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Abstract 

Multiple sclerosis (MS) is a chronic inflammatory disease that affects the central nervous 
system. Optical coherence tomography (OCT) is a retinal imaging technology with great promise 
as a possible MS biomarker. Unlike other ophthalmologic diseases, the variations in shape of 
raw cross-sectional OCTs in MS are subtle and not differentiable from healthy controls (HCs). 
More detailed information like thickness of particular layers of retinal tissues or surface of 
individual retinal boundaries are more appropriate discriminators for this purpose. Artificial 
Intelligence (AI) has demonstrated a robust performance in feature extraction and classification 
of retinal OCTs in different ophthalmologic diseases using OCTs.  We explore a comprehensive 
range of AI models including (1) feature extraction with autoencoder (AE) and shallow networks 
for classification, (2) classification with deep networks designed from scratch, and (3) fine-
tuning of pretrained networks (as a generic model of the visual world) for this specific 
application. We also investigate different input data including thickness and surfaces of 
different retinal layers to find the most representative data for discrimination of MS. Moreover, 
channel-wise combination and mosaicing of multiple inputs are examined to find the better 
merging model. To address interpretability requirement of AI models in clinical applications, the 
visualized contribution of each input data to the classification performance is shown using 
occlusion sensitivity and Grad-CAM approaches. The data used in this study includes 38 HC and 
78 MS eyes from two independent public and local datasets. The effectiveness and 
generalizability of the classification methods are demonstrated by testing the network on these 
independent datasets. The most discriminative topology for classification, utilizing the 
proposed deep network designed from scratch, is determined when the inputs consist of a 
channel-wise combination of the thicknesses of the three layers of the retina, namely the 
retinal fiber layer (RNFL), ganglion cell and inner plexiform layer (GCIP), and inner nuclear layer 
(INL). This structure resulted in balanced-accuracy of 97.3, specificity of 97.3, recall 97.4%, and 
g-mean of 97.3% in discrimination of MS and HC OCTs. 

Keywords: multiple sclerosis, optical coherence tomography, artificial intelligence, 
autoencoder, feature extraction, convolutional neural network 
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I. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized 
by demyelination and neuro-axonal degeneration in the central nervous system (CNS) resulting 
in progressive tissue loss and worsening neurological disability over time[1]. Symptoms like 
fatigue, weakness, spasticity, vision changes, dizziness, mental changes, emotional changes, 
and depression are among the most prevalent in MS patients[2–4]. Various parts of the nervous 
system are affected in MS, including myelin sheaths, nerve fibers, and even cells that make 
myelin[5]. A few weeks are enough to recover if the injuries are not too severe, but severe 
injuries can permanently change the spinal cord[6]. Sclerosis refers to these permanent 
changes, which sometimes occur in multiple different parts of the body[7], thus giving rise to 
the name "multiple sclerosis". The cause of MS is unknown[8,9]. Scientists believe there is a 
combination of environmental and genetic factors involved in MS[10,11]. MS may be influenced 
by factors such as geography, vitamin D deficiency, obesity, and smoking[12,13]. The diagnosis 
of MS is established by applying the McDonald criteria[14], which primarily rely on the 
amalgamation of clinical, imaging, and laboratory evidence. However, it should be noted that 
the McDonald criteria are most applicable in cases where the disease has progressed to a 
relatively advanced stage. While magnetic resonance imaging (MRI) is the most established 
method to detect inflammations and lesions in MS[15], it is not sensitive or specific enough to 
reveal the degree of axonal damage[16]. 

MS causes extensive changes in the retina and optic nerve, which can be detected by a faster 
alternative method. Optical coherence tomography (OCT) is an imaging technology, which 
enables us to measure biomarkers such as thinning of individual layers in retina. [17,18]. The 
OCT technique uses in-vivo non-invasive imaging principles and is fast, with a temporal 
resolution of a few seconds. It allows for the precise delineation and measurement of various 
neuro-retinal layer thicknesses.  

In particular, OCT has shown that the ganglion cell layer (GCL) has a gradual thinning from the 
early stages of MS, but the retinal nerve fiber layer (RNFL) serves as an indicator of axonal 
integrity[19–21]. As a potential biomarker for neurodegeneration, thinning of the peripapillary 
retinal nerve fiber layer (pRNFL), GCL, and inner plexiform layer thickness (IPL) are direct 
indicators of axonal damage[22,23]. Activation of inflammatory disease also alters the thickness 
of the inner nuclear layer (INL) [24]. These findings highlight the potential usefulness of 
measurements obtained from OCT as biomarkers for diagnostic applications in MS[25].  

