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ABSTRACT 
 
Background: Modelling the prodrome to severe mental disorders (SMD), including unipolar 
mood disorders (UMD), bipolar mood disorders (BMD) and psychotic disorders (PSY), should 
consider both the evolution and interactions of symptoms and substance use (prodromal 
features) over time. Temporal network analysis can address this by representing prodromal 
features as nodes, with their connections (edges) indicating the likelihood of one feature 
preceding the other. Node centrality could reveal insights into important prodromal features 
and potential intervention targets. We developed a SMD network and compared sub-networks 
specific to UMD, BMD and PSY. 
Methods: We analysed 7,049 individuals with an SMD diagnosis (UMD:2,306; BMD:817; 
PSY:3,926) from the South London and Maudsley NHS Foundation Trust electronic health 
records. Using validated natural language processing algorithms, we extracted the occurrence 
of 61 prodromal features every three months from two years to six months prior to SMD onset. 
To construct temporal networks of prodromal features, we employed generalized vector 
autoregression panel analysis, adjusting for covariates. We computed edge weights (correlation 
coefficients, z) in autocorrelative, unidirectional and bidirectional relationships. Centrality was 
calculated as the sum of connections leaving (out-centrality, cout) or entering (in-centrality, cin) 
a node. We compared the three sub-networks (UMD, BMD, PSY) using permutation analysis.  
Findings: The strongest autocorrelation in the SMD network was tearfulness (z=·10). 
Unidirectional positive relationships were observed for irritability-agitation (z12=·03), mood 
instability-tearfulness (z12=·03) and irritability-aggression (z12=·03). Aggression-hostility 
(z12=·04, z21=·03), delusions-hallucinations (z12=·04, z21=·03) and aggression-agitation (z12=·03, 
z21=·03) were the strongest bidirectional relationships. The most central features included 
aggression (cout=·082) and tearfulness (cin=·124). The PSY sub-network showed few significant 
differences compared to UMD (3·9%) and BMD (1·6%), and UMD-BMD showed even fewer 
(0·4%). 
Interpretations: This study represents the most extensive temporal network analysis 
conducted on the longitudinal interplay of SMD prodromal features. These findings provide 
further evidence to support early detection services across SMD.  
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Research in context  
 
Evidence before this study  
Preventive approaches for severe mental disorders (SMD) can improve outcomes, however, 
their effectiveness relies on accurate knowledge of the prodromal symptoms and substance use 
preceding their onset and how they evolve over time. We searched PubMed from database 
inception to 26th January 2024 for studies investigating the dynamic prodromes for unipolar 
mood disorders (UMD), bipolar mood disorders (BMD) or psychotic disorders (PSY) 
published in English. The search terms were prodrom* AND (depression OR bipolar OR 
psychosis) AND (timecourse OR dynamic OR “network analysis” OR longitudinal). First, 
while many studies have investigated the prodromal phases of SMD, particularly for PSY, the 
majority of studies have taken a cross-sectional rather than longitudinal approach which are 
unable to detect causal dependence between and within prodromal symptoms and substance 
use. Second, there are no studies focusing on the evolution of features during the prodromal 
period. Finally, studies have focused on diagnosis-specific analyses, considering UMD, BMD 
or PSY alone, limiting the possibility for comparison between them.  
 
Added value of this study  
We have used a temporal network analysis approach, in combination with a large electronic 
health record database (n=7,049) and natural language processing, to examine the dynamic 
evolution of symptoms and substance use in the prodrome to an SMD diagnosis in secondary 
mental healthcare. This is the largest network analysis investigating prodromal features in 
SMD, the first assessing longitudinal changes and the first to directly compare the prodromes 
to UMD, BMD and PSY. Our results add to the growing evidence for a transdiagnostic 
prodrome to SMD, by showing small differences between UMD, BMD and PSY in how 
symptoms and substance use evolve over the course of the prodrome.  
 
