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Abstract 

The synergistic nature of non-pharmaceutical interventions (NPIs) for control of COVID makes 

it difficult to assess the efficacy of any individual strategy. This study uses influenza mortality 

reduction (IMR) during the pandemic as an indicator of the aggregate efficacy of NPIs to assess 

their impact on COVID mortality. 

Age-adjusted COVID mortality for US states were modeled as a function of four variables: 

mortality prior to the introduction of NPIs, vaccination rates, IMR relative to historical averages, 

and population density.  

A simple linear model with only these variables explained 69% of the state-to-state variability in 

age adjusted COVID mortality. The resulting model suggests that NPIs alone prevented 840,000 

COVID related deaths in the United States over the course of the pandemic. These results 

demonstration the utility of IMRs as an indicator of the aggregate impact of NPIs for controlling 

transmission of respiratory infections, including COVID.  
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Background 

Since the outset of the COVID pandemic, non-pharmaceutical interventions (NPIs) to protect 

public health have come under heavy criticism for their impact on everything from the economy1 

to mental health2–4 to education5,6. Furthermore, almost every intervention has, at some point, 

been declared ineffective, including masking,7,8 routine testing,9 school closures,10 and business 

“lockdowns”.11,12  

 

Meta-analyses of studies of the efficacy of individual NPIs have tended to find beneficial 

effects13–15 with a few prominent exceptions.7,8 Closures of businesses and schools, limits on 

social gathering, travel restrictions, social distancing rules, masking mandates, and other NPI’s 

act in concert to reduce the transmission of respiratory infections. Some protect the individual 

from the infection in the community, some protect the community from the infected individual, 

and some do both. Also, the effectiveness of NPI’s depends on compliance, which is difficult to 

quantify. How, then, do we evaluate the overall impact of these interventions on the transmission 

of COVID? 

 

In an ideal natural experiment, we would have two isolated regions experiencing epidemic 

conditions that are identical in every way except for fully quantified and controlled differences in 

NPIs. Alternatively, we might have historical data for a particular disease and could examine 

changes in incidence and mortality after interventions were imposed. No such natural experiment 

occurred and, because COVID is a new human disease, we have no historical data. All of this 

makes the aggregate impact of NPI’s on COVID difficult to assess directly.  

 

However, the impact of these NPIs was not limited to COVID. Interventions designed to stop 

one respiratory pathogen will stop others as well. Therefore, the extent to which these NPIs 

halted the spread of respiratory pathogens with similar patterns of airborne transmission may 

provide a surrogate for the efficacy of NPIs for COVID. By far the best characterized of these 

diseases is influenza. 
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The marked seasonal patterns of influenza incidence and mortality have been measured for 

decades. As a result, the expected influenza mortality and the variability in that mortality are 

well established. Multiple studies have noted the dramatic, global decline in influenza incidence 

and mortality 16–18 during the COVID pandemic and suggested an association with NPIs. In the 

United States, influenza mortality rates for the first two complete flu seasons (2020-22) were 

80% below historic rates,19 as can be seen in Figure 1.  The sharpness of this decline and the fact 

that flu mortality rose back to pre-pandemic levels once precautions were lifted in 2022-23 

makes it unlikely that the drop was due to any change in the prevalent virus or treatment options. 

Influenza vaccination rates did rise 7% above historical averages during the pandemic,20 

probably due to concurrent vaccination with COVID, but this cannot explain an 80% drop in 

influenza mortality. 

 

It appears that something changed during the pandemic that resulted in a dramatic drop in 

respiratory disease transmission. By far the most likely explanation of this is COVID NPI’s. That 

suggests that the extent to which influenza mortality decreased from expected levels represents a 

drop in respiratory disease transmission and may provide an indicator of the effectiveness of 

COVID NPI’s.  

 

The current study explores the association between the influenza mortality reduction (IMR) and 

COVID mortality at the state level. Other factors considered in the analysis were COVID 

mortality during the first month of the pandemic and vaccination rates. Because the effectiveness 

of NPIs can be influenced by population density, it was also included in the model as an 

interaction term.  