Artificial Intelligence (AI) has been widely used for automatic analysis of ophthalmic imaging 
modalities including OCT[26]. Instead of utilizing conventional statistical analysis, AI approaches 
can be used to predict the progression of MS-associated disability. Traditional methods for 
analyzing retinal layer thicknesses obtained through OCT entail extracting relevant features 
from the images and subsequently classifying them using specific techniques such as support 
vector machines (SVM)[27,28], linear discriminant function (LDF)[29], artificial neural network 
(ANN) [30–32], decision tree [32], logistic regression (LR) and logistic regression regularized 
with the elastic net penalty (LR-EN) [33], multiple linear regression (MLR), k-nearest neighbors 
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(k-NN), Naïve Bayes (NB), ensemble classifier (EC), long short-term memory (LSTM) [34], and 
recurrent neural network [35].  

Recent scientific investigations have explored the utilization of machine learning (ML) 
methodologies specifically focused on analyzing data pertaining to the thickness of the RNFL in 
each of the four quadrants delineating the peripapillary region (pRNFL), as well as GCL++ 
(between inner limiting membrane to INL), and the macular ganglion cell-inner plexiform layer 
(GCIPL). Furthermore, additional factors including age, sex, best-corrected visual acuity, and 
other relevant data were duly considered in the analysis[27–34]. In our prior research[36], we 
devised a machine learning approach to overcome limitations present in earlier automated 
methods for distinguishing between individuals with MS and HCs. To adhere to the principles of 
trustworthy AI, we improved interpretability by employing the occlusion sensitivity approach, 
allowing for the visualization of regional layer contributions to classification performance. The 
algorithm's robustness was demonstrated through testing on a new independent dataset, 
confirming its effectiveness. Utilizing a dimension reduction method, we identified the most 
discriminative features from diverse topologies of multilayer segmented OCTs. Classification 
was carried out using SVM, Random Forest (RF), and ANN. The performance of the algorithm 
was evaluated through patient-wise cross-validation, ensuring that training and test folds 
encompassed records from distinct subjects[36]. 

Deep learning (DL) is a class of state-of-the-art ML techniques that has attracted a lot of global 
attention in recent years[37]. This simulates the operation of the human brain using numerous 
layers of artificial neural networks that can produce automatic predictions from input data. 
Unlike ML, the structure of DL uses more hidden layers to decode raw images without using 
manually creating specific features or feature selection algorithms. One of the notable 
attributes of deep learning networks is their capacity to deduce and extract latent and intrinsic 
features from data[26]. As a result, DL does not require any manual intervention at the stage of 
feature extraction, allowing the feature extraction and classification steps to be fully integrated 
into a Computer-Aided Diagnosis System (CADS)[38–40].  

Convolutional neural networks (CNNs) are widely used in deep learning applications. They are 
inspired by the human visual system's complex structure[41]. CNNs process images directly 
through convolutional layers, extracting features to create a predictive model. This eliminates 
the need for a separate detection model and provides an end-to-end solution that takes input 
OCT images and produces diagnostic decisions.  

CNN systems have demonstrated strong diagnostic performance in applying ocular imaging, 
mostly OCT and fundus photographs[42]. Major ocular diseases which CNN methods have been 
applied for include diabetic retinopathy(DR) [43–45], glaucoma[46], age-related macular 
degeneration (AMD)[47,48], retinopathy of prematurity (ROP)[49], diabetic macular edema 
(DME), choroidal neovascularization (CNV), drusen, and others. Some of the classification 
methods based on CNN have been used to classify the OCT images in different ocular 
diseases[50–60]. Regarding MS, two studies have employed CNNs for classification. The first 
one that has utilized a CNN architecture for discriminating between individuals with MS and HC 
is [61], wherein CNNs feed with images of retinal layer thicknesses obtained with swept source 
OCT (SS-OCT) are used to diagnose early MS. To enhance the training dataset for CNNs, 
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synthetic images representing retinal thickness are generated through the utilization of 
generative adversarial networks (GANs). This approach allows for the augmentation of the 
training data by producing synthetic images that capture variations in retinal thickness. The 
discriminative capability of the images is assessed through the utilization of effect sizes, 
specifically Cohen's distance. Cohen's parameter value is computed for each pixel in layers of 
retina. Pixels surpassing the predetermined threshold retain their thickness values, while those 
falling below the threshold are assigned a value of 0. Consequently, the input images for the 
CNN solely contain pixel information that is pertinent to the diagnosis of MS. As a result, the 
images fed into CNN only contain data on pixels that are pertinent to the diagnosis of MS.   

