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Abstract 

Background: Children with obesity are more likely to have parents with obesity, too. Several 

environmental explanations have been proposed for this correlation, including foetal programming,  

and parenting practices. However, body mass index (BMI) is a highly heritable trait; child-parent 

correlations may reflect direct inheritance of adiposity-related genes. There is some evidence that 

mother’s BMI associates with offspring BMI net of direct genetic inheritance, consistent with both 

intrauterine and parenting effects, but this requires replication. Here we also investigate the role of 

father’s BMI and diet as a mediating parenting factor. 

Methods: We used Mendelian Randomization (MR) with genetic trio (mother-father-offspring) data 

from 2,621 families in the Millennium Cohort Study, a UK birth cohort study of individuals born in 

2001/02, to examine the association between parental BMI (kg/m2) and offspring birthweight and 

BMI and diet measured at six-time points between ages 3y and 17y. Paternal and maternal BMI were 

instrumented with polygenic indices (PGI) for BMI also conditioning upon offspring PGI. This 

allowed us to separate direct and indirect (“genetic nurture”) genetic effects. We compared these 

results with associations obtained using multivariable regression techniques using phenotypic BMI 

data only, the standard research approach. 

Results: Mother’s and father’s BMI were positively associated with offspring BMI to similar degrees. 

However, in MR analysis, associations between father’s BMI and offspring BMI were close to the 

null, suggesting phenotypic associations reflect the direct transmission of genetic traits. In contrast, 

mother’s BMI was consistent in MR analysis with phenotypic associations. Maternal indirect genetic 

effects were between 20-50% the size of direct genetic effects. There was inconsistent evidence of 

associations with offspring diet. Mother’s, but not father’s, BMI was related to birthweight in both 

MR and multivariable regression models. 

Conclusion: Results suggest that maternal BMI may be particularly important for offspring BMI: 

associations may arise due to both direct transmission of genetic effects and indirect (genetic nurture) 

effects. Associations between father’s and offspring adiposity that do not account for direct genetic 

inheritance may yield severely biased estimates of paternal influence. 

Keywords: genetic nurture; polygenic scores; obesity; body mass index; diet; Mendelian 

Randomization 
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Introduction 

Obesity rates among children and adolescents have risen sharply over the past five decades (Abarca-

Gómez et al., 2017). This has motivated a large body of research on factors that contribute to high 

body mass index (BMI) among young people (Blüher, 2019; Kansra et al., 2021). One focus of this 

research has been on the role of parents, particularly the role of parental adiposity. Children with 

obesity are more likely to have parents with obesity , too (Campbell & McPherson, 2019; Heslehurst 

et al., 2019; Wang et al., 2017; Yu et al., 2013). 

Several reasons have been given to explain this correlation. The developmental overnutrition 

hypothesis (DOH; Lawlor et al., 2012) posits that higher levels of maternal adiposity while the child 

is in utero can have long-term effects on offspring BMI by increasing circulating levels of pro-

inflammatory cytokines, glucose, and fatty acids in the mother (Fleming et al., 2018; Godfrey et al., 

2017; N. Patel et al., 2015). These are thought to increase birth weight and ‘program’ permanent 

changes to offspring adiposity-related physiology and behavioural traits, including changes to appetite 

control and metabolism (Fleming et al., 2018; Godfrey et al., 2017; Oken & Gillman, 2003; N. Patel 

et al., 2015; Remmers & Delemarre-van De Waal, 2011). However, the DOH cannot explain the 

correlation between father’s and offspring BMI. Traits related to father’s (and mother’s) adiposity, 

such as diet and exercise behaviour, could instead be important postnatally through their influence on 

the postnatal environment in which the child develops. Aspects of the family and home environment 

that are particularly pertinent to BMI are parental diet (which influences food availability and 

behaviour modelling), food parenting practices (active behaviours and techniques used to influence 

children’s food intake; C. Patel et al., 2018), and analogous influences on exercise and physical 

activity (Larsen et al., 2015; Lawlor et al., 2008).  

While these processes may explain a correlation between parental and offspring adiposity, BMI is a 

highly heritable – and polygenic (Vogelezang et al., 2020; Yengo et al., 2018) – trait; heritability 

estimates from twin studies range 47-90% (Elks et al., 2012; Min et al., 2013). The association 

between parents and their children may, therefore, reflect direct transmission of genes passed on to 

offspring. Only a small number of studies have used genetically-informed designs that can account for 

the direct genetic transmission of adiposity-related genes (Bond et al., 2022; Kong et al., 2018; 

Lawlor et al., 2008; Richmond et al., 2017; Schnurr et al., 2020; Tubbs et al., 2020). These exploit the 

fact that children inherit only half of their parents’ genomes and either use polygenic indices (PGI) for 

BMI constructed using parental ‘non-transmitted’ alleles or adjust for parental and offspring PGIs 

simultaneously, thus enabling the assessment of ‘genetic nurture’ effects operating indirectly via 

parental traits and behaviours (Figure 1; Davies et al., 2019).  

