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21 Abstract
22
23 West Nile virus (WNV) is the most common mosquito-borne disease in the United States, 
24 resulting in hundreds of reported cases yearly in California alone. The transmission cycle occurs 
25 mostly in birds and mosquitoes, making meteorological conditions, such as temperature, 
26 especially important to transmission characteristics. Given that future increases in temperature 
27 are all but inevitable due to worldwide climate change, determining associations between 
28 temperature and WNV incidence in humans, as well as making predictions on future cases, are 
29 incredibly important to public health agencies in California. Using surveillance data from the 
30 California Department of Public Health (CDPH), meteorological data from the National Oceanic 
31 and Atmospheric Administration (NOAA), and vector and host data from VectorSurv, we created 
32 GEE autoregressive and zero-inflated regression models to determine the role of temperature 
33 and other environmental factors in WNV incidence and predictions. An increase in temperature 
34 was found to be associated with an increase in incidence in 11 high-burden Californian counties 
35 between 2017-2022 (IRR = 1.06), holding location, time of year, and rainfall constant. A 
36 hypothetical increase of two degrees Fahrenheit — predicted for California by 2040 — would 
37 have resulted in upwards of 20 excess cases per year during our study period. Using 2017-2021 
38 as a training set, meteorological and host/vector data were able to well-predict 2022 incidence, 
39 though the models did overestimate the peak number of cases. The zero-inflated model closely 
40 predicted the low number of cases in winter months but performed worse than the GEE model 
41 during high-transmission periods. These findings suggests that climate change will, and may be 
42 already, altering transmission dynamics and incidence of WNV in California, and provides tools to 
43 help predict incidence into the future. 
44
45
46 Author Summary
47 West Nile Virus is a disease that is spread by mosquitoes. Though it commonly infects 
48 birds, transmission to humans is possible and can lead to severe health effects. Temperature is 
49 known to affect the transmission cycle of West Nile virus, but it is unclear how global warming 
50 might change who, or how many people, may get infected with the virus. In this study, the 
51 researchers looked at how climate change may affect West Nile virus in California, and how 
52 health officials may better be able to predict future cases. The study found that there could be 
53 an increase in West Nile virus cases in humans due to increases in temperature in the next 20 
54 years, but that we already have many tools and sources of data to predict cases. These findings 
55 reinforce the possible consequences of climate change on human health, and aid in the 
56 understanding in the complex relationship between climate and infectious diseases. 

57
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58 B. Background

59 West Nile virus (WNV) is a vector-borne flavivirus that is responsible for the most 

60 infections of any mosquito-transmitted disease in the United States [1]. West Nile virus was first 

61 detected in Southern California in 2003, before quickly spreading to all 58 Californian counties 

62 within a year [2]. California bears the largest burden of WNV infections, with 4,035 of the 

63 nation’s 21,869 infections (18%) between 2009 and 2018 being reported in the state [3]. Only 

64 20% of infected people will show any symptoms, while less than 1% will show neurological 

65 symptoms, manifesting as West Nile neuroinvasive disease (WNND) [3]. Still, despite the low 

66 symptomatic and severity rate, California reported 326 fatalities due to WNND between 2003 

67 and 2018, as the fatality rate of WNND is about 10% [4].

68 Many environmental factors are known to impact WNV transmission, with most 

69 transmission occurring in non-human hosts. Humans become infected through the bite of a 

70 female mosquito from the Culex genus, though WNV cannot be spread between or from humans 

71 — they are a dead-end host [3]. The enzootic cycle mainly flows through mosquitoes and certain 

72 bird species, such as corvids, finches, and sparrows, though infections of horses and chickens are 

73 also common [3]. Given that WNV incidence in mosquitoes, bird, horses, and other species are 

74 an indicator of increased transmission in the enzootic cycle, high wildlife prevalence can serve as 

75 a good predictor of the transmission risk to humans [4]. Additionally, certain meteorological 

76 conditions, such as temperature and rainfall, play an important role in mosquito spawning and 

77 behavior and have been shown to be positively associated with human WNV infections [5]. In 

78 particular, temperature has been shown to affect mosquito life cycle traits and interactions with 

79 pathogens, in turn affecting WNV transmission [2,6,7]. Prior research has highlighted the 
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80 predictive power of these environmental factors on West Nile cases in the US and Canada, with 

81 the possibility that prediction models might be applied in other, higher-burdened areas [1,8]. 

