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ABSTRACT 

INTRODUCTION: Genetic mutation carriers of frontotemporal dementia can remain cognitively 

well despite neurodegeneration. A better understanding of brain structural, perfusion and 

functional patterns in pre-symptomatic stage could inform accurate staging and potential 

mechanisms.  

METHODS: We included 207 pre-symptomatic genetic mutation carriers and 188 relatives 

without mutations. The grey matter volume, cerebral perfusion, and resting-state functional 

network maps were co-analyzed using linked independent component analysis (LICA). Multiple 

regression analysis was used to investigate the relationship of LICA components to genetic status 

and cognition. 

RESULTS: Pre-symptomatic mutation carriers showed an age-related decrease in the left 

frontoparietal network integrity while non-carriers did not. Executive functions of mutation 

carriers became dependent on the left frontoparietal network integrity in older age. 

DISCUSSION: The frontoparietal network integrity of pre-symptomatic mutation carriers 

showed a distinctive relationship to age and cognition compared to non-carriers, suggesting a 

contribution of the network integrity to brain resilience, despite atrophy and hypoperfusion. 
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1. Background 

Frontotemporal dementia (FTD) is characterized by the selective degeneration of the frontal and 

temporal cortices, leading to progressive deficits in behavior, social and executive function, or 

language [1]. Genetic risk factors are important, with about 20-30% of FTD cases being familial 

[2]. Highly penetrant mutations in three major genes, chromosome 9 open reading frame 72 

(C9orf72), microtubule-associated protein tau (MAPT), and progranulin (GRN), account for 

about 60% of cases of familial FTD [1]. Given that neurobiological changes could occur many 

years before the onset of symptoms of neurodegenerative dementias [3-6], investigation at the 

early stage of diseases before symptom onset is important for understanding factors that facilitate 

the brain’s resilience. Genetic FTD with highly penetrant genetic mutations provides the 

opportunity for early investigation before symptom onset. Comparison between pre-symptomatic 

genetic mutation carriers and their family members without the mutation, allows one to 

investigate the effect of early neurodegeneration without the confounding influence of 

medication and lifestyle changes after symptom onset.  

People carrying highly penetrant genetic mutations of FTD have grey matter atrophy and 

reduction in cerebral blood flow (CBF) more than a decade before the expected symptom onset, 

as measured by magnetic resonance imaging (MRI) and arterial spin labelling (ASL) [4, 6-8]. 

However, functional network organization and connectivity are generally maintained despite 

significant atrophy in pre-symptomatic genetic FTD [4, 9]. Moreover, a recent study indicates 

that functional networks predict cognitive decline and symptomatic conversion in pre-

symptomatic genetic mutation carriers [10]. A better understanding of these changes in the pre-

symptomatic stage would inform accurate staging, facilitate clinical trials, and elucidate the 
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mechanisms of resilience by which gene carriers remain cognitively well for many years despite 

biomarker evidence of neurodegeneration. 

Here we test whether pre-symptomatic differences in brain structure, cerebral perfusion and 

functional network act synergistically or independently on clinically relevant disease features 

such as cognitive performance and disease progression. Specifically, we used linked independent 

components analysis of multimodal imaging to investigate whether the interplay of brain grey 

matter atrophy, cerebral perfusion and functional network integrity explains difference between 

pre-symptomatic FTD genetic mutation carriers and non-carriers. 

2. Methods 

2.1 Participants 

The Genetic Frontotemporal dementia Initiative (GENFI) study is an international muti-centre 

cohort study across Europe and Canada. GENFI recruited participants with genetic mutations of 

FTD and their relatives [6, 7]. Participants included carriers of genetic mutations in C9orf72, 

GRN, and MAPT who have or have not shown symptoms, and their relatives without genetic 

mutations. Most participants are unaware of their genetic status at recruitment, and remain 

unaware of their genetic status by a genetic-guardianship process. Participants underwent a 

standardized clinical assessment consisting of a medical history, family history, and physical 

examination. Symptomatic status was based on the assessment by clinicians to determine 

whether the participants fulfilled the diagnostic criteria for FTD [11-13]. Functional status was 

measured using the Frontotemporal Dementia Rating Scale [14] and behavioral symptoms were 

assessed using the Cambridge Behavioural Inventory Revised version (CBI-R) [15]. We also 

tested the Mini-Mental State Examination (MMSE). Participants not diagnosed with FTD who 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2024. ; https://doi.org/10.1101/2024.03.06.24303617doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303617
http://creativecommons.org/licenses/by/4.0/


 5

had functional, cerebrovascular and structural neuroimaging data with good quality were 

included in this study (N = 395). There were 207 FTD genetic mutation carriers who had not 

shown symptoms fulfilling the diagnostic criteria for FTD at the time of recruitment, termed pre-

symptomatic genetic mutation carriers. The pre-symptomatic genetic mutation carriers had no 

symptoms, and were not manifesting abnormal behaviours that next of kin reported to be out of 

the normal range. There were 188 relatives of the mutation carriers who are not genetic mutation 

carriers of known FTD genes, termed non-carriers. The demographics of the subjects are shown 

in Table 1. Demographic variables were compared between pre-symptomatic mutation carriers 

and non-carriers using one-way Analysis of Variance (ANOVA) for continuous variables and 

using the Chi-squared test for categorical variables. 