These studies have generated inconsistent results but have differed according to the age of BMI 

assessment, the predictive power of PGIs used, and whether maternal and paternal genetic effects 
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have been separated. Evidence from one regional UK birth cohort shows an association between a 

mother’s BMI PGI and offspring’s BMI in adolescence (Bond et al., 2022; Lawlor et al., 2008; 

Richmond et al., 2017; Tubbs et al., 2020). Paternal effects were not assessed, however. Studies from 

Denmark (Schnurr et al., 2020) and Iceland (Kong et al., 2018) found little evidence of association 

with parental genetics at age 18y or during adulthood, respectively – though, the former study used a 

relatively small sample size and the latter did not separate maternal and paternal effects. The latter 

two studies are also consistent with a genome-wide association study (GWAS) comparing within- and 

between-sibling genetic associations that found little evidence of genetic nurture influence on adult 

BMI (Howe et al., 2022). 

The current evidence is, therefore, restricted by the partial use of genetic trio (mother-father-

offspring) data, a lack of direct examination of paternal effects, and a small number of samples used. 

Further, there has been no investigation of the pathways through which indirect genetic effects may 

arise; for instance, effects upon diet, which (as noted) could explain correlations in father-child BMI. 

Therefore, in this study, we investigated whether maternal and paternal genetics have indirect effects 

upon offspring outcomes by performing an MR analysis of over 2,600 genetic trios in the Millennium 

Cohort Study, a UK birth cohort with repeat assessment of children’s BMI and diet from early 

childhood to late adolescence. 

Methods 

Participants 

Participants in the Millennium Cohort Study (MCS) were born between 2000/02, decades after 

childhood obesity rates started to rise in the UK (Office for Health Improvement and Disparities, 

2022; Stamatakis et al., 2005). Participants have been followed up on multiple occasions, beginning at 

9 months and with the most recent data collection available at age 17y. (An additional sample of 4% 

of participants were recruited at age 3y.) Cohort member’s caregivers and, latterly, the cohort 

members themselves, have been interviewed at each sweep, with a wide variety of survey and 

biomedical data collected. At age 14y, cohort members and their resident biological parents provided 

saliva samples, which were used for genotyping. Further detail on the study, including genetic data 

collection, is available in cohort profiles (Connelly & Platt, 2014; Fitzsimons et al., 2022). Ethical 

review for each sweep was provided by a National Health Service Research Ethics Committee (see 

Shepherd & Gilbert, 2019, for more detail). 

The MCS used a clustered stratified sampling design, with oversamples of children living in 

disadvantaged areas, from ethnic minority backgrounds, or from Scotland, Wales or Northern Ireland. 

We limited our analysis to singletons of (White) European ancestry/ethnicity (n = 15,456; 81.4% of 

the recruited sample) as the BMI PGI we used was drawn from a GWAS of European ancestry 
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samples (Yengo et al., 2018). (For genotyped individuals, European ancestry was determined using 

the GenoPred pipeline [see below]; for non-genotyped individuals, self-reported White European 

ethnicity was used.) Only parents who were biologically related to cohort members were eligible for 

genetic data collection; biologically related mothers or fathers who did not reside with their child were 

not followed-up. As such, sample sizes for trios were limited. 2,629 families had full genetic trio data 

(44.8% those observed with both biological parents resident at age 14y, 17% of the total sample of 

European ancestry) and 5,368 had genetic data from mother-offspring pairs (59.3% of those observed 

with resident biological mother at age 14y, 34.7% of the total sample with European ancestry). 

Genotyping 

Genotyping was carried out in the Bristol Genetics Labs (Bristol, UK) using Illumina Infinium global 

screening arrays-24 v1.0. For more details on the collection of samples, DNA extraction methods, and 

laboratory procedures, see Fitzsimons et al. (2022). Genotype calling was performed using 

GenomeStudio (v2.0, Illumina) and quality control was completed using PLINK1.9 and PLINK2.0 

(Chang et al., 2015). Samples that could no longer be included in the sample (e.g., due to withdrawn 

consent) were removed prior to QC. Individuals were excluded if they had > 2% missing data, excess 

heterozygosity (>3 standard deviation [SD] from the mean), or X chromosome homozygosity 

discordant with their reported sex (females excluded with an F value > 0.2 and males with an F value 

< 0.8), so long as these could not be rectified using family relationships inferred using KING.  

Prior to imputation, single nucleotide polymorphisms (SNPs) were excluded if they had high levels of 

missing data (> 3%), Hardy-Weinberg equilibrium P�<�1e-6 (based on a subset of unrelated, 

European samples), or minor allele frequency (MAF) < 1%. The genetic data were then recoded as 

vcf files before uploading to the TOPMed Imputation Server, which uses Eagle2 to phase haplotypes 

and Minimac4 (Fuchsberger et al., 2015) with the TOPMed reference panel. Imputed genotypes were 

then filtered with PLINK2.0alpha, excluding SNPs with an R2 INFO score < 0.8, and recoded as 

hard-calls into binary PLINK format. Proceeding with PLINK1.9, samples with > 2% missing values 

were removed and SNPs were excluded if they had > 3% missing values, > 2 alleles or a MAF of < 

1%. Duplicate samples were also removed, with the sample with the higher genotyping rate retained. 

