limitations are discussed in eLimitations 1. Overall, our study highlights the presence of a detectable transdiagnostic SMD prodrome by modelling the evolution of symptoms and substance use over time. Our findings support the potential for broader transdiagnostic early detection services for SMD that provide preventive care to individuals at-risk and a research platform for investigating putative interventions. ## Supporting information Supplementary Material [[supplements/303965_file02.pdf]](pending:yes) ## Data Availability The data accessed by CRIS remain within an NHS firewall and governance is provided by a patient-led oversight committee. Subject to these conditions, data access is encouraged and those interested should contact Robert Stewart (robert.stewart{at}kcl.ac.uk), CRIS academic lead. There is no permission for data sharing. Covariance matrices to estimate networks and all analysis code are available on GitHub: [https://github.com/m-arribas/network_analysis.git](https://github.com/m-arribas/network_analysis.git). [https://github.com/m-arribas/network\_analysis.git](https://github.com/m-arribas/network_analysis.git) ## Funding MA is supported by the UK Medical Research Council (MR/N013700/1) and King’s College London member of the MRC Doctoral Training Partnership in Biomedical Sciences. JMB has received funding from the Wellcome Trust (WT228268/Z/23/Z) and is supported by the FENS-Kavli Network of Excellence (FKNE). RP has received funding from an NIHR Advanced Fellowship (NIHR301690) and a Medical Research Council (MRC) Health Data Research UK Fellowship (MR/S003118/1). PFP is supported by #NEXTGENERATIONEU (NGEU), funded by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006) – A Multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553 11.10.2022). ## Data Sharing Statement The data accessed by CRIS remain within an NHS firewall and governance is provided by a patient-led oversight committee. Subject to these conditions, data access is encouraged and those interested should contact Robert Stewart (robert.stewart{at}kcl.ac.uk), CRIS academic lead. Further details regarding the CRIS platform can be found elsewhere18. There is no permission for data sharing. Covariance matrices to estimate networks and all analysis code are available on GitHub: [https://github.com/m-arribas/network_analysis.git](https://github.com/m-arribas/network_analysis.git). ## Ethics committee approval Permissions for the study were granted by the Oxfordshire Research Ethics Committee C; because the data set comprised deidentified data, informed consent was not required18. ## Authors’ contribution MA, JMB and DO conceptualised the study. DO and PFP supervised the study. MA, JMB and DO ran the statistical analyses. All authors drafted, edited, and approved the final version of the manuscript. ## Conflict of interest MA has been employed by F. Hoffmann-La Roche AG outside of the current study. RP has received grant funding from Janssen, and consulting fees from Holmusk, Akrivia Health, Columbia Data Analytics, Boehringer Ingelheim and Otsuka. PFP has received research funds or personal fees from Lundbeck, Angelini, Menarini, Sunovion, Boehringer Ingelheim, Mindstrong, Proxymm Science, outside the current study. ## Footnotes * * Joint senior authorship * To correct for pre-processing error in the code, and to update results and discussion accordingly. * Received March 8, 2024. * Revision received October 31, 2024. * Accepted October 31, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## References 1. 1.Estradé A, Onwumere J, Venables J, et al. The Lived Experiences of Family Members and Carers of People with Psychosis: A Bottom-Up Review Co-Written by Experts by Experience and Academics. Psychopathology. Published online January 23, 2023:1–12. doi:10.1159/000528513 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000528513&link_type=DOI) 2. 2.Fusar-Poli P, Estradé A, Stanghellini G, et al. The lived experience of psychosis: a bottom-up review co-written by experts by experience and academics. World Psychiatry. 2022;21(2):168–188. doi:10.1002/wps.20959 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.20959&link_type=DOI) 3. 3.Fusar-Poli P, Estradé A, Stanghellini G, et al. The lived experience of depression: a bottom-up review co-written by experts by experience and academics. World Psychiatry. 2023;22(3):352–365. doi:10.1002/wps.21111 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.21111&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37713566&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 4. 4.Oliver D, Arribas M, Perry BI, et al. USING ELECTRONIC HEALTH RECORDS TO FACILITATE PRECISION PSYCHIATRY. Biol Psychiatry. Published online February 24, 2024:S0006-3223(24)01107-7. doi:10.1016/j.biopsych.2024.02.1006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopsych.2024.02.1006&link_type=DOI) 5. 5.Borsboom D, Deserno MK, Rhemtulla M, et al. Network analysis of multivariate data in psychological science. Nat Rev Methods Primers. 2021;1(1):1–18. doi:10.1038/s43586-021-00055-w [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s43586-021-00055-w&link_type=DOI) 6. 