Table 1. Characteristics of participants. 

 Non-carriers Pre-symptomatic 
mutation carriers 

P value 
(Chi-squared 
or ANOVA) 

n 188 207 
 

Age, 
mean±SD 

45.6±12.1 44.1±11.6 0.23 

Gender, n(%) 
   

Females 117 (62.2) 139 (67.1) 
0.29 

Males 71 (37.8) 68 (32.9) 

Gene, n(%) 
   

C9orf72 62 (33.0) 76 (36.7) 

0.14 GRN 83 (44.1) 97 (46.9) 

MAPT 43 (22.9) 34 (16.4) 

Mini-Mental State 
Examination, 

mean±SD 
29.4±1.0 29.4±1.0 0.49 

Cambridge Behavioural 
Inventory, 
mean±SD 

4.6±7.0 6.1±9.7 0.10 
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2.2 Neurocognitive assessment 

Participants underwent a neuropsychological battery consisting of tests from the Uniform Data 

Set [16], covering attention and processing speed: Wechsler Memory Scale–Revised (WMS-R) 

digit span forward [16], Trail-Making Test part A (TMTA) [17], the Wechsler Adult Intelligence 

Scale-Revised (WAIS-R) Digit Symbol Substitution test [16], Delis-Kaplan Executive Function 

System (DKEFS) Color-Word Interference Test color and word naming [18]; executive function: 

WMS-R Digit span backward [16], TMT part B (TMTB) [17], DKEFS Color-Word Interference 

Test ink naming [18]; language: modified Camel and Cactus Test [19], the Boston Naming Test 

(short 30-item version) [16], verbal fluency: category fluency and phonemic fluency [16, 20]; 

memory encoding: Free and Cued Selective Reminding Test (FCSRT) immediate free and total 

recall [21]; memory recall: FCSRT delayed free and total recall, Benson Complex Figure recall 

[21]; and visuoconstruction: Benson Complex Figure copy. More details of the neurocognitive 

assessment in this cohort can also be found in the previously published protocol [6]. A principal 

component analysis (PCA) with permutation (n = 1000) was performed on the series of cognitive 

measures. Leading components were selected for further investigation.  

2.3 Neuroimaging acquisition and processing 

2.3.1 Grey matter volume 

T1-weighted MRI scans were collected on 3T scanners. A three-dimensional T1-weighted 

magnetization prepared rapid gradient echo sequence image was acquired for each subject 

accommodating different scanners at each site over at least 283 s (283 to 462 s) and had a 
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median isotropic resolution of 1.1 mm (1 to 1.3 mm), repetition time (TR) of 2000 ms (6.6 to 

2400), echo time (TE) of 2.9 ms (2.6 to 3.5 ms), inversion time of 8 ms (8 to 9 ms), and field of 

view (FOV) 256 × 256 × 208 mm (192 to 256 × 192 to 256 × 192 to 208 mm). For participants 

with baseline and follow-up scans, the latest available scans were examined. The co-registered 

T1 images were segmented to extract probabilistic maps of six tissue classes: grey matter, white 

matter, cerebrospinal fluid, bone, soft tissue, and residual noise. The native-space grey matter 

and white matter images were submitted to diffeomorphic registration to create equally 

represented gene-group template images [22]. The templates for all tissue types were normalized 

to the Montreal Neurological Institute (MNI) template using a 12-parameter affine 

transformation. The normalized and modulated grey matter volume (GMV) images were used in 

analysis. 

2.3.2 CBF 

ASL sequences could be different across different sites. The sequences included in this study 

were: pseudo-continuous ASL 3D fast-spin-echo stack-of-spirals implemented on a 3T General 

Electric MR750; pseudo-continuous ASL 2D gradient-echo echo-planar imaging on a 3T Philips 

Achieva, with and without background suppression; and pulsed ASL 3D gradient-and-spin-echo 

on 3T Siemens Trio systems. The complete ASL parameters of each sequence have been 

described elsewhere [23]. 