82 While other studies have modeled the importance of temperature and certain other 

83 environmental factors in WNV transmission in California [9], as well as the ability of the state’s 

84 warning system to determine outbreaks [4], there is sparse research that has attempted to 

85 quantify excess cases that may be associated with changing meteorological conditions. Few 

86 studies also expand further to create prediction models using currently collected data sources. 

87 This analysis is especially important given the projected rise in temperature in California due to 

88 worldwide climate change and can help state officials plan for possible increases in future WNV 

89 transmission. To our knowledge, no other papers have used a zero-inflated regression model to 

90 examine WNV in California. In the context of West Nile virus, a zero-inflated regression model 

91 may have advantages over traditional models given the clear seasonality of human infections 

92 and the near certainty of zero cases for much of the year. The effectiveness of such a model over 

93 a normal negative binomial regression model is explored in this paper.  

94 In our paper, we used a zero-inflated regression model and a generalized estimating 

95 equation that incorporates autoregressive structure to measure the association between 

96 temperature and WNV incidence, determine the number of excess cases that would result from 

97 an increase in temperature, as well as compare the predictions each make for future WNV 

98 transmission in California. We hypothesize that temperature will be positively associated with 

99 WNV in California after adjusting for rainfall, location, and month of year; meanwhile, 

100 meteorological conditions and environmental factors, such as infected dead birds and mosquito 

101 pool positivity rate, will be able to predict future WNV cases. 
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102

103 C. Methods

104 I. Data

105 West Nile virus is a national and state notifiable condition [10]. As such, case data was 

106 collected by the California Department of Public Health as part of their surveillance program. 

107 While weekly case incidence is reported, monthly incidence was used in the study to remove 

108 inconsistent lags in reporting. Only counties with a population over 250,000 residents and a total 

109 of 40 or more cases over the six-year period (2017-2022) were considered high-burden counties 

110 and included in the analysis. This totaled 11 counties: Fresno, Kern, Los Angeles, Merced, 

111 Orange, Riverside, Sacramento, San Bernadino, San Joaquin, Stanislaus, and Tulare. A restriction 

112 was placed on cases due to most counties having a small or zero case count of WNV over the 

113 study period, while a minimum county size was enacted to protect cases’ identities in small 

114 counties. We decided to only use the most recent six-year period of case data, as this reflected a 

115 tradeoff between having a large number of observations while maintaining a sufficiently 

116 contained time range where transmission and meteorological conditions expressed similar 

117 characteristics. Average daily temperature (aggregated across the month in Fahrenheit) and 

118 rainfall (summed for the month in inches) were collected from the National Oceanic and 

119 Atmospheric Administration. Mosquito pool positivity rates (percentage of mosquito pools 

120 within a county that tested positive for WNV) and bird infection counts (count of dead birds that 

121 tested positive for WNV) were obtained through California’s VectorSurv program under request 

122 number 000067.  

123

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303902doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303902
http://creativecommons.org/licenses/by/4.0/


6

124 II. Zero-Inflated and GEE Models for Measure of Association M

125    The Models and Variables

126 Negative binomial regression was conducted in both models instead of Poisson because 

127 the case data had an overdispersed distribution. Due to the time it takes for a person to become 

128 sick enough to seek treatment, as well as the reporting delays of cases to the state health 

129 department, we assumed that meteorological conditions and reported case counts are not 

130 directly related in time. Given that substantial lags between case onset and case reporting — an 

131 average of 5 weeks — have been found in other WNV outbreaks, temperature and rainfall were 