Implications of all the available evidence 
Our study explores the patterns of evolution of symptom and substance use events across and 
within SMD diagnostic groups. We highlight the importance of understanding the dynamic 
progression of these prodromal features to fully characterise the prodrome to SMD. These 
findings, together with a growing literature base, also support the potential for broader 
transdiagnostic early detection services that provide preventive psychiatric care to individuals 
at risk for SMD. 
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1. BACKGROUND 

 
Severe mental disorders (SMD) include non-psychotic unipolar mood disorders (UMD), non-
psychotic bipolar mood disorders (BMD) and psychotic disorders (PSY), and are characterised 
by high clinical, societal, familial and personal burden.1–3 Electronic health records (EHRs) can 
provide an opportunity to examine prodromal symptoms contemporaneously, reducing recall 
bias and enriching our insight into symptom presentation during the prodrome.4 This 
knowledge can help enhance specialised preventive care for young people at-risk of emerging 
SMD. 
 
Temporal network analysis allows us to statistically model the relationships between nodes 
(prodromal features) as edges within a network (prodrome) over time. Weak, sparse networks 
are more modifiable, while strong, dense networks resist change5, needing intensive 
interventions to alter them6 (e.g. preventing SMD onset). Edge estimates in temporal nodes 
could suggest directed causality between features, potentially enhancing our understanding of 
SMD development.7 Node centrality, representing connection strength in and out of a node,8 
may highlight the significance of a prodromal feature in the progression of the disorder and its 
potential as an intervention target.9–12 
 
Firstly, we aimed to develop a global transdiagnostic SMD network to quantify the temporal 
relationships between prodromal features. Secondly, we aimed to examine within-group 
differences by computing and comparing sub-networks specific to UMD, BMD and PSY. 
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2. METHODS 
 

2.1. Data Source 
Data were from the South London and Maudsley National Health Service Foundation Trust 
(SLaM). SLaM provides secondary mental healthcare across four socioeconomically diverse 
South London boroughs (Lambeth, Southwark, Lewisham and Croydon, 1.3 million people, 
eMethods 1). A Clinical Record Interactive Search (CRIS) tool was implemented in the EHR 
to facilitate research with full but anonymised clinical information.13 CRIS has already been 
extensively validated in previous research studies.14–16 CRIS received ethical approval as an 
anonymised dataset for secondary analyses from Oxfordshire REC C (Ref: 23/SC/0257). 

 
2.2. Study Design 

Retrospective (2-year), real-world, EHR cohort study (Figure 1). The 2-year period was chosen 
to mirror the typical duration of care in clinical services for primary indicated prevention of 
SMD (72.4% provide care for 24 months or less).17 The index date reflected the date of the first 
diagnosis within an individual’s SMD group recorded in the EHR (index diagnosis, T-0mo, 
Figure 1). The antecedent date was defined by a data cut-off at 6 months before the index date 
(T-6mo), defining the antecedent period, to avoid overlap with the actual onset of SMD. The 
lookback period (Figure 1) was defined as the 1.5-year period prior to the antecedent date (T-
6mo). To minimise the time invariance imposed by network analyses,18 we split the 1.5yr 
lookback period into six three-month follow-up intervals. 
 

2.3. Study Population   
All individuals accessing SLaM services between 1st January 2008 and 10th August 2021 and 
receiving a primary (i.e. not comorbid) ICD-10 index diagnosis of any SMD were eligible. 
SMD was defined as either UMD, BMD or PSY (operationalised as in eTable 1). Individuals 
with multiple SMD diagnoses were assigned the diagnosis of greatest severity (i.e. 
UMD<BMD<PSY). Therefore, if an individual receives a diagnosis of UMD and BMD 
simultaneously, they would be included in the BMD group due to the higher associated 
severity. 
 
Individuals with EHR entries (e.g. clinical notes and letters recorded in each month) recorded 
exclusively after the index date or exclusively in the antecedent period were excluded as they 
had no detectable prodrome. Individuals who only had empty EHR entries within the lookback 
period were also excluded, as well as those with EHR entries recorded within four or fewer 
follow-up intervals within the lookback period, as they did not have sufficient data to contribute 
to the fitted networks. 
 

2.4. Variables 
At index date, data were extracted from structured text on age, gender, self-assigned ethnicity 
(UK Office of National Statistics, eTable 2), ICD-10 diagnoses and prescription of 
antipsychotics, antidepressants, mood stabilisers and anxiolytics (see eTable 3 for medication 
classification details).  
 