For ASL processing, the ExploreASL pipeline (v1.5.1) was used [24]. The ExploreASL is 

optimized for multi-center data through the use of advanced ASL markers (e.g., spatial 

coefficient-of-variation [25] and partial volume correction [26]). It has been employed so far in 

over 30 studies, consisting of ASL scans from three MRI vendors including GE, Philips, and 
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Siemens [24]. A recent study using this ASL processing method to analyze cerebral perfusion 

data from the GENFI study has also confirmed the reliability of this method for integrating ASL 

data from different scanners specific to the GENFI cohort data [27]. This denoising for scanner 

effects was complemented with data-driven and model-driven correction at the subject level [28, 

29]. In this study, structural and functional image volumes across multiple sites, vendors, and 

sequences were processed first. Briefly, structural images were non-linearly registered to MNI 

space using Geodesic Shooting [30] and transformation matrices were saved for subsequent 

application on functional images. ASL scans were corrected for motion outliers using rigid-body 

transformation coupled with the enhancement of automated blood flow estimates outlier 

exclusion algorithm [31], followed by pairwise subtraction to produce perfusion-weighted 

images. Functional proton-density weighted images were smoothed with a 16mm full width at 

half maximum (FWHM) Gaussian kernel to create a bias field that avoided division artifacts 

during CBF quantification and cancelled out acquisition-specific B1-field inhomogeneities. CBF 

quantification itself followed a single-compartment model approach and recommendations 

outlined in the ASL consensus paper [32]. For quality control, CBF images were reviewed 

independently by three authors with 3-6 years of experience in handling ASL data. 

Disagreements were resolved by consensus. CBF volumes were masked by their structural T1 

counterpart’s probability grey matter mask at ≥ 50% and the spatial coefficient of variation was 

calculated for the extracted voxels. Images with coefficient of variation values ≥  0.8 were 

discarded. 

To adjust for differences arising from the effects of multiple sites, scanners, and software, a 

spatially varying intensity normalization approach was used [8], together with data-driven and 

model-driven approaches at the between-subject level (see section Statistical analysis). The 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2024. ; https://doi.org/10.1101/2024.03.06.24303617doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303617
http://creativecommons.org/licenses/by/4.0/


 9

normalization approach uses the within-site CBF similarity between participants to remove the 

between-site quantification differences [8]. Mean CBF images of these groupings were 

calculated and smoothed using a 6.4mm FWHM Gaussian kernel. Smoothing was constrained to 

a binary MNI brain mask. These group-specific mean images were then averaged to calculate the 

population mean CBF image, which in turn was rescaled uniformly such that the mean grey 

matter perfusion equalled 60 ml / min / 100 g. Group-specific rescale-factor images were then 

calculated by dividing this population CBF image by each group’s mean CBF image. Individual 

CBF images were adjusted via multiplication against their group’s respective rescale-factor 

image. To account for the effects of atrophy, partial volume correction on rescaled CBF volumes 

was performed using a linear regression approach [26]. Further details of ASL processing are 

discussed in a recent publication [27]. Due to hyperintensities present in the cerebellum of many 

subjects which is not our interest of study, only the CBF of the cortical region was included in 

the analysis of this study. A cortical binary mask created from the Harvard-Oxford cortical atlas 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) was therefore applied to all CBF images. 

2.3.3 Resting-state functional networks  

For rs-fMRI, echo planar imaging acquired 200 volumes with 42 slices (slice thickness = 3.5 mm, 

TR = 2500 ms; TE = 30 ms; FOV = 192 mm x 192 mm). Resting-state fMRI data were 

preprocessed using Automatic Analysis [33] calling functions from SPM12 implemented in 

Matlab (MathWorks). Processing steps included (1) spatial realignment to correct for head 

movement and movement by distortion interactions, (2) temporal realignment of all slices, and (3) 

coregistration of the echo planar imaging to the participant’s T1 anatomical scan. The 

normalization parameters from the T1 stream were applied to warp functional images into MNI 

space. Resting-state fMRI data were further processed using whole-brain ICA of single-subject 
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time series denoising, with noise components selected and removed automatically using the ICA-

based Automatic Removal of Motion Artifacts toolbox [34]. This was complemented with linear 

detrending of the fMRI signal, covarying out six realignment parameters, white matter and 

cerebrospinal fluid signals, their first derivatives, and quadratic terms [35]. Global white matter 

and cerebrospinal fluid signals were estimated for each volume from the mean value of white 

matter and cerebrospinal fluid masks derived by thresholding SPM tissue probability maps at 

0.75. Data were band-pass filtered using a discrete cosine transform. 

In order to identify the activation of functional networks from rs-fMRI, group-level ICA was 

performed to decompose the rs-fMRI data (trendscenter.org/software/gift/) [36] from 395 

participants (including pre-symptomatic mutation carriers and non-carriers). ICA dissociates 

signals from complex datasets with minimal assumptions, to represent data in a small number of 

independent components (ICs) which here are spatial maps that describe the temporal and spatial 

characteristics of underlying signals [36, 37]. The values at each voxel reflect the correlation 

between the time series of the voxel and that of the component. Each component can therefore be 

interpreted as BOLD co-activation across voxels of a functional network at resting state [38]. 

The number of components used, N = 15, matched a common degree of decomposition 

previously applied in low-dimensional group-ICA of rs-fMRI [39-41] and generated network 

spatial maps that showed a high degree of overlapping with network templates. Low-dimensional 

group-ICA was used because the purpose was to define each network with a single component, 

and high-dimensional group-ICA would tend to decompose single network into multiple 

components. The stability of the estimated ICs was evaluated across 100 ICASSO iterations [42]. 