In a recent investigation by Garcia Martin et al.[62], the Posterior Pole Protocol Spectralis SD-
OCT, which incorporates an anatomic positioning system, was utilized for quantifying thickness 
measurements of the GCL, IPL, and RNFL. These measurements were subsequently employed 
as input data for a CNN designed for classification purposes. By using the mean thickness of the 
GCL (AUROC = 0.82) and the inter-eye difference in the IPL (AUROC = 0.71) as input features for 
a two-layer CNN, the automated diagnostic system achieved an overall accuracy of 0.87, a 
sensitivity of 0.82, and a specificity of 0.92. 

In this study, we investigate an extensive array of AI models including (1) feature extraction 
with autoencoder (AE) and shallow networks for classification, (2) classification with deep 
networks designed from scratch, and (3) fine-tuning of pretrained network like ResNet152V2 
for this specific application. In addition, we conduct an in-depth exploration of various input 
data, encompassing the thickness and surface measurements of different retinal layers, with 
the objective of identifying the most informative and representative data for discriminating MS. 
Moreover, we analyze the channel-wise combination and mosaicing techniques of multiple 
inputs, aiming to identify an optimal merging model that achieves improved performance.  

This research explores the combination of different retinal layers, emphasizing the most 
effective composition of layers, specifically the mRNFL, GCIP, and INL. The results of this study 
are outlined in this manuscript. In order to meet the interpretability demands of AI models in 
clinical applications, we present the visualization of the contribution made by each input data 
to the classification performance. This is achieved through the utilization of occlusion sensitivity 
and Grad-CAM approaches. The data used in this study obtained from two independent public 
and local datasets. The efficacy and generalizability of the classification methods are 
substantiated through testing of the network on independent datasets. This evaluation 
showcases the ability of the methods to perform effectively beyond the initial training dataset. 
Our goal is to develop AI-based classification systems that can aid neurologists in the early 
detection of MS by analyzing alterations in sub-retinal layers of OCT. 

II. Materials and Methods 

A. Databases: 

The data used in this study includes 38 HC and 78 MS eyes that were achieved from two 
independent (but similar) datasets. The first dataset (Public dataset) has 14 HC and 18 MS and 
the second one (Local dataset) contains 24 HC and 60 MS. Demographic information of both 
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datasets are included in Table 1.  First, the models are trained and tested on the whole dataset 
and then, two datasets are used as separate training and testing datasets in measuring the 
robustness of the best-performing set of the classification algorithm.  

Public dataset: The first dataset consists of 32 human retina scans taken with Spectralis SD-OCT 
equipment (Heidelberg Engineering, Heidelberg, Germany), 14 HC, and 18 MS OCTs which were 
manually segmented to eight retinal layers using internally developed software and reviewed 
and revised independently. At least, 12 images at the same location have been averaged for 
each Bscans, and the signal-to-noise ratio of the final averaged scans is at least 20 dB[63]. 

Local dataset: The second OCT dataset was collected between April 2017 and March 2019 at 
the Kashani Comprehensive MS Center in Isfahan, Iran[64]. The images were acquired using 
Spectralis SD-OCT and Heidelberg HEYEX version 5.1 by one trained technician with automatic 
real-time (ART) of 9 frames function for image averaging. The dataset consists of 24 HC and 60 
MS eyes. All scans were checked for sufficient quality using OSCAR-IB criteria[65]. OSCAR-IB 
criterion is a standard for evaluating the quality of OCT images. Several indicators are 
considered as a quality indicator, forming the abbreviation OSCAR-IB: (O) obvious problems, (S) 
poor signal strength, (C) centration of scan, (A) algorithm failure, (R) unrelated retinal 
pathology, (I) illumination and (B) beam placement [65]. This criterion has been validated for 
MS [66].  