6.Ebrahimi OV, Borsboom D, Hoekstra RHA, et al. Towards precision in the diagnostic profiling of patients: leveraging symptom dynamics as a clinical characterisation dimension in the assessment of major depressive disorder. The British Journal of Psychiatry. Published online April 8, 2024:1–7. doi:10.1192/bjp.2024.19 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1192/bjp.2024.19&link_type=DOI) 7. 7.Wichers M, Wigman JTW, Myin-Germeys I. Micro-level affect dynamics in psychopathology viewed from complex dynamical system theory. Emotion Review. 2015;7:362–367. doi:10.1177/1754073915590623 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1754073915590623&link_type=DOI) 8. 8.Kuppens P, Allen NB, Sheeber LB. Emotional inertia and psychological maladjustment. Psychol Sci. 2010;21(7):984–991. doi:10.1177/0956797610372634 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/0956797610372634&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20501521&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 9. 9.Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica. 1969;37(3):424–438. doi:10.2307/1912791 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2307/1912791&link_type=DOI) 10. 10.Epskamp S, van Borkulo CD, van der Veen DC, et al. Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections. Clinical Psychological Science. 2018;6(3):416–427. doi:10.1177/2167702617744325 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/2167702617744325&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29805918&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 11. 11.Levine SZ, Leucht S. Identifying a system of predominant negative symptoms: Network analysis of three randomized clinical trials. Schizophr Res. 2016;178(1-3):17–22. doi:10.1016/j.schres.2016.09.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.schres.2016.09.002&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27617414&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 12. 12.McNally RJ. Can network analysis transform psychopathology? Behav Res Ther. 2016;86:95–104. doi:10.1016/j.brat.2016.06.006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.brat.2016.06.006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27424882&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 13. 13.Tomba E, Bech P. Clinimetrics and clinical psychometrics: macro- and micro-analysis. Psychother Psychosom. 2012;81(6):333–343. doi:10.1159/000341757 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000341757&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22964522&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 14. 14.van Borkulo C, Boschloo L, Borsboom D, Penninx BWJH, Waldorp LJ, Schoevers RA. Association of Symptom Network Structure With the Course of [corrected] Depression. JAMA Psychiatry. 2015;72(12):1219–1226. doi:10.1001/jamapsychiatry.2015.2079 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2015.2079&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26561400&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 15. 15.Madhoo M, Levine SZ. Network analysis of the Quick Inventory of Depressive Symptomatology: Reanalysis of the STAR*D clinical trial. Eur Neuropsychopharmacol. 2016;26(11):1768–1774. doi:10.1016/j.euroneuro.2016.09.368 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.euroneuro.2016.09.368&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27707535&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 16. 16.Yang Z, Algesheimer R, Tessone CJ. A Comparative Analysis of Community Detection Algorithms on Artificial Networks. Sci Rep. 2016;6(1):30750. doi:10.1038/srep30750 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/srep30750&link_type=DOI) 17. 17.Blanken TF, Deserno MK, Dalege J, et al. The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks. Sci Rep. 2018;8(1):5854. doi:10.1038/s41598-018-24224-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41598-018-24224-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29643399&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 18. 18.Stewart R, Soremekun M, Perera G, et al. The South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC) case register: development and descriptive data. BMC Psychiatry. 2009;9(1):51. doi:10.1186/1471-244X-9-51 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-244X-9-51&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19674459&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 19. 19.Roberts E, Wessely S, Chalder T, Chang CK, Hotopf M. Mortality of people with chronic fatigue syndrome: a retrospective cohort study in England and Wales from the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Clinical Record Interactive Search (CRIS) Register. Lancet. 2016;387(10028):1638–1643. doi:10.1016/S0140-6736(15)01223-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(15)01223-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26873808&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 20. 20.Oram S, Khondoker M, Abas M, Broadbent M, Howard LM. Characteristics of trafficked adults and children with severe mental illness: a historical cohort study. Lancet Psychiatry. 