Functional networks were identified from components by visualization and validated by spatially 

matching the components to pre-existing templates [43], in accordance with the previous 
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methodology used to identify networks from ICs [44]. The dorsal and ventral default mode 

network, the salience network, and the left and right frontoparietal network were selected, which 

are higher-order functional networks known to be associated with age- and FTD-related 

cognitive change [45-47].  

2.4 Statistical analysis 

2.4.1 Linked ICA 

Linked independent component analysis (ICA) was performed using FLICA of FMRIB 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA) [48, 49] implemented in Matlab (MathWorks 

version 2021b). Linked ICA is a data-driven analytic method that allows for simultaneous 

characterization of multimodal imaging modalities while taking into account the covariance 

across imaging modalities [48]. In comparison with other commonly used multivariate 

approaches for multivariate data integration such as canonical correlation analysis and partial 

least squares, linked ICA is able to identify patterns of covariance across more than two 

modalities. Linked ICA was run with seven spatial map inputs: GMV, CBF, and five co-

activation maps from resting-state functional networks (i.e., the dorsal default mode network, the 

ventral default mode network, the salience network, the right frontoparietal network and the left 

frontoparietal network) identified as described in 2.3.3. To ensure the results were not influenced 

dominantly by non-grey matter regions (e.g., ventricles), all spatial maps were masked by 

thresholding SPM grey matter tissue probability maps at 0.3. We refer to these imaging-derived 

spatial maps as modalities in linked ICA. A summary flow chart of the processing and analysis 

of imaging modalities is presented in Figure 1. 
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Within each modality, images from all subjects were concatenated into a single input matrix 

(participants-by-voxels) for linked ICA. Linked ICA decomposed this n-by-m matrix of 

participants-by-voxels into spatial components, with each component being an aggregate of 

spatial patterns, one for each modality, along with a set of subject loadings, one for each 

component [48]. Each modality spatial pattern is a map of weights that is later converted to 

pseudo-Z-statistic by accounting for the scaling of the variables and the signal-to-noise ratio in 

that modality. Only modalities with significant contribution (i.e., weighting with Z-score > 3.34, 

which corresponds to P < 0.001) were presented in this study. Linked ICA subject loadings for a 

given component were shared among all modalities represented in that component and indicated 

the degree to which that component was expressed by any individual subject. Subject loadings 

were used as inputs to the second-level between-subject regression analysis (see below in 2.4.2). 
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Figure 1. Summary of processing and analysis of the imaging modalities, comprising functional,
cerebrovascular, and structural measurements. CBF, cerebral blood flow; DMN, default mode
network; FPN, frontoparietal network; GMV, grey matter volume; ICA, independent component
analysis; fMRI, functional magnetic resonance imaging; SN, salience network; T1w, T1-
weighted. 

 

 

2.4.2 Multiple regression analysis 

To investigate the effects of age (linear and quadratic) and genetic mutation on cognition,

multiple regression analysis was used with cognition PCA component scores as the dependent

variable. Group was classified by genetic mutation status (i.e., pre-symptomatic mutation carriers

3

 
al, 
de 
nt 
-

n, 

nt 

ers 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2024. ; https://doi.org/10.1101/2024.03.06.24303617doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303617
http://creativecommons.org/licenses/by/4.0/


 14

or non-carriers). Gender and site effect were included as covariates. In Wilkinson’s notation [50], 

the model took the form:  

Cognition component ~ Group*Age^2 + Gender + site.  

To investigate whether brain patterns were predicted by age (linear and quadratic), genetic 

mutation and their interaction, subject loadings of each linked ICA component (IC) of interest 

were investigated as the dependent variable in multiple regression. Gender, total brain volume 

and site effect were included as covariates. In Wilkinson’s notation, the model took the form:  

IC ~ Group*Age^2 + Gender + total brain volume + site.  

Finally, to investigate the relationship between brain patterns and cognitive variability, 

accounting for the effects of genetics and age (linear and quadratic), multiple regression was 

used taking the following form:  

Cognition component ~ IC*Group*Age^2 + Gender + total brain volume + site.  

A false discovery rate (FDR)-corrected P < 0.05 was considered statistically significant. 

Analyses were performed in Matlab. 

 

3. Results 

3.1 Relationship between age, gene group and cognitive function 

The two significant PCA components are shown in Figure 2. The first cognition component 

(variance explained 36.6%, P < 0.001) was related to global cognitive function. No significant 
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group-wise difference in global cognition was found between genetic mutation carriers and non-

carriers (P = 0.079). Both non-carriers and pre-symptomatic genetic mutation carriers showed a

decline in global cognition with age likely reflecting the general age-related decrease in global

cognitive function. No significant difference was found in the age-cognition relationship between

genetic mutation carriers and non-carriers (Group:Age interaction t = -0.97, P = 0.33;

Group:Age^2 interaction t = -0.73, P = 0.47). 