In these steps, European individuals were identified using the GenoPred pipeline which involved (a) 

merging the MCS genotypes with data from 1000 genomes Phase 3, (b) linkage disequilibrium 

pruning overlapping SNPs such that no pair of SNPs within 1000�bp had r2
�>�0.20 and (c) using an 

elastic net model to identify Europeans versus non-Europeans. 

Measures 

Parental Body Mass Index 

Parental height and weight were obtained via self-report at 9 months, 3y, 5y, and 7y sweeps. Weight 

was asked of fathers and non-pregnant mothers only, and mothers were additionally asked at 9 months 
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for their weight pre-pregnancy. To avoid retrospective measurement error and maximise sample size, 

we defined BMI (kg/m2) for each parent using their first available, contemporary (i.e., post-

pregnancy) report. Correlations between sweeps were ~ 0.85 or greater. The majority of observations 

(91%) were drawn from the 9 months sweep. 

Offspring Adiposity 

Child’s height and weight were obtained at ages 3y, 5y, 7y, 11y, 14y, and 17y via direct measurement 

by interviewers. We converted this to BMI (kg/m2), which we used as our primary measure. As BMI 

is an imperfect measure of adiposity, particularly among children (Wang et al., 2006), we 

supplemented it with several other adiposity-related measures. First, as BMI changes rapidly with age 

during childhood and adolescence, we converted raw BMI to age and sex-adjusted z-scores using 

growth reference charts (the 1990 UK reference panel; Cole et al., 1998) with the childsds package 

in R (Vogel, 2020). This procedure projects observed BMI onto the distribution of BMI in the 

reference sample, which has been transformed to have a standard normal (mean = 0; SD = 1) 

distribution. Second, we used height and weight (z-scores) separately to examine whether associations 

were related to weight, in particular; BMI is not independent of height in children and adolescents. 

Third, we examined if results were similar when using direct measures of fat mass collected at ages 

7y, 11y, 14y, and 17y (Staatz et al., 2021): body fat percentage, ratio of fat mass to fat free mass, fat 

mass index, and fat-free mass index. Fourth, we used waist-to-height ratio measured at 5y and 7y. 

Further detail on these variables is provided in the Supplementary Information.  

Finally, to test for intrauterine effects specifically, we used birth weight (grams), collected at 9 

months or 3y from parents who consulted their child’s red book (a portable health record), where 

available. 

Offspring Diet 

Child dietary data has been collected at each sweep of the MCS via reports from parents or cohort 

members. At ages 3y, 5y, 7y and 11y, the parent with the main responsibility for caring for the child 

(typically the child’s mother) was asked for the frequency or amount of consumption of various 

foodstuffs and drinks, with the specific questions asked changing between sweeps. At ages 14y and 

17y, dietary questions were asked to cohort members instead. 

From the dietary questions, we created separate variables for consumption of fruit (5y, 7y, 11y, 14y 

and 17y), vegetables (14y and 17y), fruit or vegetables (3y), fast food (14y and 17y), sugary drinks 

(11y, 14y, and 17y), and artificially sweetened drinks (11y, 14y, and 17y). Except for fruit or 

vegetable consumption at 3y, which is a binary variable, each of these was an ordered categorical 

variable with 3 or more response categories.  
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As self-report dietary data is captured with measurement error (Shim et al., 2014), we further used 

Multiple Correspondence Analysis (MCA) to extract a latent factor for each sweep capturing common 

variation among the individual dietary items. As only one diet question was asked at 3y, 5y and 7y, 

we could only perform MCA from 11y onwards. We standardized the diet factor variables (mean = 0, 

SD = 1) and coded all diet variables such that higher values indicated healthier diet (e.g., greater 

consumption of fruit and veg, lower consumption of sugary drinks and fast food, etc.). Full detail on 

the dietary measures, including factor loadings, is provided in the Supplementary Information. 

Polygenic Scores for Body Mass Index 

We created PGIs for mothers, fathers and children based on summary statistics from one of the largest 

GWAS of adulthood BMI currently available (n =~ 700,000; sex adjusted results from Yengo et al., 

2018). We constructed the PGIs using PRSice-2 (Choi & O’Reilly, 2019), disregarding ambiguous 

alleles and assuming additive genetic effects. To reduce the potential for horizontal pleitropy (i.e., 

genetic effects occurring via other traits, such as education), we used clumped genome-wide 

significant hits (p < 5e-8, R2 < 0.01, 1,000 kb window). The final PGI scores were based on 1,079 

SNPs. For interpretability, we standardized the PGIs (mean = 0, standard deviation = 1) using the 

complete trio sample. 

Covariates 

We included variables for child’s sex and age at BMI assessment (modelled with two natural splines; 

Perperoglou et al., 2019), maternal age at birth, maternal years of education, family socioeconomic 

class (five category National Statistics Socio-economic Classification; NS-SEC), and (child’s) 10 

genetic principal components (PCs). Genetic PCs were used to account for population stratification. 