132 both lagged one month, so that the variables prior month temperature and prior month rainfall 

133 would better reflect the current month’s cases [11]. As the reporting of vector data are also 

134 subject to delays in reporting and biological processes, it was assumed that the mosquito pool 

135 positivity rate and dead bird count follow similar delays as cases and therefore were not lagged 

136 [11]. This selective lagging strategy has been used in other work that models WNV [1]. Rainfall, 

137 month of year, and county were adjusted for as confounders in the relationship between 

138 temperature and WNV cases. Controlling for these variables also helps control for the 

139 seasonality and location dependence of West Nile infections. The percentage of positive 

140 mosquito pools and positive dead birds were determined to be on the causal pathway and were 

141 not analyzed in the models testing for a measure of association, the incidence rate ratio.  

142

143 Zero-inflated

144 We used two different methods to estimate an association between temperature and 

145 West Nile virus incidence. First, we utilized a zero-inflated negative binomial regression model to 
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146 model the count of cases in the 11 high-burden counties. This method was used to account for 

147 the large number of months with zero cases in the data, as there is little WNV transmission 

148 outside of June through November. 525 of the monthly case counts were zero, representing 

149 66.3% of the observations. 

150 We represent the number of cases as yit, where 𝑖 represents the county (i = 1….11) and 𝑡 

151 represents the month of observation over the six-year period (t = 1…72).  We assume that 

152 structural zeroes appear in the data at time 𝑡 and county 𝑖 at a probability of 𝜋. Therefore, there 

153 are two processes in which data can be generated for each observation: the first, which 

154 generates a case count of 0 with probability of 𝜋; the second, which generates a case count 

155 corresponding to a negative binomial model, represented by 𝑔(𝑦𝑖𝑡|𝑋𝑖𝑡) with a probability of 

156 1 ― 𝜋. 

157 𝑦𝑖𝑡 ~ { 0                          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦                   𝜋𝑖
𝑔(𝑦𝑖𝑡|𝑋𝑖𝑡)                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦              1 ― 𝜋𝑖}

158

159 Therefore, we assume the probability that the expected number of cases, 𝑌𝑖𝑡 , is equal to 

160 𝑦𝑖𝑡 is given by the zero-inflated negative binomial model below. 𝑋𝑖𝑡 represents the vector of 

161 covariates in the model, while 𝑀𝑜𝑛𝑡ℎ𝑖𝑡 expresses the calendar month at county 𝑖 and time 𝑡, 

162 which is believed to well predict whether there will be cases in a given observation or not.  

163

164 Pr(𝑌𝑖𝑡 = 𝑦𝑖𝑡 |  𝑋𝑖𝑡, 𝑀𝑜𝑛𝑡ℎ𝑖𝑡) = { 𝜋(𝑀𝑜𝑛𝑡ℎ𝑖𝑡) + {1 ―  𝜋(𝑀𝑜𝑛𝑡ℎ𝑖𝑡)}(𝑔(0 | 𝑋𝑖𝑡))   𝑖𝑓 𝑦𝑖𝑡 = 0
   {1 ―  𝜋(𝑀𝑜𝑛𝑡ℎ𝑖𝑡)}(𝑔(𝑦𝑖𝑡 | 𝑋𝑖𝑡))                           𝑖𝑓 𝑦𝑖𝑡 > 0} 

165
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166 The function representing the negative binomial model, 𝑔(𝑦𝑖𝑡│𝑋𝑖𝑡), is defined below, 

167 where the vector of covariates in the model, 𝑋𝑖𝑡, includes the prior month temperature, prior 

168 month rainfall, the county, and the month. Prior month temperature is the exposure of interest 

169 on the outcome, while prior month rainfall, county, and month are all confounders of this 

170 relationship. While county and month are shown here as being expressed by one 𝛽𝑒𝑡𝑎 term, 

171 they are analyzed as factor variables in the model, meaning that a dummy variable was created 

172 for each category level (10 for county and 11 for month), and a 𝛽𝑒𝑡𝑎 term was calculated for 

173 each. 