The second cognition component (variance explained 9.1%, P < 0.001) indicated executive

function, attention and processing speed with deficits in visuospatial memory. No significant

group-wise difference was found between genetic mutation carriers and non-carriers (P = 0.28).

Neither non-carriers nor pre-symptomatic genetic mutation carriers showed age-related changes

in these cognitive functions. No significant difference was found in the age-cognition

relationship between genetic mutation carriers and non-carriers (Group:Age interaction t = -0.62,

P = 0.53; Group:Age^2 interaction t = 0.58, P = 0.56).  
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Figure 2. The two significant components from principal component analysis (PCA) on 
cognitive assessments. The top row shows the loadings of each cognitive test in PCA 
components. The bottom row shows the scatter plots of the correlation between age and PCA 
cognition component scores. 

 

3.2 Multimodal fusion using linked ICA 

The relative weight of modalities in each linked ICA output component is shown in Figure 3. 

Three components (IC10, IC14 and IC19) were excluded from further analysis as they were 

dominated by signals from one or two subjects (e.g., due to regional hyperintensities reflected by 

ASL images). We focused on components with variance explained > 1%. Note that there was 

little fusion between functional signals and structural or vascular signals. 

3.3 Relationship between age, gene group and neuroimaging components 

Multiple regression analysis results of the linked ICA components of interest are shown in Table 

2. We focused on components with a significant model fit (FDR-corrected P < 0.05 for adjusted 

R2, i.e., the components that showed significant correlations with the variables being tested). 

Strong linear age effects were observed particularly in components indicating global CBF (IC1), 

ventral default mode network (IC5), salience network (IC7), and head motion (IC9) (Figure 4). 

Only one component, IC4, showed differential age effects between pre-symptomatic and non-

carriers (Group:Age interaction t = -2.82, P = 0.0051). As age increases, pre-symptomatic 

genetic mutation carriers showed decreased activation of the left frontoparietal network (IC4, r = 

-0.30, P < 0.001), while non-carriers did not (r = -0.0087, P = 0.91). Brain visualization of IC4 

and its scatter plot against age are shown in Figure 5. Further analyses to examine for possible 

specificity to GRN, MAPT or C9orf72 carriers showed that the interaction between genetic 

mutation status and age (Group:Age) in the regression model was significant within the GRN 
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mutation carriers (Group:Age interaction t = -2.44, P = 0.016), but was not significant in the rest 

of the pre-symptomatic genetic mutation carriers excluding GRN mutation carriers (Group:Age 

interaction t = -1.43, P = 0.16). It was neither significant within the C9orf72 mutation carriers 

(Group:Age interaction t = -1.53, P = 0.13) nor within the MAPT mutation carriers (Group:Age 

interaction t = -1.42, P = 0.16) alone. Brain spatial maps of other components are presented in 

Supplementary Figure 1.  
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Figure 3. The relative weight of modalities in each component generated from linked
independent component analysis (ICA) and the percentage of variance explained of each
component. CBF, cerebral blood flow; dDMN, dorsal default mode network; vDMN, ventral
default mode network; FPN, frontoparietal network; GMV, grey matter volume; SN, salience
network. 
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Figure 4. Brain visualization and scatter plots of subject loadings against age of the linked
independent component analysis components (ICs) showing strong age effects.  

 

9

 

ed 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2024. ; https://doi.org/10.1101/2024.03.06.24303617doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303617
http://creativecommons.org/licenses/by/4.0/


 20

Figure 5. Brain visualization of linked independent component analysis component 4 (IC4),
showing the left frontoparietal network (FPN). For visualization, the brain spatial map threshold
is set to 3 < |Z| < 10. The scatter plot shows the correlation between age and IC4 subject loadings
separated by pre-symptomatic genetic mutation carriers (r = -0.30, P < 0.001) and non-carriers (r
= -0.0087, P = 0.91). 
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Table 2. Multiple regression results of the linked independent component analysis components of interest (IC). 
IC ~ Group*Age2 + Gender + Total brain volume + Site 