Table 1: Demographic characteristics of participants of the Local and Public datasets 

Dataset Characteristics HC MS 

Public Current age, Y, mean ±SD 35.77±13.03 41.97±8.77 

Sex, F, n(%) 12(86%) 14(78%) 

Local Current age, Y, mean ±SD 26.3±3.06 34.5±8.03 

Sex, F, n(%) 12(66%) 30(85%) 

y: year, SD: standard deviation, n: number 

B. Data Preparation: 

 
Cross-sectional OCT scans have been effectively utilized in AI applications for the detection of 
various ophthalmologic diseases. However, the changes in sub-retinal thicknesses associated 
with MS are notably subtle, making it challenging to diagnose using unprocessed cross-sectional 
OCT scans alone. Hence, multilayer segmented OCTs are used rather than raw B-scans.  
Segmentation of the retinal layers is the key first step for AI-based analysis of MS by OCT 
images. Achieving precise and automated segmentation of retinal boundaries is crucial in this 
context, despite the notable challenges frequently encountered in images obtained from 
individuals with neurodegenerative diseases (NDD). These challenges include the presence of 
atrophic layers and ambiguous boundaries, media opacity, and artifacts resulting from patient 
movement. Overcoming these hurdles is essential for accurate analysis and diagnosis in such 
cases. The NDD-SEG presents a viable solution to this challenge. It is an optimal algorithm 
would possess the capability to effectively process various OCT devices and imaging protocols 
characterized by a wide range of resolution, size, artifacts, and noise[67]. So, the NDD-SEG 
approach is utilized for the segmentation of retinal layers in this study. By applying the NDD-
SEG model, 9 boundaries and 8 layers of retina are extracted. The distances between pairs of 
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retinal layers generates retinal thickness maps. After plotting the thickness maps, it becomes 
evident that certain maps exhibit destroyed regions. This destruction can be attributed to low 
quality, missed B-scan or the presence of noise in the B-scans used for generating the thickness 
maps. To address this issue and enhance the quality of the maps while simultaneously reducing 
noise, an inpainting algorithm is employed. 
The data preparation steps are depicted in Figure 2 and are divided into the following 
sequential steps. 
1) Segmentation of retinal layers 

 
The fundamental design of NDD-SEG[67] consists of a U-net structure that lacks pooling and 
upsampling layers. An initial network, referred to as the Retinal Tissue Segmentation Network 
(RTSN), proficiently identifies the presence of the retina within the image, even in the presence 
of a noisy background. Following this, the Retinal Layer Segmentation Network (RLSN) focuses 
on precisely segmenting the intra-retinal layers by utilizing the probability map derived from 
RTSN along with the original input image. In the decoder stages of RLSN, the probability map 
and texture features are integrated. Rather than a straightforward concatenation, the Self-
Attention Transformer Block captures more advanced representations of the combined data. To 
maintain accurate layer boundaries, a novel Boundary Preservation Loss (BPL) function is 
introduced, allowing the incorporation of high-precision layer edges into a classification loss 
function. The integration of texture awareness and the focused preservation of edges imparts 
robustness to the network against noise. This approach achieves size-independence and 
resilient segmentation performance, even in the presence of image artifacts and pathologies. 
The Figure 1 presents a comparison between NDD-SEG and a conventional UNet approach for 
retinal layer segmentation in the presence of image artifacts and pathologies[67]. 

 
Figure 1: A comparison between NDD-SEG and a standard UNet approach for retinal layer segmentation [67] 
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2) Extraction of thickness and surface of retinal layers 

A noticeable change in the thickness of inner retinal layers, specifically the pRNFL and the 
combined macular ganglion cell and inner plexiform layers (mGCIPL), is evident when 
comparing individuals with MS to HCs[68]. Consequently, the assessment of inner retinal layer 
thicknesses serves as a diagnostic metric for distinguishing individuals with MS from HCs. 

While changes in thickness can distinguish areas showing signs of retinal disease from normal 
regions, the use of texture descriptors can provide additional insights into disease progression. 
To identify neurodegenerative alterations using OCT image segmentation, the investigation 
focuses on variations in texture descriptors and optical characteristics of retinal tissue layers in 
patients with MS.[69]. Research indicates the potency of texture features in diagnosing MS 
cases[70]. Changes in retinal texture can result in modifications to the boundaries of the retina. 
As a result, measuring surface across different retinal layers offers an assessment method for 
differentiating individuals with MS from those unaffected. 