174 𝑔(𝑦𝑖𝑡│𝑋𝑖𝑡) = 𝐸(𝑦𝑖𝑡│𝑋𝑖𝑡) =  (𝑒𝑥𝑝𝑋𝑖𝑡𝛽)

175
       𝑔(𝑦𝑖𝑡│𝑋𝑖𝑡)

= 𝐸(𝑦𝑖𝑡│𝑋𝑖𝑡) =  exp [𝛽0 +  𝛽1(𝑃𝑟𝑖𝑜𝑟𝑀𝑜𝑛𝑡ℎ𝑇𝑒𝑚𝑝) +  𝛽2(𝑃𝑟𝑖𝑜𝑟𝑀𝑜𝑛𝑡ℎ𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙)
+  𝛽3(𝐶𝑜𝑢𝑛𝑡𝑦) +  𝛽4(𝑀𝑜𝑛𝑡ℎ)]

176

177 Negative Binomial

178 Second, we used a negative binomial model with autocorrelation features. We utilized an 

179 “ar1” auto-correlation structure, meaning cases in one month were strongly correlated with 

180 cases in the month before and the month after, but not other months. This structure is thought 

181 to accurately describe infection dynamics in our system, as the cases in county 𝑖 at time 𝑡 are 

182 dictated by how many mosquito infections, and subsequent human infections, were present at 

183 time 𝑡 ― 1, as well as influences how many cases there will be at time 𝑡 + 1 given the same 

184 dynamics. The model follows the same form as the negative binomial part of the zero-inflated 

185 model, but has an added autoregressive term, 𝜎, that follows a distribution of “ar1”, as shown in 

186 the model below. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303902doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303902
http://creativecommons.org/licenses/by/4.0/


9

187

188 log[𝐸(𝑌𝑖𝑡 |𝑋𝑖𝑡)] =  𝑋𝑖𝑡𝛽

189
log[𝐸(𝑌𝑖𝑡 |𝑋𝑖𝑡)] =  𝛽0 +  𝛽1(𝑃𝑟𝑖𝑜𝑟𝑀𝑜𝑛𝑡ℎ𝑇𝑒𝑚𝑝) +  𝛽2(𝑃𝑟𝑖𝑜𝑟𝑀𝑜𝑛𝑡ℎ𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙) +  𝛽3(𝐶𝑜𝑢𝑛𝑡𝑦)

+  𝛽4(𝑀𝑜𝑛𝑡ℎ) +  𝜎

190 𝜎~ 𝐴𝑅(1)

191

192 Standardization

193 Model standardization was conducted to retrieve a risk difference (in the number of 

194 excess cases) between a hypothetical dataset where temperature was increased by two degrees 

195 (with all other variables kept constant) and the observed dataset. We created a population 

196 where prior month temperature was increased by two degrees Fahrenheit across all 

197 observations, later using it to fit a zero-inflated model and find the total number of cases 

198 expected in the six-year study. The risk difference is the total number of cases expected in the 

199 hypothetical population minus the number of cases expected given the observed data. While this 

200 risk difference cannot be interpreted as an association between temperature and West Nile 

201 incidence — due to it being a hypothetical population — it can provide insight into possible 

202 repercussions of a changing climate in the future. Bootstrapped sampling, using the bias-

203 corrected and accelerated technique (BCA), was subsequently applied to measure the 

204 uncertainty in our risk difference calculations. 