 
Model Group Gender Age Age2 Group:Age Group:Age2 

IC 
Variance 
explained 

Adjusted 
R2 P β P β P β P β P β P β P 

IC1 14.23% 0.14 < 0.001 -0.17 0.0048 -0.26 < 0.001 -0.36 < 0.001 0.012 0.74 -0.011 0.82 -0.0032 0.93 

IC2 9.81% 0.59 < 0.001 0.049 0.25 0.27 < 0.001 -0.082 0.031 -0.0085 0.74 0.036 0.29 -0.0049 0.85 

IC3 6.56% 0.34 < 0.001 -0.080 0.14 0.090 0.075 -0.11 0.022 -0.029 0.38 -0.029 0.51 0.041 0.22 

IC4 5.10% 0.27 < 0.001 -0.078 0.17 0.067 0.21 -0.13 0.012 0.032 0.36 -0.13 0.0051 0.034 0.33 

IC5 4.09% 0.16 < 0.001 0.060 0.33 -0.052 0.36 -0.29 < 0.001 0.038 0.31 -0.092 0.062 -0.013 0.73 

IC6 3.42% 0.12 < 0.001 -0.067 0.28 -0.16 0.0067 -0.15 0.0058 0.038 0.31 -0.084 0.10 0.068 0.077 

IC7 2.18% 0.20 < 0.001 0.012 0.84 -0.024 0.66 -0.20 < 0.001 0.075 0.040 -0.085 0.075 0.028 0.44 

IC8 1.91% 0.050 0.013 0.11 0.10 0.26 < 0.001 0.050 0.38 0.054 0.17 -0.039 0.45 -0.035 0.38 

IC9 2.14% 0.47 < 0.001 -0.068 0.16 -0.62 < 0.001 -0.30 < 0.001 -0.049 0.10 0.025 0.53 0.032 0.28 

IC12 2.13% 0.79 < 0.001 0.040 0.18 0.12 < 0.001 -0.017 0.53 -0.024 0.20 -0.0031 0.90 -0.026 0.17 

IC13 1.02% 0.038 0.039 -0.036 0.58 
-

0.0081 
0.89 0.072 0.22 -0.11 0.0061 -0.0035 0.95 0.022 0.58 

IC15 2.63% 0.10 < 0.001 0.039 0.54 -0.12 0.047 0.0087 0.88 0.042 0.27 -0.048 0.35 0.0059 0.88 

IC16 1.14% 0.28 < 0.001 0.031 0.59 -0.22 < 0.001 0.24 < 0.001 0.074 0.032 0.073 0.11 0.022 0.53 

IC17 2.38% 0.33 < 0.001 -0.013 0.81 -0.12 0.018 -0.082 0.093 -0.0083 0.80 0.0092 0.84 -0.016 0.63 

IC20 1.81% 0.063 0.0032 0.013 0.85 0.070 0.24 -0.10 0.10 0.029 0.46 -0.0016 0.98 -0.018 0.65 

IC23 1.47% 0.053 0.0096 0.050 0.44 -0.050 0.41 0.053 0.36 -0.0083 0.83 -0.088 0.093 -0.030 0.45 

IC26 1.59% 0.037 0.043 -0.012 0.85 0.22 < 0.001 0.075 0.20 -0.0034 0.93 -0.039 0.46 -0.015 0.70 

IC29 1.45% 0.066 0.0024 0.025 0.70 0.046 0.44 0.12 0.033 0.066 0.10 0.017 0.74 0.042 0.28 

IC31 1.22% 0.067 0.0022 0.0084 0.90 -0.10 0.10 -0.065 0.26 -0.067 0.090 -0.088 0.093 -0.00040 0.99 

IC33 1.17% 0.039 0.036 -0.082 0.21 -0.021 0.73 0.0039 0.95 -0.052 0.20 -0.033 0.54 0.032 0.42 

P values in bold are statistically significant
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3.4. Relationship between neuroimaging components and cognitive function 

All linked ICA components that showed cognition-related differences between the two groups 

reflected a single neuroimaging modality. No component showed a different association with 

cognition component 1 between non-carriers and pre-symptomatic mutation carriers 

(Supplementary Table 1).  

In regards to component 2 (Supplementary Table 2), IC2, indicating global GMV, showed an 

interaction with genetic mutation in predicting cognition component 2 (IC:Group t = -2.73, P = 

0.0066): non-carriers showed a positive association between IC2 subject loadings and good 

performance on executive functions and poor performance on visuospatial memory tasks (r = 

0.17, P = 0.026), while this association was not significant in pre-symptomatic mutation carriers 

(r = -0.12, P = 0.10). There was a significant 3-way interaction between group, age and IC 

subject loadings of the left frontoparietal network (i.e., IC4, IC:Group:Age^2 t = -2.20, P = 0.029) 

in predicting cognition component 2. Visualizing the results (Figure 6) indicates that as age 

increased, an increased association between the left frontoparietal network and good 

performance on executive functions and poor performance on visuospatial memory tasks was 

found in pre-symptomatic genetic mutation carriers. This result was confirmed in a post-hoc test 

showing that a significant two-way interaction between IC4 and age in predicting these cognitive 

performances was found in pre-symptomatic genetic mutation carriers (IC:Age^2 t = -2.14, P = 

0.033) but not in non-carriers (IC:Age^2 t = 1.70, P = 0.090). Significant 3-way interactions 

(IC:Group:Age^2) were also observed for the component of ventral default mode network (IC5, t 

= -2.73, P = 0.0068) and salience network (IC7, t = -3.14, P = 0.0018). The effects in both 

components suggested an age-varying association between network activity and performance on 
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executive functions and visuospatial memory in non-carriers but not in pre-symptomatic 

mutation carriers (Figure 6). 