Mother’s education and family socioeconomic class were included as potential confounders that may 

explain differences in child BMI and diet not directly related to parental BMI. Both were measured at 

age 9 months, or, if missing, at the next sweep at which data was available. Family socioeconomic 

class was measured as the higher of resident caregivers’ occupational class. 

Statistical Analysis 

The primary aims of the analysis were to (a) examine the association between parental BMI and 

offspring adiposity and diet accounting for direct genetic transmission and (b) to compare this with 

associations obtained with the standard multivariable regression approach that does not account for 

genetic inheritance and relies upon phenotypic data only.  

To address (a), we ran a series of multivariable Mendelian Randomization (MR) models using 

instrumental variables two stage least squares regression (IV-2SLS). Mother’s and father’s BMI were 

instrumented with parental PGIs also conditioning upon offspring PGI and the covariates listed above. 

Conditioning upon offspring PGI allowed us to isolate indirect from direct genetic effects (a DAG 

representing the analysis is shown in Figure 1b). The MR models were repeated for each outcome 
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variable and age of assessment. We analysed each sweep separately as, based on previous results 

(Bond et al., 2022; Richmond et al., 2017), we anticipated effect sizes to differ by age, but had no a 

priori expectation as to the form this variation would take (e.g., linear change). For individual diet 

variables, we first dichotomized these and used linear probability models for the second stage 

regressions (see Supplementary Information for categories used for dichotomization). 

To address (b), we regressed offspring adiposity and diet variables upon parental phenotypic BMI, 

again repeating models for each outcome variable and age of assessment – parental phenotypic BMI 

was not instrumented and instead entered into models directly. We again adjusted for the covariates 

listed above, but did not control for offspring PGI following standard practice. To compare estimates 

from MR and phenotypic regression models, we calculated the difference in coefficients between 

models, obtaining confidence intervals using bootstrapping accounting for complex survey design 

(Rao and Wu method, 500 bootstrap samples; Kolenikov, 2010; Rao & Wu, 1993).  

As a further analysis, we estimated multivariable regression models using parental PGIs (instead of 

parental phenotypic BMI) directly as including mother’s, father’s and child’s PGIs in models 

simultaneously allowed us to assess the relative size of direct (child’s PGI) and indirect (mother’s and 

father’s PGIs) genetic effects upon offspring adiposity and diet. 

To ensure results were not driven by outliers, we deleted values which were three or more standard 

deviations away from the (sweep-specific) sample mean. To maximise power, we used regression-

specific complete case data. Sample sizes ranged 1,652-2,532. Sample sizes differed across analyses 

due to missing data for outcome variables or covariates, loss to follow-up, death, or emigration. Given 

this, in sensitivity analyses, we used multiply imputed data instead. As the level of selection and 

attrition was high (trio data available for < 20% of the eligible sample), we imputed to two samples: 

the set of families with genotyped trios and the set of families with genotyped duos (mother-offspring 

or father offspring pairs; n = 5,921; 38.3% of total European ancestry sample). We also repeated 

models dropping father’s PGI and using observations from genotyped mother-offspring pairs (n = 

5,368; 34.7% of the total European ancestry sample) as this allowed us to double the sample size 

compared to the genetic trios and thus obtain more precise estimates. Further, we descriptively 

examined whether missingness and attrition were related to outcome variables and participant 

characteristics to assess the likely degree and direction of bias.  

As the MCS uses a stratified survey design, we conducted analyses using sample recruitment weights 

and strata with the survey package in R (Lumley, 2004). Data cleaning and analyses were performed 

using R version 4.3.1 (R Core Team, 2023). The code used to run the analysis is available at 

https://osf.io/5vfnq/. 
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Role of the Funding Source 

The funders had no final role in the study design; in the collection, analysis, and interpretation of data; 

in the writing of the report; or in the decision to submit the paper for publication. All researchers 

listed as authors are independent from the funders and all final decisions about the research were 

taken by the investigators and were unrestricted. 

Results 

Descriptive Statistics 

The mean, variation, and skewness of BMI increased as the cohort aged (Figure 2). The diet MCA 

factor variable was highly variable across sweeps and only weakly correlated with contemporary child 

BMI z-scores (-.05 < ρ < .00; Supplementary Figure S1). Descriptive statistics for the individual diet 

variables are shown in Supplementary Figure S2. 

The PGIs were correlated with several measured confounders (Table 1). Higher levels of each PGI 

were associated with less advantaged family social class, fewer years of maternal and paternal 

education, and earlier maternal or maternal age at birth. However, conditioning upon parental PGIs, 

child’s PGI was only associated with (own) country of birth and maternal age at birth (p < 0.05). 

Maternal and paternal BMI were weakly correlated (ρ = .22) and the correlation between mother’s 

and father’s PGIs was ρ = -.02. Each parent’s PGI was also unrelated to the other parent’s BMI. 

Parental PGIs were strong instruments for parental BMI (F-statistics > 40 in each case). 