 

Methods 

Weekly counts of influenza deaths for the period from 2016 through 2023 were abstracted from 

the CDC FluView System21 for each state. Average annual influenza mortality rates for each 

state were calculated for the pre-COVID period 2016 through 2019 and for the two flu seasons 

during the pandemic, 2020-21 and 2021-22. The decrease in average flu season mortality for 

each state during the pandemic as compared to average mortality rates prior to the pandemic 

were calculated for each state to determine the Influenza Transmission Control. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2024. ; https://doi.org/10.1101/2024.03.06.24303834doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303834
http://creativecommons.org/licenses/by/4.0/


 

 

6 

 

State specific, weekly COVID mortality data were obtained from the CDC COVID Data Tracker 

and used to calculate mortality rates for March of 2020 to determine initial COVID mortality 

rates.22 Vaccination rates at the end of 2023 were obtained from the same site with vaccination 

defined as receipt of two initial doses.22 Age adjusted COVID mortality was determined based 

on age specific COVID mortality rates from CDC through September, 2023, the last date for 

which they were available.23 State age distributions and population density for 2020 was 

obtained from the United States Census Bureau.24  

 

Two multiple linear regression models were evaluated with state specific, age adjusted COVID 

mortality as the outcome variable. Model 1 included only four predictor variables, IMR, COVID 

mortality, vaccination rates, and population density. Model 2 added an interaction term for IMR 

and population density based on the assumption that the effect of NPI’s as represented by IMR 

would depend on population density. All statistical analyses were conducted using the STATA 

statistical package. 

 

The resulting models were used to evaluate the counterfactual cases of non-intervention by 

setting the relevant variable to zero for each state, determining predicted deaths for each state, 

and summing the results. Since this effectively removed IMR as a variable, the interaction term 

also became meaningless, so Model 1 with no interaction term was used. Monte Carlo 

simulations with 10,000 repetitions were used to estimate the distribution of the aggregated 

mortality predictions and extract confidence intervals. The three cases considered involved 

setting IMR, vaccination rate,  and both variables to zero . 

 

Results 

As listed in Table 1, state-level influenza mortality rates were an average of 78% lower during 

the two full flu seasons of the pandemic, 2020-21 and 2021-22, as compared to the three full flu 

seasons prior to the pandemic, 2016-17, 2017-18, and 2018-19. The decrease in mortality ranged 

from 49% (North Dakota) to 94% (Washington). This radical difference in influenza mortality 

during the pandemic at the state level is highly unlikely to reflect simple seasonal variation in the 

flu strain or vaccine effectiveness (p<<0.0001 by simple ANOVA). 
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COVID mortality had a strong negative correlation with IMR and vaccination rates (p<0.001). 

As shown in Figure 1, IMR explains almost a third of the variability in COVID mortality. IMR is 

also strongly correlated with vaccination rates (Table 2).  

 

Multiple linear regression model results are provided in Table 3. Model 1, with only four 

predictor variables, IMR, COVID mortality, vaccination rates, and population density, predicts 

COVID mortality at the state level with an r2 to 0.65. Introducing an interaction term for IMR 

and population density in Model 2 improves the adjusted model r2 to 0.69. This interaction had a 

positive coefficient, suggesting the rate of reduction in COVID mortality associated with IMR 

was diminished in more densely populated states. Also, introducing the interaction to the model 

converted the direction of the effect of population density on COVID mortality from positive to 

negative. The close fit of the model to actual age-adjusted state COVID mortality rates can be 

seen in Figure 2. 

 

With IMR set to zero, the model yields an estimated COVID mortality of 1.99 million (95% CI 

of (1.32 – 2.66 million) suggesting that NPIs saved 840,000 lives. If we set both IMR and 

vaccination to zero, the COVID mortality estimate rises to 3.39 million (95% CI of (2,93 – 3.86 

million) suggesting that preventative measures saved 2,250,000 lives. 

 

Discussion 

The current study provides strong evidence that NPIs played a key role in limiting the impact of 

the pandemic preventing an estimated 830,000 COVID deaths respectively.  

 

It is conceivable that a decrease in ascertainment rather than reduced transmission could 

contribute to a decline in influenza mortality. Some have even suggested that COVID deaths are 

actually influenza deaths.25 Several observations allow us to dismiss these alternatives. First, 

failure to diagnose a fatal case of the flu correctly, even during the pandemic, seems unlikely 

given the well-established surveillance system and diagnostic tools for influenza. Second, the 

sharp drop in influenza incidence during the pandemic was observed in data from the Seattle Flu 

Study, which was an active surveillance program that demonstrated pandemic-related decreases 
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for a broad range of respiratory infections.26,27 All respiratory infections dropped sharply 

including influenza, respiratory syncytial virus, and non-COVID corona viruses. Finally, if flu 

deaths were being misdiagnosed as COVID, we would expect the reduction in influenza 

mortality to have a strong positive correlation with COVID mortality rates, not the strong 

negative correlation observed in these data.  