During the lookback period, data were extracted as binary variables on the occurrence 
(yes:1/no:0) of 61 natural language processing (NLP)-based prodromal features across each 
follow-up interval (FU 1-6; Figure 1). These NLP algorithms convert unstructured EHR 
information (i.e. free text) into structured quantifiable data.19 NLP algorithms with precision 
≥80% (mean=90%) were included. Precision was defined as the ratio of the number of relevant 
(true positive) instances retrieved out of the total NLP-labelled positive instances (including 
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irrelevant [false positive] and relevant [true positive] instances) in human-annotated EHR (see 
eMethods 2 for further details on NLP algorithm development and validation, and eTable 4 for 
the final list of NLP algorithms employed). Within each follow-up interval, the EHR entry 
frequency (number of entries) and length (total number of words recorded across all entries) 
were computed.  
 

2.5. Statistical analysis 
All analyses were conducted in R (version 4.2.3) on a virtual machine (AMD EPYC 7763 64-
Core Processor) in Ubuntu 22.04.1 operating system. All analysis code is publicly available on 
GitHub: https://github.com/m-arribas/network_analysis.git. 
 

2.5.1. Sociodemographic and Clinical Characteristics 
We computed descriptive analyses for sociodemographic variables at index date (age, gender, 
self-assigned ethnicity) as well as the proportion (N [%]) of individuals with specific ICD-10 
diagnoses and prescription of antipsychotics, antidepressants, mood stabilisers and anxiolytics 
at index in UMD, BMD and PSY. 
 
In a sensitivity analysis, to test for any sampling bias in the final population, we compared 
excluded individuals (with four or fewer follow-up intervals) to those included (with five or 
more follow-up intervals) on sociodemographic variables (age, gender, self-assigned 
ethnicity), clinical variables (proportion of individuals belonging to each SMD group and 
medication prescriptions at index), as well as the severity of presenting features (frequency of 
prodromal clusters within antecedent period). 
 

2.5.2. Network analysis 
As a primary analysis, we quantified a set of local network metrics in a transdiagnostic SMD 
network (hereby called “SMD network”) on the entire study population. In a secondary 
analysis, we repeated this on each SMD sub-sample separately (UMD, BMD, PSY), to 
compute three diagnosis-specific sub-networks (hereby called “sub-networks”). For each 
network (SMD network and three sub-networks), the following steps (pre-processing, network 
development and stability assessment) were repeated separately in each relevant dataset using 
a similar step-wise procedure to prior work modelling temporal features in psychopathology.20  
 
Pre-processing and network development methods are detailed in the Supplement (eMethods 
3 and 4, respectively). For each network (SMD network and three sub-networks), we extracted 
the temporal (within individuals), contemporaneous (relationships between nodes averaged 
over time and averaged across the sample), and between-individuals subject matrices. From 
each matrix, the strength of connections between features (edge weights) were estimated as 
correlation coefficients (z), and categorised into 3 types: autocorrelative (node predicts itself 
in the next time point), unidirectional (node predicts another, without reciprocation) and 
bidirectional (mutual prediction between two nodes). Degree centrality were extracted from 
each graph. For temporal networks, centrality was defined as the sum of absolute (directed) 
edge weights in (in-centrality, cin) and out (out-centrality, cout) of a node (including 
autocorrelative edges). For contemporaneous and between-subject networks, centrality was 
defined as the sum of absolute (undirected) edge weights for a node (autocorrelative edges do 
not exist).  
 
To evaluate robustness of the edge weight estimates and to avoid overfitting in our networks, 
we computed the stability of edges within each full fitted network using bootstrapping 
procedures: over 250 iterations, 25% of the sample was randomly held out and the full model 
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refitted on the remaining 75% of participants (following standard methods).21 Within each 
iteration the selected data was pre-processed in the same manner as in the full model to control 
for errors and variance within the data cleaning and scaling process. The averaged edge weights 
and 95%CIs over all 250 iterations were retained and reported. All edges with 95%CIs crossing 
zero were forced to 0. 
 