205

206 III. Prediction Models

207 Both the zero-inflated model and autoregressive negative binomial model were used as 

208 prediction models for WNV cases in 2022. Both models were trained on the data from 2017-
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209 2021 and then tested on the data from 2022. The models followed the same assumptions and 

210 equations as the models specified above, respectively, but were made to include different sets of 

211 the covariates in the data. Since they are prediction models, all variables, including percentage of 

212 positive mosquito pools and positive dead birds— which were left out of the measure of 

213 association models due to existing on the causal pathway between temperature and WNV 

214 incidence — were included in the analysis. The four different prediction sets tested were: “All,” 

215 comprising all the covariables listed; “Host/Vector,” comprising dead infected birds and 

216 mosquito positivity rate; “Just Temperature,” comprising just prior month temperature; and 

217 “Weather,” comprising prior month temperature and prior month rainfall. We opted to use 

218 mean squared error (MSE) to compare the models over information criteria tests, such as the 

219 AIC or BIC, as we didn’t have concrete likelihood estimates from the GEE model [12]. Though 

220 mean squared error doesn’t account for and penalize the number of predictor variables in each 

221 model, the lack of a large difference in variables used (4 vs 2 vs 2 vs 1 in “All,” “Host/Vector,” 

222 “Weather,” and “Just Temperature,” respectively) and a clear difference in each model’s mean 

223 squared error highlighted a clear best fit for the data. 

224

225 D. Ethical Dimensions

226 Given the ecological design of the study and the passively collected surveillance case 

227 data, no data was actively collected on human subjects. No identifiers were included in the data, 

228 and only aggregated data from high-burden, highly populated counties were used in the analysis 

229 to protect individual’s identities. Therefore, there was no risk to any individuals who may have 

230 been included in the data. While this analysis was conducted well after all of the infections and 
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231 any findings will not be of benefit to the individual, the results may still benefit these community 

232 in the future. 

233

234 E. Results

235 Descriptive Analysis

236 Fig 1 plots the mean temperature and West Nile virus cases across all 11 high-burden 

237 counties included in the study. This figure shows the clear seasonality of WNV activity, with the 

238 peak of each year occurring in the summer, when the temperature is highest. This also highlights 

239 the almost complete lack of cases in the colder winter months. There is high variability in the 

240 number of cases in these counties in a single year: there were 515 cases reported in 2017, while 

241 just 77 in 2021. 

242

243

244

245

246

247

248

249

250 Fig 1 
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251

252 These trends are further explored in Table 1, which shows the average cases, 

253 temperature, rainfall, dead birds, and mosquito pool positivity per six-month periods in each 

254 county over the study period. There are clear seasonal differences in all the variables; the 

255 analysis of detangling seasonality and temperature to examine the association between 

256 temperature and WNV cases is presented below. 

257
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271 Statistical Models and Standardization

272 Both the zero-inflated and GEE with autoregressive correlation models show a positive 

273 correlation between prior month temperature and WNV cases in a month (Table 2). Each model 

274 was adjusted for the variables prior month rainfall, county, and month, which were determined 

275 to be confounders in the relationship of interest. 

276

277 Table 2

278

279 Both models had nearly the same estimation of 1.05 for the incidence rate ratio — this 

280 represents that a one degree increase in prior month temperature is associated with a 1.05 

281 times greater incidence of West Nile virus in a month, controlling for prior month rainfall, 

282 location, and the time of year. The IRR estimates from both models were statistically significant, 

283 though the autoregressive GEE model had a narrower 95% confidence interval (Table 2).

284 The models can also be extrapolated to larger changes in temperatures, as is predicted 

285 by some climatologists [13–15]. Some estimates suggest that California’s average temperatures 

286 may rise by two degrees Fahrenheit by 2040 [13,14]. Given a two degree increase in 

287 temperature, and holding all other variables constant, the zero-inflated models suggest that this 
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288 would be associated with a 1.12 times greater incidence rate, while the GEE model reports this 

289 number to be 1.10. 

290 Fig 2 shows the risk difference of WNV cases conducted through model standardization, 

291 comparing the predicted cases under the observed data versus a hypothetical dataset where all 

292 temperature observations were increased by two degrees Fahrenheit. As shown in the figure, a 

293 two degree increase in temperature, holding all other variables constant, results in more cases (a 

294 positive risk difference) in the zero-inflated model. This increase is heavily concentrated in 

295 summer months, with at least eight excess cases predicted every year during peak months. An 

296 increase in temperature barely affects winter months where there is little to no transmission. 