2015;2(12):1084–1091. doi:10.1016/S2215-0366(15)00290-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2215-0366(15)00290-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26489912&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 21. 21.Fusar-Poli P, Rutigliano G, Stahl D, et al. Deconstructing Pretest Risk Enrichment to Optimize Prediction of Psychosis in Individuals at Clinical High Risk. JAMA Psychiatry. 2016;73(12):1260–1267. doi:10.1001/jamapsychiatry.2016.2707 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2016.2707&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27784037&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 22. 22.Salazar de Pablo G, Estradé A, Cutroni M, Andlauer O, Fusar-Poli P. Establishing a clinical service to prevent psychosis: What, how and when? Systematic review. Transl Psychiatry. 2021;11(1):43. doi:10.1038/s41398-020-01165-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41398-020-01165-x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33441556&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 23. 23.Epskamp S, Waldorp LJ, Mõttus R, Borsboom D. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data. Multivariate Behav Res. 2018;53(4):453–480. doi:10.1080/00273171.2018.1454823 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/00273171.2018.1454823&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29658809&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 24. 24.Jackson RG, Patel R, Jayatilleke N, et al. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project. BMJ Open. 2017;7(1):e012012. doi:10.1136/bmjopen-2016-012012 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMToiNy8xL2UwMTIwMTIiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMC8zMS8yMDI0LjAzLjA4LjI0MzAzOTY1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 25. 25.Barnby JM, Haslbeck JMB, Rosen C, Harrow M. Modelling the Longitudinal Dynamics of Paranoia in Psychosis: A Temporal Network Analysis Over 20 Years. Published online January 9, 2023:2023.01.06.23284268. doi:10.1101/2023.01.06.23284268 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMy4wMS4wNi4yMzI4NDI2OHYzIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMTAvMzEvMjAyNC4wMy4wOC4yNDMwMzk2NS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 26. 26.Epskamp S. Psychometric network models from time-series and panel data. Psychometrika. 2020;85:206–231. doi:10.1007/s11336-020-09697-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11336-020-09697-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32162233&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 27. 27.Epskamp S. psychonetrics: Structural Equation Modeling and Confirmatory Network Analysis. Published online October 25, 2021. Accessed March 21, 2023. [https://CRAN.R-project.org/package=psychonetrics](https://CRAN.R-project.org/package=psychonetrics) 28. 28.Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: A tutorial paper. Behav Res. 2018;50(1):195–212. doi:10.3758/s13428-017-0862-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3758/s13428-017-0862-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28342071&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 29. 29.Sivo SA, Fan X, Witta EL, Willse JT. The Search for “Optimal” Cutoff Properties: Fit Index Criteria in Structural Equation Modeling. The Journal of Experimental Education. 2006;74(3):267–288. doi:10.3200/JEXE.74.3.267-288 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3200/JEXE.74.3.267-288&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000235903700005&link_type=ISI) 30. 30.Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Software: Practice and Experience. 1991;21(11):1129–1164. doi:10.1002/spe.4380211102 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/spe.4380211102&link_type=DOI) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1991GQ34100001&link_type=ISI) 31. 31.Demjaha A, Morgan K, Morgan C, et al. Combining dimensional and categorical representation of psychosis: the way forward for DSM-V and ICD-11? Psychological Medicine. 2009;39(12):1943–1955. doi:10.1017/S0033291709990651 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291709990651&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19627645&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272369400002&link_type=ISI) 32. 32.Cuesta MJ, Peralta V. Integrating psychopathological dimensions in functional psychoses: a hierarchical approach. Schizophrenia Research. 2001;52(3):215–229. doi:10.1016/S0920-9964(00)00190-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0920-9964(00)00190-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11705715&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000172366900008&link_type=ISI) 33. 33.CRIS Natural Language Processing. Accessed January 4, 2024. [https://www.maudsleybrc.nihr.ac.uk/facilities/clinical-record-interactive-search-cris/cris-natural-language-processing/](https://www.maudsleybrc.nihr.ac.uk/facilities/clinical-record-interactive-search-cris/cris-natural-language-processing/) 34. 