 

It is notable that the regression coefficient for population density changes sign when interaction 

with IMR is included in the model. This may reflect the fact that population density is a two-

edged sword with respect to COVID mortality, inferring a higher transmission risk but providing 

better access to life-saving medical care. Also of note is the negative association between the 

pre-intervention COVID mortality and total COVID mortality. This may reflect greater 

compliance with interventions in the states hardest hit at the outset of the pandemic. 

 

One key advantage in using state IMR as a measure of NPI efficacy is that a region can serve as 

its own control. Comparing influenza mortality during the pandemic to historical mortality rates 

of influenza incidence and mortality with those that prevailed during periods when COVID NPIs 

largely eliminates the effect of time invariant confounders.  

 

This model estimates that NPI’s alone, as indicated by IMR, prevented 840,000 COVID related 

deaths and that, with no public health interventions, COVID would have killed 3.3 million 

Americans. This is consistent with the controversial early estimates from the Imperial College of 

London,28 although that relatively simple model assumed a far more rapid spread of the disease.  

 

The ability of this relatively simple model to explain 69% of the variability in state COVID 

mortality provides compelling evidence that IMR is a useful indicator for the effectiveness of 

NPIs against COVID and that the factors included in the model were the primary drivers of 

COVID mortality. Although IMR appears to be an excellent indicator of the effect of NPIs, it 

does not provide any insight into exactly which interventions were effective. Understanding the 

contribution of various NPI’s to IMR will be critical to refining management strategies for future 

epidemics of respiratory infectious disease. 
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Table 1. Vaccination, population density, influenza and COVID mortality rates (deaths/100,000). 

State 

Pre-Covid 

Influenza 

Mortality 

Rate  

2020-2022 

Influenza 

Mortality 

Rate  

Infection 

Mortality 

Reduction 

(IMR) 

Vaccination 

Rate (2023) 

Population 

Density  

(Per mi2) 