2.5.3. Permutation analysis 
To test for statistically significant differences in the temporal, contemporaneous, and between-
subject relationships across the three sub-networks (UMD, BMD, PSY) we conducted 
permutation analyses22. 
 
To generate networks with the same topology required for valid comparisons, we re-fitted the 
three original sub-networks restricted to common features only, after pre-processing the data 
for each sub-sample.  
 
In each permutation iteration, raw data in each sub-sample population (UMD, BMD, PSY) was 
randomly re-sampled for each individual node. The permuted dataset for each sub-sample was 
then pre-processed in the same manner as in the original sub-networks, and permuted sub-
networks were fitted. From each permuted sub-network, temporal, contemporaneous and 
between-subjects matrix estimates were obtained, as in the main analysis. For each edge, the 
difference in permuted edge weights was calculated (UMD-BMD, UMD-PSY and BMD-
PSY). Each edge weight comparison was visually inspected using histograms to assess 
normality of the permuted data. 
 
For each edge weight comparison, the number of iterations where the permuted difference was 
equal to or greater than the absolute observed difference (from the actual dataset) was divided 
by the total number of permutations (250) to obtain the p-value. We corrected the resulting p-
values for multiple comparisons using the false discovery rate method set at 5% to ensure the 
robustness of our findings and used ppermuted <0·05 as the threshold for statistical significance.  
 
Observed differences in edge weights (from the actual dataset) and corrected p-values (from 
the permutation analysis) were reported, and visualised with heatmaps. 
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3. RESULTS 
 

3.1. Study Population 
The final study population (n=7,049, Table 1; eTable 5-6) had EHR entries with more than four 
follow-up intervals (mean number of intervals [SD]=5·69 [0·46]) within the lookback period 
(Figure 2). Included participants were similar to excluded participants in terms of 
sociodemographics and clinical characteristics (eResults 1). Eight participants were excluded 
as the imputation method was unable to converge on stable approximations. 
 

3.2. Primary Analysis (SMD network) 
Out of the 61 NLP-derived prodromal features, 38 displayed near-zero variance and were 
excluded, leaving 23 features for the analyses (eTable 7): aggression, agitation, anxiety, 
cannabis use, cocaine use, cognitive impairment, delusional thinking, disturbed sleep, 
emotional withdrawal, feeling hopeless, guilt, hallucinations (all), hostility, irritability, mood 
instability, paranoia, poor concentration, poor insight, poor motivation, suicidality, tearfulness, 
tobacco use, and weight loss (eFigure 1).  
 
A saturated model (a densely connected network with all available edges) was fitted with the 
23 features at 6 follow-up intervals (Figure 3A). This network demonstrated excellent fit 
(RMSEA=·0091 [95%CI: ·0088, ·0094]; X2(8625)=13650, p<·0001; CFI=·97; TLI=·97) and 
had better fit than a sparse network (pruned edges) (DX2(733)=2734·10, p<·0001). The model 
showed high recoverability (eResults 2) and robustness (see Figure 3B and eTables 8-9 for 
actual model and bootstrapped estimates). 
 
The strongest autocorrelation was observed for tearfulness (correlation coefficient, z=·10), with 
all the other autocorrelations between 0·05-0·10 (Figure 3A). The most prominent 
unidirectional relationships were positive: irritability-aggression (z12=·03), irritability-agitation 
(z12=·03), hallucinations (all)-disturbed sleep (z12=·03) and mood instability-tearfulness 
(z12=·03). All other unidirectional relationships were | z12| <·03. 
 
With respect to bidirectional relationships, positively recurring pairs were observed between 
aggression-hostility (z12=·04, z21=·03), delusional thinking-hallucinations (all) (z12=·04, 
z21=·03), aggression-agitation (z12=·03, z21=·03) and delusional thinking-hostility (z12=·02, 
z21=·03).  
 
Considering centrality (Figure 3C), aggression (cout=·098), hostility (cout=·082), and 
hallucinations (all) (cout=·081) had the strongest out-centrality, whereas tearfulness (cin=·124), 
aggression (cin=·09) and delusional thinking (cin=·085) had the strongest in-centrality (eTable 
10).  
 