34.Fredrickson MM, Chen Y. Permutation and randomization tests for network analysis. Social Networks. 2019;59:171–183. doi:10.1016/j.socnet.2019.08.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.socnet.2019.08.001&link_type=DOI) 35. 35.cluster_spinglass function - RDocumentation. Accessed April 9, 2024. [https://www.rdocumentation.org/packages/igraph/versions/1.2.5/topics/cluster\_spinglass](https://www.rdocumentation.org/packages/igraph/versions/1.2.5/topics/cluster_spinglass) 36. 36.Traag VA, Bruggeman J. Community detection in networks with positive and negative links. Phys Rev E. 2009;80(3):036115. doi:10.1103/PhysRevE.80.036115 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1103/PhysRevE.80.036115&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19905188&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 37. 37.Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E. 2006;74(1):016110. doi:10.1103/PhysRevE.74.016110 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1103/PhysRevE.74.016110&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16907154&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 38. 38.Werner M. The ComDet Package - Iterated Community Detection for the Analysis of Community Membership, its Stability and the Detection of Fuzzy Community Boundaries. Published online May 24, 2018. doi:10.31219/osf.io/bwsq7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.31219/osf.io/bwsq7&link_type=DOI) 39. 39.McGorry PD, Mei C. Clinical Staging for Youth Mental Disorders: Progress in Reforming Diagnosis and Clinical Care. Annual Review of Developmental Psychology. 2021;3(Volume 3, 2021):15–39. doi:10.1146/annurev-devpsych-050620-030405 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1146/annurev-devpsych-050620-030405&link_type=DOI) 40. 40.Arribas M, Oliver D, Patel R, et al. A TRANSDIAGNOSTIC PRODROME FOR SEVERE MENTAL DISORDERS: AN ELECTRONIC HEALTH RECORD STUDY. (in review). 41. 41.Oliver D. The future of preventive psychiatry is precise and transdiagnostic. Neuroscience & Biobehavioral Reviews. 2024;160:105626. doi:10.1016/j.neubiorev.2024.105626 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.neubiorev.2024.105626&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38492764&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 42. 42.Uhlhaas PJ, Davey CG, Mehta UM, et al. Towards a youth mental health paradigm: a perspective and roadmap. Mol Psychiatry. Published online August 14, 2023:1–11. doi:10.1038/s41380-023-02202-z [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41380-023-02202-z&link_type=DOI) 43. 43.Shah JL, Scott J, McGorry PD, et al. Transdiagnostic clinical staging in youth mental health: a first international consensus statement. World Psychiatry. 2020;19(2):233–242. doi:10.1002/wps.20745 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.20745&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32394576&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 44. 44.Shah JL. Bringing Clinical Staging to Youth Mental Health: From Concept to Operationalization (and Back Again). JAMA Psychiatry. 2019;76(11):1121–1123. doi:10.1001/jamapsychiatry.2019.2003 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2019.2003&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31461133&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 45. 45.Shah JL, Jones N, van Os J, McGorry PD, Gülöksüz S. Early intervention service systems for youth mental health: integrating pluripotentiality, clinical staging, and transdiagnostic lessons from early psychosis. Lancet Psychiatry. 2022;9(5):413–422. doi:10.1016/S2215-0366(21)00467-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2215-0366(21)00467-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35430004&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 46. 46.McGorry PD, Hartmann JA, Spooner R, Nelson B. Beyond the “at risk mental state” concept: transitioning to transdiagnostic psychiatry. World Psychiatry. 2018;17(2):133–142. doi:10.1002/wps.20514 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.20514&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 47. 47.Scott J, Iorfino F, Capon W, et al. Staging 2·0: refining transdiagnostic clinical staging frameworks to enhance reliability and utility for youth mental health. The Lancet Psychiatry. 2024;(). doi:10.1016/S2215-0366(24)00060-9 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2215-0366(24)00060-9&link_type=DOI) 48. 48.Hartmann JA, Nelson B, Spooner R, et al. Broad clinical high-risk mental state (CHARMS): Methodology of a cohort study validating criteria for pluripotent risk. Early Interv Psychiatry. 2019;13(3):379–386. doi:10.1111/eip.12483 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/eip.12483&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28984077&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 49. 49.Iorfino F, Scott EM, Carpenter JS, et al. Clinical Stage Transitions in Persons Aged 12 to 25 Years Presenting to Early Intervention Mental Health Services With Anxiety, Mood, and Psychotic Disorders. JAMA Psychiatry. 