297 Across the six-year study period, the risk difference between the hypothetical data, with a two 

298 degree temperature increase, and the observed data is 148.7 (95% confidence interval of 28.8 - 

299 292.8) cases for the zero-inflated model. This averages out to 24.8 (4.8 - 48.8) excess cases per 

300 year. 
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301 Fig 2

302

303

304 Prediction Models

305 Table 3 shows the output of the prediction model with all variables for the zero-inflated 

306 model and GEE with autoregressive correlation model. As in the measure of association model, 

307 both types of models showed fairly similar results, as prior month temperature, mosquito pool 

308 positivity rate, and dead birds positively predicted WNV cases in each model, while prior month 

309 rainfall negatively predicted WNV cases. The models’ predictions slightly differed in their 

310 estimates of the beta for each variable, and while small in absolute size, the differences were 

311 significant, as seen in later analysis. 

312
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313 Table 3

314

315 Fig 3 plots the predicted cases in the 11-high burden counties in 2022 for each variable 

316 set — across both model types — against the actual number of reported cases, as well as each 

317 model’s MSE. All variable sets of the zero-inflated model fit the actual data well during zero case 

318 count months (November-June) but over-estimated the number of cases in the peak summer 

319 months. “Just Temperature” and “Weather” both greatly over-estimated the peak summer 

320 months and incorrectly predicted the shape of the incidence curve. It’s possible that since the 

321 zero-inflated model already uses the month of year, which is very strongly tied to weather 

322 patterns, to determine non-zero case counts, adding weather data to the prediction model did 

323 not increase the strength of the fit. “All” variables provided the best fit — the lowest MSE — to 

324 the data out of the zero-inflated subset.
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325 Fig 3

326

327 The GEE subset of models showed more similar fits, again most likely due to the model 

328 not having the month predictor for zero case counts. In contrast to the zero-inflated models, the 

329 GEE prediction models followed the peak of cases in August much more closely, though it also 

330 overestimated the actual reported number of cases slightly. The GEE model greatly 

331 overestimated the number of cases in months with low case counts, however, often at scales of 

332 three to four times larger. The “Host/Vector” model especially produced a skewed fit, as even 

333 with a mid-range mean squared error, it predicted 10 cases a month in the winter months and 

334 overall had a non-normal shape. The “All” GEE model resulted in the best fit across all of the 

335 prediction models with a mean squared error of 17 and a closely following curve. 

43.9

590.9

190.7

65.6

200

400

600

All Host/Vector Just Temperature Weather

M
SE

0

30

60

90

C
as

es

Variables Actual Cases All Host/Vector Just Temperature Weather

17

87.8

76.778.2

25

50

75

All Host/Vector Just Temperature Weather
Variables

M
SE

0

20

40

60

January June August October December
Month

C
as

es
GEE

Zero Inflated

Predicted Cases for 2022 for Zero-Inflated Model (Top Row) and GEE Model (Bottom Row) Using Different Sets Of Variables

*All = Prior Month Temp, Prior Month Rainfall, Dead Birds, Mosquito Positivity Rate; Host/Vector = Dead Birds and Mosquito Positivity Rate; Weather = Prior Month Temp and Prior Month Rainfall

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303902doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303902
http://creativecommons.org/licenses/by/4.0/


19

336 Though it had the lowest MSE, the “All” GEE model still predicted more total cases in 

337 2022 than were actually reported, by a count of 214 to 172, respectively. The best performing 

338 model in this regard was in fact the skewed “Host/Vector” GEE model (192 cases), followed by 

339 the “All” zero-inflated model (202 cases), and the “Host/Vector” zero-inflated model (214 cases).  

340 In a simpler view, Fig 4 shows both the zero-inflated and GEE “All” models — the two-

341 best performing models according to MSE — plotted against the actual reported cases in the 11-

342 high burden counties in 2022. This more clearly shows the differences between the prediction 

343 models discussed above. 