In a post-hoc analysis to examine the relationship between age and executive functions, which 

are the most commonly affected cognitive domains in FTD, we have selected only the tests 

examining executive functions, attention, and processing speed and performed a PCA on them 

(Supplementary Figure 2). We examined the relationship between age and the significant PCA 

component (i.e., principal component 1) representing the overall performance of these tests. 

Results showed a negative association between age and this component in both pre-symptomatic 

mutation carriers (Age t = -6.78, P < 0.001; Age^2 t = -2.73, P = 0.007) and non-carriers (Age t 

= -4.21, P < 0.001; Age^2 t = -3.37, P < 0.001). 
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Figure 6. Linked independent component analysis components showing three-way interactions
between subject loadings with group (genetic mutation) and age in predicting cognition
component 2. IC4 indicates the left frontoparietal network (FPN), IC5 indicates the ventral
default mode network (DMN), and IC7 indicates the salience network (SN). The brain
visualization and scatter plots are shown. The scatter plots show the correlation between IC
subject loading scores and PCA cognition component 2 scores, for visualization purpose
separated by pre-symptomatic genetic mutation carriers and non-carriers and three age groups. 
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4. Discussion 

In this study, we co-analyzed GMV, CBF, and functional network integrity. Interplay across 

modalities did not relate to genetic groups or cognition. Pre-symptomatic genetic mutation 

carriers showed a decrease with age in the left frontoparietal network integrity while non-carriers 

did not, suggesting a gene-related neurodegenerative consequence above normal ageing. 

Executive functions of pre-symptomatic mutation carriers dissociated from the level of atrophy 

but became dependent on the left frontoparietal network integrity with age. These results suggest 

that maintaining frontoparietal network integrity may support cognitive function despite age-

related atrophy and hypoperfusion in pre-symptomatic FTD. 

The age-related decreases in CBF and default mode network activity found in this study are 

consistent with the commonly observed changes in perfusion [51, 52] and functional network [53] 

in normal aging. Global GMV also decreased with age, consistent with findings from previous 

multimodal neuroimaging fusion studies [44, 54] and normal aging pattern of the brain [55]. The 

component representing global GMV (IC2) in this study did not significantly differ between pre-

symptomatic mutation carriers and non-carriers accounting for age effects. The main reason may 

be this component is dominated by the effect of ageing, as linked ICA identifies components in a 

data-driven manner. Signals in this component are mostly influenced by age-related variances, 

which can be attributed to the wide age range of participants, spanning from 20 to 83 years old. 

On the other hand, studies employing hypothesis-driven approaches identified atrophy patterns 

that are optimised to detect pre-symptomatic differences [4, 7]. Thus, the difference in atrophy 

patterns identified in those studies might be specific to pre-symptomatic mutation carriers versus 
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age-matched controls [7, 56], while IC2 in our study predominantly reflects age-related atrophy 

as reported in previous studies [44, 54, 57]. 

More importantly, we illustrated the age- and cognition-relevant divergence of frontoparietal 

network integrity between pre-symptomatic mutation carriers and non-carriers. Pre-symptomatic 

mutation carriers showed a decrease in the left frontoparietal network integrity with age while 

non-carriers did not, suggesting that the lateralized frontoparietal network is the functional 

network most affected by FTD mutations with age. Salience network connectivity is commonly 

reduced in symptomatic behavioural variant FTD (bvFTD) and associated with disease severity 

[46, 58], but remains unchanged at the pre-symptomatic stage [59]. Altered default mode 

network connectivity has been found in both pre-symptomatic MAPT mutation carriers and 

bvFTD subjects [46, 59]. In this study, we did not find the default mode network or the salience 

network significantly different between genetic mutation carriers and non-carriers when 

accounting for the age effects. Nevertheless, when relating to executive function, attention and 

processing speed, the associations between the ventral default mode network and the salience 

network, respectively, with performance on these functions were found particularly in younger 

non-carriers but not in pre-symptomatic mutation carriers, suggesting the cognitive reliance on 

these functional networks breaks down in genetic mutation carriers and during ageing. 

Understanding such an effect would be important for gaining insights into the mechanisms of 

cognitive decline and the maintenance of executive functions especially at the pre-symptomatic 

stage of cognitive impairment. 

Pre-symptomatic mutation carriers maintain similar global cognition to non-carriers. However, 

we demonstrated that global cognition showed a trend of more rapid decline with age in pre-

symptomatic mutation carriers from the age of early 20s to 80s. We found no significant 
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association between age and executive function, attention, and processing speed in either groups, 

contrasting previous reports of age-related declines in executive functions [60], potentially due to 

different analysis methods. Here, executive functions were represented by the second principal 

component, which should be interpreted in relation to the negatively loading visuospatial 

memory and in the context of the first principal component. Principal component 1 captured the 

well-documented age-related decline in global cognitive functions including executive functions 

and memory [61, 62]. Principal component 2 may represent aspects of executive functions, that 

are independent or orthogonal to the general cognitive decline, possibly reflecting individual 

variability specific to the cognitive tests. Hence, the age-related differences of these specific 