2019;76(11):1167–1175. doi:10.1001/jamapsychiatry.2019.2360 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2019.2360&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31461129&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 50. 50.Carpenter JS, Scott J, Iorfino F, et al. Predicting the emergence of full-threshold bipolar I, bipolar II and psychotic disorders in young people presenting to early intervention mental health services. Psychological Medicine. 2022;52(10):1990–2000. doi:10.1017/S0033291720003840 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1017/S0033291720003840&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33121545&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 51. 51.Hartmann JA, McGorry PD, Destree L, et al. Pluripotential Risk and Clinical Staging: Theoretical Considerations and Preliminary Data From a Transdiagnostic Risk Identification Approach. Front Psychiatry. 2020;11:553578. doi:10.3389/fpsyt.2020.553578 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fpsyt.2020.553578&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33488413&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 52. 52.Destrée L, McGorry P, Chanen A, et al. Transdiagnostic risk identification: A validation study of the Clinical High At Risk Mental State (CHARMS) criteria. Psychiatry Research. 2024;333:115745. doi:10.1016/j.psychres.2024.115745 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psychres.2024.115745&link_type=DOI) 53. 53.Association AP. Understanding Mental Disorders: Your Guide to DSM-5®. American Psychiatric Pub; 2015. 54. 54.Rush AJ, Trivedi MH, Ibrahim HM, et al. The 16-Item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biological Psychiatry. 2003;54(5):573–583. doi:10.1016/S0006-3223(02)01866-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0006-3223(02)01866-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12946886&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000184906100009&link_type=ISI) 55. 55.Oliver D, Arribas M, Radua J, et al. Prognostic accuracy and clinical utility of psychometric instruments for individuals at clinical high-risk of psychosis: a systematic review and meta-analysis. Mol Psychiatry. 2022;27(9):3670–3678. doi:10.1038/s41380-022-01611-w [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41380-022-01611-w&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35665763&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 56. 56.Yung AR, Yung AR, Pan Yuen H, et al. Mapping the Onset of Psychosis: The Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry. 2005;39(11-12):964–971. doi:10.1080/j.1440-1614.2005.01714.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/j.1440-1614.2005.01714.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16343296&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 57. 57.McGlashan T, Walsh B, Woods S. The Psychosis-Risk Syndrome: Handbook for Diagnosis and Follow-Up. Oxford University Press, USA; 2010. 58. 58.Addington J, Woods SW, Yung AR, Calkins ME, Fusar-Poli P. Harmonizing the structured interview for psychosis-risk syndromes (SIPS) and the comprehensive assessment of at-risk mental states (CAARMS): An initial approach. Early Intervention in Psychiatry. 2024;18(4):248–254. doi:10.1111/eip.13401 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/eip.13401&link_type=DOI) 59. 59.Axelson D, Goldstein B, Goldstein T, et al. Diagnostic Precursors to Bipolar Disorder in Offspring of Parents With Bipolar Disorder: A Longitudinal Study. AJP. 2015;172(7):638–646. doi:10.1176/appi.ajp.2014.14010035 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1176/appi.ajp.2014.14010035&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25734353&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 60. 60.Correll CU, Olvet DM, Auther AM, et al. The Bipolar Prodrome Symptom Interview and Scale–Prospective (BPSS-P): description and validation in a psychiatric sample and healthy controls. Bipolar Disorders. 2014;16(5):505–522. doi:10.1111/bdi.12209 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/bdi.12209&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24807784&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 61. 61.Fusar-Poli P, De Micheli A, Rocchetti M, et al. Semistructured Interview for Bipolar At Risk States (SIBARS). Psychiatry Res. 2018;264:302–309. doi:10.1016/j.psychres.2018.03.074 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psychres.2018.03.074&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29665559&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 62. 62.Leopold K, Ritter P, Correll CU, et al. Risk constellations prior to the development of bipolar disorders: rationale of a new risk assessment tool. J Affect Disord. 2012;136(3):1000–1010. doi:10.1016/j.jad.2011.06.043 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2011.06.043&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21802741&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 63. 63.Bechdolf A, Nelson B, Cotton SM, et al. A preliminary evaluation of the validity of at-risk criteria for bipolar disorders in help-seeking adolescents and young adults. J Affect Disord. 