344 Fig 4

345

346 F. Discussion

347 Our study highlights an association between temperature and West Nile virus cases in 11 

348 high-burden California counties from 2017-2022; holding month of year, location, and prior 
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349 month rainfall constant, a one unit increase in prior month temperature was associated with 

350 1.05 times the incidence of WNV. Given a hypothetical two degree Fahrenheit increase in 

351 average monthly temperature, which has been predicted for California in the next few decades 

352 due to climate change [13,14], the zero-inflated model predicted 24.8 excess cases per year over 

353 our study period. In the prediction models, using all variables — weather and host/vector 

354 combined — resulted in the best fit, and lowest mean squared error, for 2022 case counts. The 

355 GEE approach had overall better fitting prediction models, but the zero-inflated model was able 

356 to predict the total case count more closely for the year.  

357 Our estimates on the significantly positive association between temperature and WNV 

358 incidence at the group level is well-supported in other studies in California and the US [9,16]. The 

359 magnitude of our association is in line with findings from Hahn et. al, who observed an odds ratio 

360 of 1.1 nationally [16]; alternatively, Hernandez et. al calculated an odds ratio of 10.5 in 

361 California’s San Joaquin Valley, though this finding did have a wide confidence interval [9]. The 

362 connection between temperature and mosquito life traits, [6] such as development time and 

363 survival, as well as mosquito and viral interaction, such as the extrinsic incubation period — the 

364 time it takes for an infected mosquito to become infective to hosts — have been documented in 

365 numerous other studies [7,17]. These associations are complex and can often vary at different 

366 temperatures: e.g. Culex development rates rise with temperature until a certain point, when 

367 increasing temperature then causes rising mortality [18]. While this paper doesn’t go into the 

368 biological mechanisms that mediate this relationship, these previous findings provide a causal 

369 basis for the observed association. 
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370 Given the results of both types of prediction models, it appears that having weather data 

371 alone provides little predictive power for WNV cases in California. Host and vector data provides 

372 a pretty good fit in the absence of weather data for the zero-inflated model, showing that simple 

373 enzootic data from local vector departments can be enough to give useful information on 

374 current and future WNV cases in humans. However, given how readily available weather data is, 

375 it seems unnecessary and uninformative to use a prediction model with just host and vector 

376 data. This mostly aligns with the results of previous work. Wimberly et. al shows that while 

377 meteorological and mosquito infection rate data can predict WNV cases better than just 

378 historical data, it takes the combination of the two to best predict future cases [8]. Davis et. al’s 

379 prediction model also showed that meteorological and mosquito data together can well predict 

380 future WNV cases, but again, disagreed with our model that mosquito infection data alone does 

381 nearly as well as all the data [19].  

382 Our study revealed the power of the zero-inflated model to correctly predict the number 

383 of cases in low transmission months compared to more traditional models. However, the utility 

384 of this feature is limited, as low transmission months are of much smaller worry to health 

385 departments than summer months. The more traditional GEE model followed the shape and 

386 case counts of the peak summer months much closer and may provide health departments with 

387 a much more accurate picture of what may come month to month. Though it greatly 

388 overpredicts the number of cases during the summer, the zero-inflated model more accurately 

389 predicted the total number of cases in 2022, highlighting its potential utility in helping the state 

390 plan on a macro level. These models will need to be tested on a larger geographic scale with 
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391 more counties and with newer years of data to make any final statements on their ability to be 

392 used by health departments. 