3) Quality Enhancement of the images 

To enhance the quality of the images while simultaneously reducing noise, an inpainting 
algorithm is employed. Inpainting approach is used for quality enhancement and denoising in 
the data preparation step. In the inpainting algorithm, a highpass filter is initially applied to the 
input image, followed by the application of thresholding to generate a mask. Subsequently, 
Exemplar-based inpainting is employed to fill in the missing or corrupted regions of the image 
based on the mask.  

The exemplar-based image inpainting approach utilizes a block matching algorithm to identify 
the most appropriate patch within the image that matches the target region. Once the optimal 
matching patch is identified, the pixel values from the source region are copied and pasted into 
the target region, effectively filling in the missing or omitted areas. The quality of the inpainted 
result is significantly influenced by the search for a matching patch in this technique. By 
selecting a patch that closely mirrors the content and structure of the missing region, the 
exemplar-based method aims to seamlessly integrate the inpainted region with the rest of the 
image[71].  

4) Feed images to network 

In this study, we examine channel-wise combination and mosaicing of multiple inputs to find 
the better merging model. These combinations are shown in the final section of Figure 2.  

a) Channel-wise combination 

To feed data into classifier models, we employ three thickness maps representing different 
retinal layers or three boundaries of retinal layers across all B-scans as individual channels in 
3D color images. By exploring combinations of these retinal layers, our objective is to 
pinpoint the most effective discriminator for distinguishing between individuals with MS 
and HCs. 
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b) Mosaicing of multiple inputs 

Another approach to identify the optimal merging model entails constructing a mosaic by 
combining three thickness maps or boundaries of retinal layers along all B-scans. 
Subsequently, a grayscale image is produced with the same width and three times the 
length, allowing additional analysis and comparison to determine the superior merging 
model.  

 

Figure 2: Input Data preparation steps 

C. Classification methodology 

In this research, we investigate a comprehensive range of AI models including (1) feature 
extraction using AE and shallow network for classification, (2) classification employing deep 
networks designed from scratch, and (3) fine-tuning of pretrained networks for classification.  

1) feature extraction with autoencoder (AE) and shallow network for 

classification  

The architecture of the AE is designed to identify a low-dimensional representation for input 
images. An AE integrates an encoder function, responsible for altering the representation of 
input data, with a decoder function, which transforms the new representation back to the 
original format. The encoder compresses high-dimensional images into lower-dimensional 
displays, commonly referred to as the latent space or bottleneck representation. The decoder 
returns the data to its original dimensions. The latent space contains sufficient information to 
represent the data correctly. AEs are trained to preserve as much information as possible when 
input is sent through the encoder and subsequently the decoder[72].  Following the training of 
the AE and the reduction of features to the latent space, a shallow neural network is employed 
to classify the low-dimensional latent space.  

When developing an AE, there are multiple possibilities to explore. The depth of an AE, often 
termed as the number of hidden layers in both the encoder and decoder networks, plays a 
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crucial role. A deeper AE has the potential to learn more intricate representations, but this also 
increases the model's capacity and computational requirements. The optimal depth is 
determined by the specific task, the complexity of the data, or a combination of both factors. 
To achieve the right balance between model complexity and performance, various depths are 
examined. The compressed representation of the input data is expressed through the latent 
layer of an AE, and the dimensions of this representation are contingent on the number of 
nodes in the latent layer. To effectively capture the essential information in the data without 
losing crucial details, the latent layer must have the appropriate number of nodes, a decision 
often influenced by the data's complexity and the desired level of compression. While having 
too many nodes can result in overfitting or ineffective representation, too few nodes can result 
in information loss. In our classification framework, exploring the number of nodes in the 
shallow network is an additional option to be considered. 

When investigating these options, hyperparameters are tuned and the model is choseb using 
the grid search method[73]. This method enables the exploration of various options to identify 
the optimal configuration. 

2) classification with deep network designed from scratch 

In this study, a CNN model is utilized to achieve effective performance in the classification of 
OCT images. The network incorporates convolutional layers with Rectified Linear Unit (ReLU) 
activation functions, pooling, batch normalization, dropout, and fully connected (FC) layers. The 
last FC layer utilizes a Softmax activation function. Filters with size of 5, 4, and 3 are applied in 
various layers throughout the network. The nested-cross validation method is applied to select 
features and tune hyperparameters in CNN through the grid search method. With this 
approach, the classification model is chosen based on the outer fold that gives the maximum 
inner-fold accuracy[74]. The Adam optimizer and binary cross-entropy loss function are 
employed during training. The network architecture is adjusted throughout the training process 
to optimize performance. Due to the imbalanced dataset where the number of MS patients is 
more than HCs, class weight is incorporated during the model training processes. 