Results and visualisations for the contemporaneous and between-subject relationships of nodes 
are presented in eResults 3 and eFigure 2. See eTable 12 for actual model and bootstrapped 
estimates. 
 

3.3 Secondary Analysis (sub-networks) 
Out of the 61 NLP-derived prodromal features, after applying the relevant exclusions within 
each sub-sample, 21 features were included for the UMD network, 19 for BMD and 24 for 
PSY (eMethods 5).  
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A saturated model was fitted with the relevant features at 6 follow-up intervals in each sub-
sample (UMD, BMD, PSY). Similarly to the primary analysis, saturated networks showed 
excellent fit and better fit than sparse models for the three networks (UMD: DX2(687)=1737, 
p<·0001; BMD: DX2(606)=1547, p<·0001; PSY: DX2(856)=2961, p<·0001). Further model fit 
results, including recoverability (eResults 4), and bootstrapping estimates (eTable 11, eFigure 
3) can be found in the Supplement. 
 

a. UMD 
 

The strongest autocorrelations were observed for cannabis use (z=·12), feeling lonely (z=·12) 
and hallucinations (all) (z=·11) with all the other autocorrelations between 0·03-0·10 (Figure 
4A).  
 
The most prominent unidirectional relationships were all positive: poor motivation-low energy 
(z12=·06), tobacco use-weight loss (z12=·04), paranoia-nightmares (z12=·04) and mood 
instability-weight loss (z12=·04). All other unidirectional relationships were |z12|<·04. With 
respect to bidirectional relationships, positively recurring pairs were observed between guilt 
and tearfulness (z12=·03, z21=·03).  
 
Considering centrality, weight loss (cin=·140), aggression (cin=·128) and suicidality (cin=·106) 
had the strongest in-centrality, whereas tobacco use (cout=·105), mood instability (cout=·103) 
and poor motivation (cout=·092), had the strongest out-centrality (eTable 13A).  
 

b. BMD 
 
The strongest autocorrelation was observed for hallucinations (all) (z=·13), with all the other 
autocorrelations between 0·03-0·10 (Figure 4B). The most prominent unidirectional 
relationships were mixed, with some positive: guilt-feeling hopeless (z12=·07), aggression-
elation (z12=·06) and hallucination-suicidality (z12=·06); and others negative: guilt-paranoia 
(z12=-·07), irritability-tobacco use (z12=-·06), and feeling hopeless-elation (z12=-·06). All other 
unidirectional relationships were |z12|<·06. With respect to bidirectional relationships, 
positively recurring pairs were observed between elation-irritability (z12=·06, z21=·06).  
 
Considering centrality, elation (cin=·176), irritability (cin=·157) and tobacco use (cin=·152), had 
the strongest in-centrality, whereas elation (cout=·165), irritability (cout=·163) and guilt 
(cout=·143) had the strongest out-centrality (eTable 13B). 
 

c. PSY 
 
The strongest autocorrelation was observed for feeling hopeless (z=·11) and tearfulness 
(z=·11), with all the other autocorrelations between 0·04-0·10 (Figure 4C). The most prominent 
unidirectional relationships were all positive: hallucinations (all)-disturbed sleep (z12=·04), 
hostility-arousal (z12=·04), irritability-agitation (z12=·04). All other unidirectional relationships 
were |z12|<·04. With respect to bidirectional relationships, positively recurring pairs were 
observed between aggression-hostility (z12=·04, z21=·03), delusional thinking-hallucinations 
(all) (z12=·04, z21=·03), aggression-agitation (z12=·04, z21=·04), arousal-elation (z12=·04, z21=·04).  
 
Considering centrality, agitation (cin=.115), aggression (cin=·078) and arousal (cin=·072), had 
the strongest in-centrality, whereas aggression (cout=·143), hostility (cout=·135) and 
hallucinations (all) (cout=·104) had the strongest out-centrality (eTable 13C). 
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Results and visualisations for the contemporaneous and between-subject relationships of nodes 
for all sub-networks are presented in eResults 5. See eTable 12 for actual model and 
bootstrapped estimates. 
 