Parental BMI and Offspring Adiposity 

Mother’s and father’s BMI were consistently related to higher child BMI in standard (phenotypic) 

multivariable regression models (Figure 3; see Supplementary Table S1 for full regression results). 

Associations were stronger at older ages and similar in size for mother’s and father’s BMI. A 1 kg/m2 

increase in mother’s BMI was associated with a 0.25 kg/m2 (95% CI = 0.20, 0.30) increase in child’s 

BMI at age 17y. The corresponding figure for father’s BMI was 0.29 kg/m2 (0.24, 0.35). 

Mother’s BMI remained consistently related to higher child BMI in MR analysis (left plot, Figure 3). 

Effect sizes were similar to those obtained using phenotypic multivariable regression; tests comparing 

coefficients across phenotypic and MR models showed no clear evidence of differences at any age. 

However, estimates from MR models were less precise than those from phenotypic models. In the MR 

model, a 1 kg/m2 increase in mother’s BMI was associated with a 0.20 kg/m2 (-0.01, 0.42) increase in 

child’s BMI at age 17y. 

Point estimates for the association between father’s BMI and child’s BMI in MR models were small 

in size and typically close to the null. For instance, at age 14y, a 1 kg/m2 increase in father’s BMI was 

associated with a 0.00 kg/m2 (-0.19, 0.20) increase in child’s BMI. Z-tests showed clear evidence that 
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associations obtained in MR models were attenuated relative to those using phenotypic multivariable 

regression (p < 0.05 from age 5y onwards). 

Regarding alternate measures of adiposity, mother’s and father’s BMI were related to child’s BMI z-

scores and weight z-scores but not height z-scores in multivariable regression models (Supplementary 

Figure S3). Again, associations for mother’s BMI from MR models were broadly consistent with 

those from multivariable regression models, while associations for father’s BMI were attenuated to 

the null. Mother’s and father’s BMI were consistently related to waist-to-height ratio, fat mass, and 

fat-to-fat-free ratio in phenotypic multivariable regression models but there was little consistent 

evidence of association in MR models, though estimates were typically imprecise (Supplementary 

Figure S4). There was, however, consistent evidence in MR models that mother’s BMI was related to 

fat-free mass index (second row, Supplementary Figure S4). This may suggest associations between 

mother’s BMI and child’s BMI are not driven by effects on adiposity. 

Mother’s BMI was positively related to child’s birthweight in both (phenotypic) multivariable and 

MR models (Supplementary Table S1). The phenotypic association was 14.53 grams (9.62, 19.45) per 

1 kg/m2 increase in mother’s BMI, while the association obtained in MR models was 23.04 grams (-

0.75, 46.84) per 1 kg/m2. There was little evidence that father’s BMI was associated with child’s 

birthweight in either phenotypic or MR regression models. Corresponding figures were 1.85 grams (-

3.55, 7.25) and -7.81 grams (-35.18, 19.57), respectively.  

The Association Between Parental BMI and Child Diet 

Mother’s BMI was inversely related to the child diet MCA factor in (phenotypic) multivariable 

regression models at ages 14y and 17y, indicating a less healthy diet for children whose mother’s had 

higher BMI (Figure 4, left panel; see Supplementary Table S1 for full regression results). Effect sizes 

were small, however: a 1 kg/m2 increase in mother’s BMI was related to a 0.03 SD (0.01, 0.04) lower 

child diet factor score at age 17y. Point estimates were larger (in absolute terms) at 14y and 17y in 

MR than phenotypic regression models, though again effects sizes were small; the MR model 

predicted a 1 kg/m2 increase in mother’s BMI was related to a 0.05 SD (0.00, 0.10) lower child diet 

factor score at age 17y.  

There was little evidence of an association between mother’s BMI and child diet factor score at age 

11y in either multivariable or MR models. Father’s BMI was not consistently related to child’s diet 

factor scores, though there was evidence of association at age 14y in both multivariable and MR 

models: MR results suggested a 1 kg/m2 increase in father’s BMI was related to 0.05 SD (0.00, 0.09) 

lower diet factor score at age 14y. 

Looking at individual diet items, there was evidence from MR models that mother’s BMI was related 

to greater frequency of fast food consumption at 14y, greater consumption of sweetened drinks at ages 
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11y and 14y, and lower consumption of fruit at age 11y (left column, Supplementary Figure S5). 

There was little clear association between father’s BMI and any individual child diet items in MR 

models (right column, Supplementary Figure S5).  

Comparison of Direct and Indirect Genetic Effects 

In models examining associations between BMI and child’s and parent’s PGI, the (conditional) 

association between mother’s PGI and offspring BMI was approximately one-fifth to one-half the size 

of the association found for offspring’s PGI (left panel, Figure 5; see Supplementary Table S2 for full 

regression results). This indicated that maternal indirect genetic effects comprise a substantial 

component of total genetic effects for this phenotype. Conditional associations between the father’s 

PGI and child BMI were small at each follow-up and confidence intervals overlapped the null. 