2010;127(1-3):316–320. doi:10.1016/j.jad.2010.06.016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jad.2010.06.016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20619465&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 64. 64.Poe SL, Brucato G, Bruno N, et al. Sleep disturbances in individuals at clinical high risk for psychosis. Psychiatry Res. 2017;249:240–243. doi:10.1016/j.psychres.2016.12.029 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.psychres.2016.12.029&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28126579&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 65. 65.Tan HY, Ang YG. First-episode psychosis in the military: a comparative study of prodromal symptoms. Aust N Z J Psychiatry. 2001;35(4):512–519. doi:10.1046/j.1440-1614.2001.00912.x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1440-1614.2001.00912.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11531734&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000171409200137&link_type=ISI) 66. 66.Cohrs S. Sleep disturbances in patients with schizophrenia : impact and effect of antipsychotics. CNS Drugs. 2008;22(11):939–962. doi:10.2165/00023210-200822110-00004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2165/00023210-200822110-00004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18840034&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000260569800004&link_type=ISI) 67. 67.Afonso P, Brissos S, Cañas F, Bobes J, Bernardo-Fernandez I. Treatment adherence and quality of sleep in schizophrenia outpatients. Int J Psychiatry Clin Pract. 2014;18(1):70–76. doi:10.3109/13651501.2013.845219 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3109/13651501.2013.845219&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24047426&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 68. 68.Gobbi G, Atkin T, Zytynski T, et al. Association of Cannabis Use in Adolescence and Risk of Depression, Anxiety, and Suicidality in Young Adulthood: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2019;76(4):426–434. doi:10.1001/jamapsychiatry.2018.4500 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2018.4500&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=30758486&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 69. 69.Jefsen OH, Erlangsen A, Nordentoft M, Hjorthøj C. Cannabis Use Disorder and Subsequent Risk of Psychotic and Nonpsychotic Unipolar Depression and Bipolar Disorder. JAMA Psychiatry. 2023;80(8):803–810. doi:10.1001/jamapsychiatry.2023.1256 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamapsychiatry.2023.1256&link_type=DOI) 70. 70.Benasi G, Fava GA, Guidi J. Prodromal Symptoms in Depression: A Systematic Review. PPS. 2021;90(6):365–372. doi:10.1159/000517953 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000517953&link_type=DOI) 71. 71.Radua J, Ramella-Cravaro V, Ioannidis JPA, et al. What causes psychosis? An umbrella review of risk and protective factors. World psychiatry: official journal of the World Psychiatric Association (WPA). 2018;17(1):49–66. doi:10.1002/wps.20490 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/wps.20490&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=29352556&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 72. 72.Paquin V, Malla AK, Iyer SN, Lepage M, Joober R, Shah JL. Combinations and Temporal Associations Among Precursor Symptoms Before a First Episode of Psychosis. Schizophrenia Bulletin. Published online October 20, 2023:sbad152. doi:10.1093/schbul/sbad152 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/schbul/sbad152&link_type=DOI) 73. 73.Barnby JM, Dayan P, Bell V. Formalising social representation to explain psychiatric symptoms. Trends in Cognitive Sciences. 2023;27(3):317–332. doi:10.1016/j.tics.2022.12.004 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.tics.2022.12.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36609016&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 74. 74.Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends in Cognitive Sciences. 2012;16(1):72–80. doi:10.1016/j.tics.2011.11.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.tics.2011.11.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22177032&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000299607900015&link_type=ISI) 75. 75.Paulus MP, Huys QJM, Maia TV. A Roadmap for the Development of Applied Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(5):386–392. doi:10.1016/j.bpsc.2016.05.001 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bpsc.2016.05.001&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=28018986&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom) 76. 76.Salazar de Pablo G, Estradé A, Cutroni M, Andlauer O, Fusar-Poli P. Establishing a clinical service to prevent psychosis: What, how and when? Systematic review. Transl Psychiatry. 2021;11(1):1–14. doi:10.1038/s41398-020-01165-x [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41398-021-01411-w&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=33414379&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F10%2F31%2F2024.03.08.24303965.atom)