3.4 Permutation Analysis 
The final nodes for permutation analysis are found in eMethods 6, with the actual model 
estimates in eTable 14. The histograms of permuted edge weights exhibited a normal (bell-
shaped), zero-centred curve, indicating that further iterations are unlikely to affect the 
distribution or the results of these analyses. Out of all possible edge weight comparisons in the 
permutation analysis, few of them were significantly different: UMD-PSY (3·9%), followed 
by BMD-PSY (1·6%) and then UMD-BMD (0·4%).   
 
UMD showed a significantly stronger edge weight from irritability to tobacco use compared to 
BMD (zUMD-BMD=·059, ppermuted<·001). In addition, the following edge weights were significantly 
stronger compared to PSY: cannabis use (autocorrelation) (zUMD-PSY=·051, ppermuted<·001), 
agitation-suicidality (zUMD-PSY=·048, ppermuted<·001), tobacco use-suicidality (zUMD-PSY=·038, 
ppermuted<·001), mood instability-aggression (zUMD-PSY=·035, ppermuted<·001), suicidality-
hallucinations (all) (zUMD-PSY=·034, ppermuted<·001) and cannabis-suicidality (zUMD-PSY=·033, 
ppermuted<·001) (Figure 5). 
 
BMD did not show any edge weights that were significantly stronger than UMD, and only one 
edge weight was stronger compared to PSY (from tearfulness-cannabis use) (zBMD-PSY =·049, 
ppermuted<·001) (Figure 5). 
 
PSY showed significantly stronger edge weights compared to UMD for the following edges: 
hallucinations (all)-paranoia (zPSY-UMD=·048, ppermuted<·001), paranoia (autocorrelation) (zPSY-

UMD=·048, ppermuted<·001), tobacco use (autocorrelation) (zPSY-UMD=·045, ppermuted<·001) and 
paranoia-disturbed sleep (zPSY-UMD=·033, ppermuted<·001). PSY also showed significantly stronger 
edge weights compared to BMD for the edges: hallucinations (all)-disturbed sleep (zPSY-

BMD=·072, ppermuted<·001), irritability-tobacco use (zPSY-BMD=·070, ppermuted<·001) and disturbed 
sleep-paranoia (zPSY-BMD=·053, ppermuted<·001) (Figure 5).  
 
Histograms showing null distributions for significant temporal comparisons are presented in 
eFigure 4, with the results from the contemporaneous and between-subject matrices presented 
in eFigures 5-6.  
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4. DISCUSSION 
 
This study represents the most extensive temporal network analysis modelling the evolution of 
prodromal features in SMD, with respect to both the breadth of features and the large sample. 
We found a dynamic and densely interconnected prodromal phase in the lead-up to SMD onset, 
mainly with autocorrelations and unidirectional relationships. Notably, this network structure 
shows consistencies across the SMD diagnostic groups, highlighting a transdiagnostic overlap 
in the prodromal stages of these conditions.  
 
First, our analysis elucidates the dynamic progression of the SMD prodrome. The best fitting 
networks were those where all nodes were heavily interconnected. The nature of the 
associations between prodromal features were predominantly positive; presenting with one 
feature typically predicts the emergence, rather than absence, of the same or another feature in 
the future. This reflects the sequential build-up in severity or complexity of the SMD prodrome 
nearing disorder onset and supports early detection efforts. The strongest positive associations 
were autocorrelations, meaning that once an individual experiences a feature, it tends to persist 
during the prodrome. Moreover, there was a higher prevalence of unidirectional (feature A 
leads to feature B at the next time point but not vice versa) rather than bidirectional (either 
feature leads to the other emerging at the next time point) relationships. Understanding these 
dynamics can help map how prodromal features evolve and the impact of targeted 
interventions.  
 
Second, our analysis revealed that denser networks, with higher saturation, fit better than sparse 
networks for both the SMD network and the sub-networks specific to SMD diagnostic groups. 
This highlights the complexity of the interrelationships among prodromal features and holds 
implications for early detection strategies. Effective prevention of SMD or addressing existing 
prodromal symptoms requires high-intensity interventions targeting the most influential 
network features to reduce the risk of further prodromal features emerging.  
 