3) fine-tuning of pretrained Resnet152v2 network  

Transfer learning (TL) in the context of CNNs is based on the premise that knowledge can be 
transferred at the parametric level. In this approach, pre-trained CNN models exploit the 
parameters of the convolutional layers to address a new task within the medical domain. 
Specifically, in TL with CNN for medical image classification, the task of classifying medical 
images can be accomplished by utilizing the generic features learned from a source task of 
natural image classification, where labels are available in both domains. There exist two 
approaches in TL for leveraging CNN models: the feature extractor approach and the fine-
tuning approach. In the feature extractor approach, the convolutional layers are frozen, 
meaning their parameters are not updated during the model fitting process. Conversely, in the 
fine-tuning approach, the parameters of the convolutional layers are updated and adjusted 
during the model fitting process to adapt to the new task[75].  
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Numerous studies have consistently indicated that deeper models, such as ResNet (Residual 
Network) [76], exhibit superior performance compared to shallower models like VGG[75]. In 
the present study, we specifically investigated the performance of VGG16 and ResNet152V2 
models, both pre-trained on the ImageNet dataset, through a process known as fine-tuning. 
Notably, ResNet152V2 demonstrated the most exceptional performance among the models 
evaluated, and therefore, its results are reported herein. Throughout the training process, the 
network architecture, including the number of nodes in the dense layers, was fine-tuned in 
order to attain optimal performance. 

Figure 3 illustrates the AI models examined in the current study, encompassing the three 
approaches elucidated above.  

 

Figure 3: AI models for classification. (a) Feature extraction with autoencoder and shallow neural network for 

classification. (b) classification with deep network from scratch. (c) Fine-tuning of pretrained ReNet152v2 network 

D. Data Augmentation: 

1) Data augmentation for the first model  

After training the AE and reducing image features to the latent space, data augmentation is 

employed as a strategy to mitigate the risk of overfitting. Two widely utilized techniques for 

data augmentation, extrapolation and interpolation, are employed. Interpolation is the process 

of creating new data points within the range of previously collected data. It is frequently 

employed to generate more samples by interpolating between nearby data points. In contrast, 

extrapolation involves expanding the dataset beyond the current set of data points. This 
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method is used to create samples outside the original data distribution by estimating or 

forecasting values based on patterns or trends that exist beyond the observable data. By 

combining interpolation and extrapolation techniques, data augmentation can effectively 

create new data instances with variations or characteristics similar to the original data.  

2) Image augmentation for the second and third models 

Due to the limited size of our dataset, the likelihood of overfitting is heightened. To address this 
concern, Geometrical transforms such as horizontal and vertical flips, and randomly rotation 
with 20� , width shifting and height shifting with range of 0.1, zooming with range of 0.1 are 
implemented. These techniques aim to augment the dataset, thereby reducing the risk of 
overfitting. 

III. Experimental results: 

A. Performance measures 

Cross-validation, specifically employing a five-fold approach, serves as a means to assess results 
and prevent overfitting. This methodology guarantees that the ultimate outcomes remain 
unaffected by the initial data split. Within each fold, the training set undergoes augmentation, 
and the model is trained with these augmented sets, while the remaining set is reserved for 
testing the model without any augmentation. This process is repeated five times, altering the 
test set on each iteration. The final accuracy is determined by calculating the mean accuracy 
across these five distinct test sets. 

In classification, the most widely adopted metric is accuracy, representing the rate of correct 
classifications. Nonetheless, there are instances, such as dealing with imbalanced datasets, 
where accuracy may not be the optimal choice. To address this, additional metrics such as G-
means, F-measure, recall, and specificity are employed alongside accuracy to effectively handle 
imbalanced classifications[77]. 

The assessment of classification performance relies on the reporting of recall, g-mean, and 
specificity values, serving as quantifiable measures of the predictive capabilities of each model. 
The metrics are defined as follows: 
 
Specificity: measures the ratio of negatives that are recognized correctly. 

����������� 	  
��

��  ��
 

(1) 

Recall: measures the positives ratio that are correctly recognized. 