The association between the mother’s PGI and birthweight (25.63 g, 95% CI = -2.49, 53.76, per 1 SD 

increase in the mother’s PGI) was larger than the corresponding direct genetic effect (9.26 g, 95% CI 

= -22.89, 41.41), though confidence intervals overlapped. Further, there was little evidence of an 

association between father’s PGI and birthweight (-5.55 g, 95% CI = -30.82, 19.72, per 1 SD increase 

in father’s PGI) 

For child’s diet, mother’s PGI was associated more strongly with less healthy offspring diet than the 

child’s PGI was (right panel, Figure 5), though confidence intervals overlapped, except at age 14y. 

There was no clear or consistent association between child’s PGI and diet. In fact, at age 14y, 

offspring’s PGI was related to a more healthy diet – a 1 SD in offspring’s PGI was associated with 

0.07 SD (0.01, 0.12) increase in the diet factor variable. 

Sensitivity Analyses 

MR estimates were qualitatively similar when not including father’s PGI and BMI in models, both 

within the genetic-trio sample (middle vertical panel, Supplementary Figure S6) and in the larger 

sample of genotyped mother-offspring pairs (right panel, Supplementary Figure S6). MR estimates in 

the mother-offspring pairs were typically smaller in size, however (albeit to a limited extent). Further, 

in the mother-offspring pair sample, confidence intervals for the association between maternal BMI 

and offspring diet overlapped the null (bottom right hand panel, Supplementary Figure S6).  

MR estimates were qualitatively similar for both maternal and paternal BMI when using multiple 

imputation (Supplementary Figures S7-S8). Point estimates for the effect of maternal BMI upon 

offspring BMI, diet and birthweight were smaller in the sample with genotyped mother-offspring or 

father-offspring pairs than in the genetic trio sample, though confidence intervals overlapped. 

Assessment of Sample Bias 

Compared to eligible participants without genetic trio data, those with genetic trio data were more 

likely to have healthy diets, higher birthweight, an older mother, parents with greater BMI, and a 
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more advantaged socioeconomic background (Supplementary Table S3, Column 2). There was less 

bias according to these factors among the sample of genotyped mother-offspring pairs, though 

differences remained (Supplementary Table S3, Column 3). Higher BMI z-scores were related to a 

lower chance of participation at subsequent sweeps (Supplementary Figure S9). For instance, a 1 SD 

higher BMI z-score at age 11y was related to ~ 3.25% points lower probability of participating at 17y.  

Discussion 

Using lifecourse data from over 2,600 genetic trios in the Millennium Cohort Study, we found 

evidence that mother’s and father’s BMI were associated longitudinally with offspring adiposity 

between ages 3y to 17y. Associations increased as the children aged. However, our results suggested 

that the association between father’s and child’s BMI was explained by direct genetic inheritance: 

there was little evidence of an association in MR models that accounted for transmission of adiposity 

related-genetic variants. Mother’s BMI was associated with offspring BMI in MR models, consistent 

with the effect of maternal genes operating partly indirectly via maternal traits. Indirect genetic effects 

were estimated to be between 20-50% of direct genetic effects for offspring BMI. However, alternate 

measures of adiposity, such as fat mass and waist-to-height ratio, did not show consistent positive 

associations with maternal BMI when accounting for genetic inheritance, which may suggest 

association with offspring BMI are not driven by effects on adipose tissue. There was evidence of an 

association between mother’s BMI and child’s diet, at least at ages 14y and 17y, and again when 

direct genetic inheritance was accounted for. 

Our results are (partly) consistent with analyses of a regional UK birth cohort which find associations 

between maternal adiposity and offspring BMI in adolescence (Bond et al., 2022; Tubbs et al., 2020). 

Our results differ in finding clear evidence of association in earlier childhood. Further, effect sizes 

(when converted to SD units) were typically larger (by 50% or more) in the present study. If causal, 

our results suggest that intervening to reduce maternal BMI while the child is in utero could have 

modest long-term intergenerational effects upon obesity rates.  

To our knowledge, our analysis of father’s BMI using MR is novel in the literature. The finding that 

father’s BMI is not associated with offspring BMI after accounting for direct genetic inheritance may 

explain the small effect sizes found by Kong et al. (2018) who did not separate maternal and paternal 

effects. However, their study also differed in measuring offspring BMI in young adulthood – parental 

effects could be larger in childhood and adolescence when individuals are more likely to live with 

their parents. Results require replication in an older sample. 

Our finding that father’s BMI is unlikely to affect offspring BMI (conditional on genotype) is 

intriguing in light of the large number of studies investigating father-child correlations in phenotypic 

BMI (Campbell & McPherson, 2019; Patro et al., 2013; Wang et al., 2017). If the present results are 
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replicated, they suggest phenotypic correlations between father’s BMI and offspring's BMI could be 

explained by direct genetic inheritance and genetic confounding. Future observational studies that aim 

to test for environmental causes of the father-child adiposity correlations should adopt genetically 

informed designs (such as, the adoption study). However, it is possible that paternal indirect genetic 

effects may be stronger in contexts where fathers are more involved in childcare – future studies 

should also examine genetic nurture in countries marked by greater gender equality. 