Third, our findings provide additional evidence to the concept of transdiagnostic features 
within the prodromal phase of SMD (at least in the context of secondary mental health care).23–

28 The minimal edge weight differences among UMD, BMD and PSY sub-networks in the 
permutation analysis suggest that there are only few relationships specific to diagnostic groups.  
 
Echoing our earlier findings,28 PSY exhibited the most distinctive pattern of relationships 
between prodromal features, with stronger connections compared to both UMD and BMD in 
symptom pairs relating to positive symptoms, tobacco use and disturbed sleep. The prominence 
of positive symptoms in PSY affirms the relevance of psychometric tools, like the CAARMS29 
and SIPS,30 which primarily assess positive symptoms to identify psychosis risk with excellent 
population-level prognostic accuracy.31 However, individuals who test positive on these tools 
are less likely to develop psychosis than not.31 Our results could inform refined versions of 
these tools, which are more sensitive to psychosis risk, or individualised prediction models. 
Interestingly, these findings underscore the disruptive impact of positive psychotic symptoms 
on sleep. Given that clinical high risk for psychosis individuals (CHR-P)32,33 and people with 
psychosis34,35 often experience sleep issues, our findings reinforce the potential for 
interventions targeting sleep disturbances.36  
 
Moreover, central features, indicating highest network influence, differed across sub-networks. 
In UMD, suicidality was central, which has been shown to be more common in UMD than 
other mental disorders37 (with suicidal ideation and attempt rates at 53% and 31%, 
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respectively38,39), but less prominent in early prodromal stages.40 For BMD, centrality of elation 
and irritability aligns with hypomanic symptoms as diagnostic risk factors41, supporting 
psychometric instruments42–44 for bipolar at-risk45 focusing on these symptoms. In PSY, 
aggression and agitation were central, but this finding requires careful interpretation as our 
NLP algorithm for aggression does not distinguish between forms of violence directed to others 
or oneself, and individuals with PSY are more likely to be victims of violence than the general 
population.2,46  
 
Our results show evidence for an existing prodrome in UMD, BMD and PSY which is similar 
but not completely overlapping across the SMD diagnostic groups. This finding supports the 
potential to broaden preventive services which target SMD. While transdiagnostic early 
detection services are emerging, they can encompass a range of at-risk states beyond those 
studied here, including eating disorders, anxiety and personality disorders47–49, and their 
effectiveness is yet to be determined50. Like with the CHR-P state, effective recruitment 
strategies are crucial for risk enrichment31 and optimizing preventive intervention potential. 
 
This study, while comprehensive, is subject to several limitations. First, the features which 
comprise the networks are prodromal in the sense that they are the symptoms that are detectable 
in secondary care prior to these diagnoses. However, despite our extensive range of prodromal, 
sociodemographic and treatment variables, there may still be unaccounted factors that 
influence the temporal evolution of SMD prodromes, such as functioning.51 Future work should 
focus on mapping specific symptom trajectories to identify confounding factors affecting 
symptom presence and absence in extensive networks such as ours. Second, to reduce the 
missingness in the dataset, we used a relatively short look-back period. However, this two-year 
period before disorder onset aligns with the typical duration of clinical care for at-risk 
individuals.52 Third, the final population presents a selection bias towards those receiving more 
frequent secondary care, limiting generalizability. Similarly, specific features, such as 
disorganized symptoms, may be underrepresented due to the need for consistent clinical visits. 
However, there were minimal differences between included and excluded individuals, in terms 
of demographics, clinical variables and presenting symptoms. EHR and NLP-related 
limitations are discussed in eLimitations 1.  
 