3/2020 

Covid 

Mortality  

Age-

Adjusted 

Covid 

Mortality 

Alabama 2.55 0.77 71.0% 53% 99 0.52 422 

Alaska 2.73 0.95 60.6% 65% 1 3.59 269 

Arizona 2.35 0.51 77.8% 66% 63 0.35 408 

Arkansas 4.09 0.88 77.7% 57% 58 0.86 418 

California 2.51 0.28 88.8% 75% 254 0.07 296 

Colorado 3.15 0.80 73.4% 74% 56 0.45 302 

Connecticut 3.59 0.40 88.2% 83% 745 0.73 310 

Delaware 2.97 0.34 87.7% 74% 508 2.55 316 

Florida 1.88 0.67 66.4% 70% 402 0.12 318 

Georgia 1.58 0.57 67.4% 58% 186 0.24 387 

Hawaii 3.07 0.35 87.6% 82% 227 1.84 117 

Idaho 4.34 0.87 77.2% 57% 22 1.34 321 

Illinois 2.80 0.35 86.3% 72% 231 0.21 305 

Indiana 3.76 0.69 80.3% 58% 189 0.38 406 

Iowa 5.38 1.00 79.8% 65% 57 0.82 317 

Kansas 5.25 1.07 79.0% 66% 36 0.90 346 

Kentucky 4.52 0.80 81.5% 60% 114 0.58 457 

Louisiana 2.52 0.60 75.7% 55% 108 0.58 397 

Maine 5.16 0.68 85.6% 84% 44 1.89 190 

Maryland 2.03 0.37 83.0% 80% 636 0.43 305 

Massachusetts 3.27 0.79 75.3% 85% 901 0.38 281 

Michigan 3.18 0.65 79.3% 63% 178 0.26 349 

Minnesota 3.68 0.61 82.4% 72% 72 0.46 266 

Mississippi 2.77 1.17 57.3% 54% 63 0.90 508 

Missouri 4.55 0.78 81.5% 59% 90 0.43 370 

Montana 4.86 1.06 76.7% 59% 8 2.33 332 

Nebraska 4.77 1.16 72.9% 67% 26 1.33 300 

Nevada 1.62 0.53 69.1% 64% 28 0.82 423 

New Hampshire 4.04 0.82 77.1% 72% 154 1.88 202 

New jersey 1.94 0.25 86.9% 79% 1263 0.28 377 

New Mexico 2.79 0.76 74.7% 76% 18 1.25 413 

New York 1.64 0.35 78.2% 81% 429 0.13 385 

North Carolina 3.47 0.44 86.7% 67% 215 0.24 332 

North Dakota 3.32 1.66 49.0% 59% 11 3.36 404 

Ohio 3.46 0.49 85.1% 61% 289 0.22 398 

Oklahoma 4.51 1.57 64.1% 61% 58 0.65 487 

Oregon 5.55 0.34 92.8% 73% 44 0.62 206 

Pennsylvania 3.44 0.73 77.5% 74% 291 0.20 356 

Rhode Island 4.78 0.50 88.4% 88% 1061 2.40 328 

South Carolina 3.54 0.61 82.1% 60% 170 0.49 387 

South Dakota 5.29 1.69 64.6% 67% 12 2.87 369 

Tennessee 3.31 1.16 65.8% 56% 168 0.37 446 

Texas 2.15 0.67 68.7% 64% 112 0.09 433 

Utah 2.07 0.50 74.8% 67% 40 0.77 252 

Vermont 5.41 0.46 90.7% 86% 70 4.07 129 

Virginia 2.36 0.47 79.1% 77% 219 0.30 281 

Washington 4.61 0.26 93.6% 76% 116 0.34 207 

West Virginia 5.07 1.30 73.1% 60% 75 1.49 404 

Wisconsin 3.91 0.52 85.8% 68% 109 0.45 271 

Wyoming 3.48 0.77 75.0% 53% 6 4.51 326 

Average 3.50 0.72 78% 68% 207 1.05 337 
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Table 2. Pairwise correlations for model variables. 

 

 

COVID 

mortality 

Initial 

COVID IMR 

Vaccination 

Rate 

Population 

Density 

COVID mortality 1.00     

Initial COVID -0.29 1.00    

IMR -0.54 -0.18 1.00   

Vaccination Rate -0.64 0.03 0.54 1.00  
Population Density -0.05 -0.18 0.34 0.57 1.00 

 

 

 

Table 3. Multiple linear regression results for US state, age adjusted COVID mortality rates as a 

function of Influenza Mortality Reduction (IMR), vaccination rate (at least 2 doses), COVID 

mortality in the first month of the pandemic, and population density. Model 2 introduces a term 

for the interaction between IMR and population density.  

 State Characteristics Coef. 95% C.I. P>|t| 

Model 1 Initial COVID Mortality -20.8 -34.8 -6.9 0.004 

r2= 0.65 Population Density 0.12 0.059 0.19 <0.001 

 Influenza Mortality Reduction -336 -525 -147 0.001 

 Vaccination Rate -577 -788 -367 <0.001 

 Constant 986 843 1129 <0.001 

Model 2 Initial COVID Mortality -29 -44.1 -14.6 <0.001 

r2= 0.69 Population Density -0.83 -1.58 -0.08 0.03 

 Influenza Mortality Reduction -493 -710 -276 <0.001 

 Vaccination Rate 1.12 0.24 2.00 <0.001 

 IMR x Population Density -523 -726 -320 0.01 

 Constant 1087.31 930.67 1243.94 <0.001 
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Table 4. Model estimates of lives saved by NPI’s (based on IMR as an indicator) and vaccination. 

Mortality data in model based on values when US COVID mortality was 1.04 million.  

 

COVID Deaths without  

specified Interventions 

Lives Saved by  

Specified Intervention 

 Estimate 95% CI  Estimate 95% CI  

NPI 1,990,000 1,320,000 2,660,000 850,000 180,000 -1,520,000 

Vaccination 

and NPI 
3,390,000 2,930,000 3,860,000 2,350,000 1,790,000 - 2,720,000 
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Figure 1. CDC estimates of deaths from influenza for past 13 flu seasons. Note that the CDC did not provide 

an estimate for the 2020-2021season because the mortality rates were too low for their estimation procedures, 

which seek to account for unreported cases, so the number provided is the actual count.  
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Figure 2. Actual age adjusted COVID mortality as compared to model estimates for US states. 

Using influenza mortality reduction as an indicator of their aggregate efficacy, this study shows 

that non-pharmaceutical interventions (NPI’s), vaccination rates, population density, and initial 

pandemic impact explains 69% of state specific COVID mortality through 2022 to assess their 

impact on COVID mortality. 
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