In contrast to fathers, we found little evidence that direct genetic inheritance biased phenotypic 

estiamtes of maternal effects on offspring adiposity. Our results were little changed when we included 

or omitted father’s PGI and parental PGIs displayed little correlation. This is promising given that, for 

data availability reasons, there are typically many more mother-child pairs than full trios in available 

genetic studies (e.g., due to study design, cost constraints, or parental separation). 

Our results are consistent with the developmental overnutrition hypothesis, in line with other MR 

studies (Bond et al., 2022; Tyrrell et al., 2016); mother’s BMI was also related to offspring birth 

weight. However, in MR models, there was also evidence that both mother’s and father’s BMI was 

related to offspring diet, at least at some ages, which is also consistent with a postnatal pathway. 

Nevertheless, dietary data were imprecisely measured – we used few measures at each sweep and 

these were captured in a high level self-reported way. Parental practices may have influenced 

offspring diet in subtle ways which are challenging to capture in population studies (e.g., relatively 

small increases in total calories or fat content which cumulatively impact offspring weight gain; 

Government Office for Science, 2007). The diet MCA factor variable also had little correlation with 

observed BMI. Future studies should use more robust measures of diet as well as examine other 

potential pathways, such as physical activity.  

Future studies should also examine the role of other genetically-influenced parental traits. For 

instance, father’s education or cognitive ability could exhibit genetic nurture effects on offspring 

adiposity; though Kong et al. (2018) find no evidence for genetic nurture effects of parental BMI, they 

do observe genetic nurture effects on offspring BMI when using a PGI for educational attainment, 

specifically. The role of other traits may be investigated using a similar MR approach to that used 

here but could also involve GWAS of BMI that separate direct and indirect genetic effects, either 

through explicit study design (e.g., GWAS of trios) or through summary data methods such as 

genomicSEM (Warrington et al., 2021). 

Strengths and Limitations 

This study had a number of strengths. We used a PGI based on data from a large GWAS of adult BMI 

(Yengo et al., 2018). Previous null results may be due to less powerful PGIs used (Bond et al., 2022). 

We used data on complete genotyped parent-offspring trio data which allowed us to better account for 

bias due to assortative mating and to compare maternal and paternal indirect genetic effects. Further, 
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our data were drawn from a nationally representative cohort with multiple measurements of offspring 

diet and other adiposity-related traits. Data collection was also relatively recent and, as such, 

particularly relevant for the current obesity epidemic. 

However, our sample was selected, with genetic trio data only available for 45% of those observed 

with resident parents at age 14y, reflecting the practical challenges of obtaining genetic data in 

nationally representative samples of families. Biological parental figures not present in the household 

were also not included. However, the target population for this analysis is arguably those parental 

figures who are closely involved in offspring development and growth. It should also be noted that the 

sample is likely more representative than several other datasets used widely in the genetics literature 

(e.g., UK Biobank). 

There was evidence of attrition bias, with high levels of BMI related to a greater likelihood of 

dropping out of the study. This may have attenuated associations towards the null. While our 

analytical design allowed us to account for genetic inheritance, MR estimates of parental effects can 

still be biased by other factors, such as horizontal pleiotropy and confounding by social or familial 

factors. Notably, parental BMI PGIs were related to family socioeconomic position. Nevertheless, 

confounding factors are likely to have biased both maternal and paternal indirect genetic effect 

estimates and are unlikely to explain the differences in effect estimates between parents. This logic 

also applies to bias arising from a selected sample. 

While offspring BMI and adiposity were measured objectively, diet was measured with only a few 

high-level self-report survey items. These did not appear to have optimal psychometrics: diet was very 

weakly related to BMI and the correlation between diet variables across sweeps was low. A further 

limitation was the measurement of parental adiposity, which was based on self-reported BMI and was 

captured postnatally. Self-reported BMI is typically underestimated (Gorber et al., 2007) and BMI 

does not distinguish fat and lean mass. This may have biased results for fathers, in particular, as BMI 

is less correlated with fat mass among males (Deurenberg et al., 1991; Gallagher et al., 1996). Future 

work should repeat the analysis using direct measures of parental adiposity. A final limitation was that 

we included the results of many regression models. Some results were inconsistent across ages and 

may be explained by sample variation. 

Conclusions 

Associations between mother’s BMI and offspring BMI were robust to accounting for direct genetic 

transmission and consistent with mother’s BMI have a causal effect on offspring weight. Intervening 

to reduce mother’s BMI may have intergenerational effects on adiposity. Assocation between father’s 

BMI and offspring BMI were fully attenuated when accounting for direct genetic transmission. The 

well replicated (phenotypic) correlation between fathers and child’s BMI may reflect strong genetic 

confounding. 
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Figures 

 