������ 	  
��

��  ��
 

 

(2) 

The quantities of true positives, false positives, false negatives, and true negatives are denoted 
as TP, FP, FN, and TN, respectively, with TP + TN + FP + FN = n representing the overall number 
of observations.  
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G-means: following recommendations from [78], the geometric mean (G-mean) is determined 
as the product of prediction accuracies for both classes, namely specificity (accuracy on the 
negative samples), and sensitivity (accuracy on the positive samples). A low G-mean value may 
be attributed to inaccurate categorization of the positive samples, even if the negative samples 
are classified correctly[79]. 

����� 	  ������� � �����������  
 

(3) 

B. Validation strategy:  

The nested cross-validation (nCV) technique begins with an initial division of data into outer 

folds, encompassing training and test categories. Following this, each outer training category 

undergoes further division into inner categories dedicated to setting hyperparameters 

(highlighted by the red box in Figure 3). Employing data augmentation and grid search 

techniques, the optimal internal training model is identified and subsequently applied to the 

external test data. The external model parameters, demonstrating a robust correlation with the 

highest accuracy achieved by the internal model parameters, are then chosen as the best 

model parameters[74] (Figure 4).  

 

 

Figure 4: Nested-cross validation. (A) The data splits into outer folds containing train and test data pairs. (B) Outer 

training fold splits into inner folds. (C) Inner training fold augments to avoid overfitting. (D) Using grid search 

method for hyperparameter tuning. (E) Choose the best outer model matches with the best inner model 

parameters.  

C. Interpretability: 
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Despite deep learning showcasing remarkable effectiveness across diverse tasks, particularly in 
image classification, interpretability has consistently presented a challenge for deep neural 
networks[80]. In this investigation, we enhance interpretability in deep learning algorithms 
through the classification process involving both a deep network built from scratch and fine-
tuning of a pre-trained network. To address the inherent black box nature limitation of deep 
neural networks in medical applications, we employ occlusion sensitivity[81] and Gradient-
weighted Class Activation Mapping (Grad-CAM)[82] methods. 

Both occlusion sensitivity and Grad-CAM enhance the interpretability and clarity of deep 

learning networks. Occlusion sensitivity involves systematically blocking portions of the image 

to discern the significance of features, while Grad-CAM visualizes the areas of the image that 

wield the greatest influence in the model's decision-making. These methodologies offer 

valuable insights into comprehending the internal mechanisms of deep learning models, aiding 

in the identification of discriminative regions or features crucial for predictions. 

1) Occlusion sensitivity 

In this methodology, post-model training, a black mask measuring 40×40 pixels is generated 

and systematically applied to images within the test set, effectively traversing the entire 

image. The masked images are then fed into the model, and the resulting test accuracy is 

computed. A decrease in accuracy is expected if occlusion excludes regions containing 

crucial discriminative information. Reconstructing the occlusion with the original image size 

and accuracy values assigned to each pixel's location illustrates interpretability, referred to 

as the heatmap. An interpretability heatmap delineates the localized impact on 

classification, highlighting the significance of each area in relation to the respective class.  

2) Grad-CAM 

Grad-CAM generates a rudimentary localization map that accentuates specific areas in an 
image for concept prediction. This is achieved by leveraging the gradients of a chosen target 
concept as they flow into the concluding convolutional layer[82]. Utilizing the gradient 
information supplied to the final convolutional layer of the CNN, Grad-CAM discerns the 
significance of each neuron in relation to a specific decision[83].   

D. Performance results: 

The investigation involved the combination of various retinal layers through the implemented 

algorithms. In this section, the presented results encompass color images with resolutions of 

60×256×3 and 224×224×3 pixels, where the thickness maps of the mRNFL, GCIP, and INL layers 

are allocated to three respective channels. Additionally, color images with resolutions of 

60×256×3 and 224×224×3 pixels, incorporating the placement of the first three boundaries into 

their corresponding channels, along with grayscale images featuring a resolution of 60×768×1 

pixels obtained by horizontally concatenating thickness maps, and grayscale images with a 

resolution of 60×768×1 pixels acquired through the horizontal concatenation of boundaries, are 
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showcased. The outcomes of all combinations are detailed in Table 3. Initially, classification 

models were trained and tested on the complete dataset, comprising 116 OCT images, 38 HC 

images, and 78 MS images, utilizing 5-fold cross-validation. 