Overall, our study highlights the presence of a detectable transdiagnostic SMD prodrome by 
modelling the evolution of symptoms and substance use over time. Our findings illustrate the 
need to understand dynamic symptom progression to fully characterise the prodrome to SMD. 
These findings also support the potential for broader transdiagnostic early detection services 
for SMD that provide preventive care to individuals at-risk and a research platform for 
investigating putative interventions. 
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FIGURES 

 

Figure 1. Study design. The look-back period was split into six three-month follow-up 
intervals (FU 1-6) relative to the index date (T-0mo) of SMD diagnosis. This pipeline (steps 1-
4) was followed for both the primary analysis (SMD model) and secondary analysis (sub-
networks). 
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Figure 2. Flow-chart of the study population.  
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Table 1. Demographics and medication variables at index of final study population (N=7,049). 
Continuous variables are represented by mean (SD), categorical variables are represented by 
count (frequency). 
 

Characteristic 

Whole 
sample, 
N=7,049 

UMD,  
N = 2,306 

BMD,  
N = 817 

PSY,  
N = 3,926 

Age 42·9 (16·4) 42·9 (18·6) 43·8 (15·5) 42·8 (15·1) 
Gender     
Female 3,669 (52) 1,471 (64) 524 (64) 1,674 (43) 
Male 3,374 (48) 830 (36) 293 (36) 2,251 (57) 
missing 1 (<0·1) 0 (0) 0 (0) 1 (<0·1) 
Other 5 (<0·1) 5 (0·2) 0 (0) 0 (0) 
Ethnicity     
White 3,848 (55) 1,517 (66) 566 (69) 1,765 (45) 
Black 2,064 (29) 375 (16) 126 (15) 1,563 (40) 
Other 257 (3·6) 97 (4·2) 27 (3·3) 133 (3·4) 
Asian 503 (7·1) 150 (6·5) 55 (6·7) 298 (7·6) 
Mixed 239 (3·4) 90 (3·9) 28 (3·4) 121 (3·1) 
missing 138 (2·0) 77 (3·3) 15 (1·8) 46 (1·2) 
Antidepressants 2,978 (42) 1,206 (52) 350 (43) 1,422 (36) 
Mood stabilisers 1,186 (17) 154 (6.7) 428 (52) 604 (15) 
Anxiolytics 1,892 (27) 472 (20) 278 (34) 1,142 (29) 
Antipsychotics 3,798 (54) 390 (17) 463 (57) 2,945 (75) 
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Figure 3. Temporal relationships between nodes in SMD network 
A. Temporal network graph displaying positive (blue) and negative (red) relationships between nodes from 
actual model estimates. Edges are displayed as lines, with the thickness representing the strength of the edge 
weight estimate (correlation coefficient, z). Edges are thresholded (|z| > ·022) and labelled (|z| > ·03). For 
visualisation purposes, nodes are clustered into six categories (depressive, manic, negative, positive, 
substance use and other) according to the type of prodromal feature. 
B. Bootstrapped (250 repetitions; black) vs actual model (n=7,140; red) edge weight estimates (|z| > ·022). 
Edges are directed such that “node1 – node2” represent the edge from node1 to edge2. All edges were 
positive except the one marked with an asterisk (HOST-INS).  
C. Centrality measures for all nodes  
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Figure 4 Temporal relationships between nodes in sub-networks  
Temporal network graphs displaying positive (blue) and negative (red) relationships between nodes from 
actual model estimates for sub-networks (A. UMD, B. BMD, C. PSY). Edges are displayed as lines, with 
the thickness representing the strength of the edge weight estimate (correlation coefficient, z). Edges are 
thresholded (UMD: |z| > ·026, BMD: |z| > ·045, PSY: |z| > ·03) and labelled (UMD: |z| > ·04, UMD: |z| > ·06, 
UMD: |z| > ·05). For visualisation purposes, nodes are clustered into six categories (depressive, manic, 
negative, positive, substance use and other) according to the type of prodromal feature. 
D. Centrality measures for all nodes in sub-networks (green: UMD, blue: BMD, red: PSY) 
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Figure 5. Heat-maps for pairwise edge comparisons (UMD-BMD, BMD-PSY, UMD-PSY) in 
temporal sub-networks in permutation analysis. Magnitude and direction of effect size is 
colour-coded such that for the pairwise comparison Group1-Group2, yellow indicates the edge 
estimate is more positive in Group1>Group2 and blue indicates the opposite Group1<Group2. 
Significant pairwise comparisons (corrected p<0·05) are marked with an asterisk (*). 
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