Figure 1: Directed Acyclic Diagram of the relationship between parental PGIs and child’s BMI. Mother’s and father’s 
PGI are hypothesised to be causally related to child’s BMI via transmission of genetic material to the child (i.e. through 
inerited alleles, as captured in the child’s PGI) and indirectly via non-transmissed alleles that influence parental BMI and 
consequent traits and behaviours (intrauterine environment, food parenting practices, etc.). In (a), mother’s and father’s 
genomes are split into transmitted and non-transmitted alleles before PGIs are calculated. In this DAG, mother’s non-
transmitted PGI is a valid instrument for mother’s BMI, conditional upon the father’s transmitted and non-transmitted PGIs. 
Without conditioning, estimates would be biased due to assortative mating (dashed line). It is not necessary to condition 
upon child’s PGI to obtain unbiased estimates. In (b), PGIs are calculated using all alleles. Mother’s PGI is a valid 
instrument for mother’s BMI, conditional upon child’s PGI and father’s PGI. If father’s PGI is not controlled for, mother’s 
PGI is an invalid instrument for two reasons: first, confounding due to assortative mating (dashed line); second, collider 
bias as adjusting for the child’s PGI opens a path between father’s PGI and mother’s PGI. In the DAG, mother’s PGI would 
also be a valid instrument if father’s BMI was controlled for. However, in practice, father’s BMI is likely to be measured 
with error (e.g., self-report at a single time-point), and thus not would fully close the paths from mother’s PGI to child’s 
BMI via father’s PGI. Note, if father’s PGI does not have an indirect effect, no bias will arise.
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Figure 2: Distribution of four adiposity measures by survey sweep. Weighted with recruitment weights. 
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Figure 3: Association between mother’s and father’s BMI and offspring BMI by survey sweep. Derived from Mendelian Randomization (MR; IV 2SLS) and (phenotypic) multivariable 
regression of BMI on mother’s and father’s BMI, with adjustment for child’s PGI, sex, age at follow-up (two natural splines), maternal age at birth, family social class, mother’s education 
years, and 10 genetic principal components. In MR analysis, parental BMI instrumented with mother’s and father’s PGI. All regressions weighted with recruitment weights accounting for the 
cluster stratified sampling design. N = 2,130-2,468
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Figure 4: Mother’s and father’s BMI and offspring diet by survey sweep. Derived from Mendelian Rnadomization (MR; IV 2SLS) and ‘phenotypic’ multivariable regressions of offpsring on 
mother’s and father’s BMI, with adjustment for child’s PGI, sex, age at follow-up (two natural splines), maternal age at birth, family social class, mother’s education years, and 10 genetic 
principal components. In MR analysis, parental BMI instrumented with mother’s and father’s PGI. Offpsring diet captured extracting a factor from multiple diet items using MCA. All 
regressions weighted with recruitment weights accounting for the cluster stratified sampling design.N = 1,652 – 2,514 
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Figure 5: Association between parental and offspring PGI and offspring BMI z-score (left panel) and diet (right panel) by survey sweep. Derived from OLS regressions of BMI z-scores (by 
sweep) on mother’s, father’s and child’s adulthood PGI, with adjustment also for sex, age (two natural splines), maternal age at birth, family socioeconomic class, mother’s education year, and 
10 genetic principal components. Regressions weighted with recruitment weights accounting for the cluster stratified sampling design.
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Tables 
Table 1: Descriptive Statistics. Association between PGI and covariates by person (child, mother or father). Genetic trio 
sample. For continuous covariates, figure shown is correlation between PGI and covariates. For categorical covariates, 
figures shown are mean (SD) of PGI in given category. Wald tests were performed to examine whether covariates were 
related to PGI. * p < 0.05; ** p < 0.01; *** p < 0.001. 

 PGI 

 Variable Child Mother Father 

 Birthweight (g) 0.03 0.05* -0.01 

Sex 
Male 0.01 (1) -0.02 (1.05) 0.03 (1.02) 

Female 0.01 (0.98) -0.06 (0.94) 0.03 (1.01) 

 

Maternal Age at Birth -0.1*** -0.09*** -0.03 

Paternal Age at Birth -0.08*** -0.06* -0.05* 

Mother's BMI 0.12*** 0.25*** 0.02 

Father's BMI 0.13*** 0.03 0.24*** 

Family social 
class (NS-SEC) 

Managerial and Professional -0.04 (0.98)** -0.09 (0.99)** 0.01 (1.02)* 

Intermediate -0.04 (1) -0.06 (1.06) -0.04 (1) 

Small Employer and Self-Employed -0.03 (1.02) -0.05 (0.95) -0.11 (1.04) 

Lower Supervisory & Technical 0.21 (0.99) 0.22 (1.03) 0.19 (0.96) 

Semi-Routine and Routine 0.23 (0.99) 0.1 (0.93) 0.2 (1.07) 

Not Working 0.09 (0.87) 0.13 (0.94) 0.13 (0.95) 

 
Mother's Years of Education -0.08** -0.09*** -0.04 

Father's Years of Education -0.08*** -0.07** -0.07*** 

Country of Birth 

England 0.01 (0.99) -0.04 (1) 0.04 (1.02) 

Wales 0.02 (1) -0.03 (1.04) 0.05 (0.97) 

Scotland -0.05 (0.97) -0.04 (0.95) -0.03 (1.01) 

Northern Ireland 0.04 (1) -0.04 (0.98) -0.09 (1.03) 
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