executive functions might be moderated by the age-related effect of visuospatial memory, while 

executive functions declining alongside memory are likely already captured by principal 

component 1. Post-hoc analysis showed a negative age-executive functions association, 

consistent with reported age-related executive declines [60]. The performance related to attention, 

processing speed and executive function correlated with global GMV in non-carriers, while 

correlated with left frontoparietal network integrity in pre-symptomatic mutation carriers 

especially as they get older. It suggests that in genetic mutation carriers, executive functions 

dissociated from GMV and were maintained by frontoparietal network integrity. Frontoparietal 

network is important for cognitive flexibility especially for executive function [63, 64], which is 

one of the most commonly affected cognitive domains in FTD [1]. A recent study has found that 

pre-symptomatic C9orf72 mutation carriers showed lower attention and executive function 

compared to non-carriers [62]. Our study provides further evidence suggesting that these 

cognitive domains are sensitive to alternations at the earlier stage of the disease. Given that CBF 

and GMV significantly decreased with age regardless of genetic mutations, and the reliance on 
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other functional networks for cognitive performance broke down in genetic mutation carriers, 

maintaining frontoparietal network integrity might be the key to slowing cognitive decline at the 

pre-symptomatic stage of FTD, particularly slowing the decline in executive functions. 

The atrophy patterns can be different across different genetic mutations. The GRN genetic 

mutation is known for causing asymmetric atrophy while the atrophy patterns of FTD associated 

with MAPT genetic mutation are typically symmetric [7, 56, 65]. We observed asymmetric 

relationship between functional network integrity and age in the GRN mutation carriers, 

indicating that the asymmetric vulnerability to genetic mutation can be manifested at the pre-

symptomatic stage. Specifically, we observed a relationship between age and the left 

frontoparietal network in the GRN mutation carriers, although the lack of significance in other 

genetic groups may be attributed to smaller sample sizes compared to GRN mutation carriers. 

Such finding is consistent with previous studies showing selective vulnerability of the left 

hemisphere [56, 66, 67]. Moreover, there is inherent asymmetry in several human cognitive 

systems, including language and executive functions which could be significantly impaired in 

FTD [68-70]. Although the cellular mechanisms of selective vulnerability are not well 

understood, it would be important to investigate the laterality of changes in future studies, 

especially considering the dynamical interactions between brain networks which shape cognition.  

This study benefits from pathological confidence arising from genetic characterisation, and the 

large sample size of pre-symptomatic mutation carriers through the multi-center GENFI study. 

This study combines GMV, CBF and functional networks in pre-symptomatic FTD genetic 

mutation carriers. Linking neurobiological changes is important given potential synergistic 

effects. Although, we found no interplay across modalities, relating frontoparietal network to 

other unexplored pathologies like tau, amyloid and neurotransmitters may prove informative [46, 
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59, 71, 72], given its age- and cognition-related distinctions between genetic mutation carriers 

and non-carriers observed in our study. 

The study also has limitations. First, the variability of MRI acquisition scanners and sequences 

through the multi-center cohort is higher than a single-center study. However, we mitigated the 

effects through the use of the normalization, denoising and statistical adjustment for site effects. 

We recognize that multi-center and multi-scanner correction for ASL could potentially be 

improved. A standard approach would be the use of flow phantoms for calibrating a scanner's 

ASL signal to a ground-truth flow rate [73]. Currently, however, this is not implemented in most 

ASL studies. Existing methods of pre-model (e.g., using ExploreASL) or within-model 

corrections [74] along with data-driven and model-driven corrections for sites and scanners 

remain the most pragmatic approach. Second, this study is cross-sectional. This should be noted 

when interpreting age effects, as dynamic ageing effects require longitudinal data. More follow-

up visits of the ongoing GENFI cohort will allow a longitudinal examination of these participants. 

Third, only adults were included thus potentially missing the changes manifested before 

adulthood caused by genetic mutation. A new cohort within GENFI is starting which aims to 

study family members below the age of 18. Finally, our current study focused on integrating 

spatial maps of network activity in relation to atrophy and perfusion. However, functional 

connectivity between networks is another important factor to be considered [4]. The joint 

consideration of activity and connectivity might better characterize brain dynamics and cognitive 

performance [75]. Therefore, future research could investigate the intercorrelations between 

functional connectivity and multiple neuroimaging modalities or integrate time-course functional 

data with spatial maps from other modalities. 
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In conclusion, we demonstrated that the frontoparietal network integrity might support cognitive 

function despite atrophy and hypoperfusion in pre-symptomatic FTD. While the linked ICA 

components indicating an interplay across modalities did not relate to genetic groups and 

cognition, linking neuroimaging, especially functional network integrity, with other 

neuropathological changes may be a future direction for genetic FTD at the pre-symptomatic 

stage. The dissociation of changes in structure, perfusion and network activity in pre-

symptomatic FTD has implications for clinical trials design, and strategies for prevention or 

treatments for nominally well people at high risk of FTD.  
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