393 A great strength of the study is its potential to be easily interpretable and implementable 

394 to public health agencies and the public: the data was easily accessible, and the model has just a 

395 few parameters that can be quickly integrated. These models allow for analyses that don’t 

396 require complex knowledge of the many relationships that underlie the observed associations, 

397 including the mechanisms by which temperature is associated with incidence. It also lends itself 

398 to future use by public health departments, which don’t need mountains of data to help predict 

399 WNV cases. We also utilized standardization to estimate a risk difference in cases between the 

400 observed data and a hypothetical California with an increased temperature of two degrees 

401 Fahrenheit, an underutilized strategy that can provide crucial insights into the future of WNV 

402 transmission in the state. Though a hypothetical scenario, it provides more easily digestible and 

403 understandable estimates (in number of excess cases per month) than an odds ratio, or even our 

404 calculated rate ratio. 

405 The data in this study has inherent limitations, however. Cases were aggregated on a 

406 monthly level, and other variables were in turn averaged or summed to correspond to this time 

407 frame. The lack of granularity in case data may bias the association between temperature and 

408 incidence, especially considering that weather can be highly volatile, a characteristic that is lost 

409 when averaged over a monthly time frame. Surveillance data, which comprises the case counts, 

410 dead bird counts, and mosquito pool positivity rate, also carries its own shortcomings, as it 

411 misses most, if not all, of asymptomatic infections and may not be representative of the 

412 infection dynamics in the system as a whole. We also lost granularity and possible variation in 
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413 weather patterns and transmission dynamics across counties by analyzing the counties together; 

414 future work would benefit by looking at the effect of temperature on WNV incidence within 

415 counties, possibly at the zip code or census tract level. 

416 There are also limitations based on the way the models were constructed, especially the 

417 zero-inflated model. Based on data from the last decade, we assumed that the month of year 

418 was a quality predictor of whether there would be non-zero case counts. However, studies have 

419 shown that a rise in temperature can also shift the seasonality of WNV in California [20]. This 

420 change would challenge our assumption and possibly bias our estimate of the association 

421 between temperature and WNV. Sensitivity analyses can be run to determine if other predictors, 

422 or sets of predictors, would be better suited as the zero count predictor in the zero-inflated 

423 model.  

424 While this aggregated ecological study has limitations, it provides an easy and convenient 

425 study design using pre-existing surveillance data. As previously mentioned, it is mandatory to 

426 report WNV disease, creating a passive surveillance system; as a result, no new data on the 

427 outcome needed to be assessed. The type of exposure — environmental — also pointed to using 

428 an ecological study, as temperature is a group-level exposure. It not only would be hard to 

429 measure the temperature experienced by an individual in a cohort, but generally uninformative 

430 to attempt to discern how a change in temperature affects a singular person’s risk of WNV 

431 disease, which is influenced by many different possible factors, including type of job and 

432 socioeconomic status. 

433 Therefore, we don’t believe to be committing any ecological fallacy — inferring that the 

434 ecological association equals the individual association — as we don’t attempt to determine or 
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435 make assumptions about the effect of temperature on the individual risk of WNV disease.  Our 

436 study simply examines the risk aggregated at the county level. This is probably more informative 

437 to Californian public health agencies, as the risk of WNV disease to the average Californian is 

438 very low. In all, an ecological study was sufficient and better applicable to calculate the 

439 association of interest at the county level, while remaining easily replicable to future researchers 

440 and public health departments.  

441 More types of climatic analysis can be conducted using this same data, such as the effect 

442 of prior seasonal rainfall and temperature on future WNV incidence, the importance of which 

443 has been shown for the length of the WNV season in the US as a whole [21,22]. Exploring the 

444 mechanisms that mediate the association between temperature and West Nile virus would also 

445 be beneficial to further analyze different intervention strategies. Finally, more work is required 

446 to understand the interface between humans and the enzootic carriers of WNV in California, and 

447 how climate change may alter the ways people interact and are exposed to these hosts and 

448 vectors.  

449

450 Conclusion

451 Increasing temperatures is associated with a higher incidence of West Nile virus infection 

452 in 11 high-burden California counties. Along with mosquito and bird infection data, 

453 meteorological data can well-predict future WNV incidence in these counties. This will be of 

454 extreme importance to public health agencies as WNV continues to become a larger health 

455 burden due to global warming and climate change.

456
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