 

 

 

Table 3:  comparison of different models and structures for classification of MS and HCs.  

 
Channel-wise/ 

Mosaic 
size 

Data type 

(Boundary/thickness) 

Balanced-

accuracy 
Sensitivity Specificity g-mean  

AE 

Channel-wise 60×256×3 Thickness 88.2% 92.3% 84.2% 88.1% 

Channel-wise 224×224×3 Thickness 82.9% 94.8% 71.0% 82.1% 

Channel-wise 60×256×3 Boundary 78.3% 83.6% 63.1% 76.8% 

Mosaic 60×768×1 Thickness 84.9% 88.7% 73.6% 84.1% 

Mosaic 60×768×1 Boundary 79.6% 84.4% 65.7% 78.4% 

From 

Scratch 

Channel-wise 60×256×3 Thickness 97.3% 97.4% 97.3% 97.3% 

Channel-wise 224×224×3 Thickness 94.1% 98.7% 92.1% 94.1% 

Channel-wise 60×256×3 Boundary 88.8% 98.7% 78.9% 88.2% 

Mosaic 60×768×1 Thickness 93.4% 97.4% 89.4% 93.3% 

Mosaic 60×768×1 Boundary 94.7% 95.6% 92.1% 94.7% 

Fine-tune 
Channel-wise 224×224×3 Thickness 94.0% 96.1% 89.4% 93.9% 

Channel-wise 224×224×3 Boundary 91.5% 92.2% 89.4% 91.5% 

To evaluate the models' generalization capabilities, the classifiers that underwent training the 

public dataset, consisting of 14 HC and 18 MS samples, were subjected to testing on the local 

dataset, which includes 24 HC and 60 MS samples. Moreover, the local dataset was utilized for 

training purposes, while the public dataset was employed for testing. The corresponding 

outcomes are detailed in Table 4. 

Table 4. generalizability of the methods by training the on the public dataset and testing on the local dataset and 

vice versa  

AE 

Train data Test data Balanced-accuracy Sensitivity Specificity g-mean 

Public Local 84.5% 83.3% 85.7% 84.5% 

Local Public 79.3% 94.4% 64.2% 77.9% 

From scratch 
Public Local 78.9% 83.3% 85.7% 78.6% 

Local Public 80.5% 78.1% 100% 78.1% 

Fine-tune 
Public Local 66.2% 70.0% 62.5% 66.1% 

Local Public 66.6% 83.3% 50% 64.5% 

 

Visual interpretability 

The visual interpretability is depicted through the presentation of occlusion sensitivity and 
Grad-CAM heatmaps, as shown in Figure 5. To calculate the overlap of the heatmap and 
thickness maps, the formula heatmap × α + thickness map is utilized, with α set to 0.2. 
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For the proposed CNN network from scratch and fine-tuning with ResNet152V2, the visual 
interpretability is showcased through heatmap visualization methods, such as occlusion 
sensitivity and Grad-CAM. This is demonstrated in both channel-wise combination and the 
mosaic arrangement of images as input. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
Figure 5: Visual Interpretability on Thickness Maps of mRNFL, GCIP, and INL Using Occlusion Sensitivity 

and Grad-CAM Methods. (a) Thickness maps in a sample from the MS dataset (x and y axes in 

millimeters). (b) Occlusion sensitivity heat map in MS and HC classification with the proposed CNN model 

trained from scratch and channel-wise combination of thickness maps. (c) Occlusion sensitivity heat map 

using the ResNet152V2 model and channel-wise combination of thickness maps. (d) Grad-CAM heat map 
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with the proposed CNN model trained from scratch and mosaic of thickness maps. (e) Occlusion 

sensitivity heat map with the proposed CNN model trained from scratch and mosaic of thickness maps 

 

 

IV. Discussion 

In this work, we have explored a diverse array of AI models, encompassing (1) utilizing AE for 
feature extraction and shallow network for classification, (2) developing deep network from 
scratch, and (3) fine-tuning of pre-trained network for the purpose of classifying retinal OCT 
scans for discrimination of MS.  

We additionally explored various input data, encompassing the thickness and surface of diverse 
retinal layers, in order to identify the most representative information for distinguishing MS. 
Furthermore, we examined the combination of multiple inputs through channel-wise 
combinations and mosaicing to determine an improved merging model. 

The optimal topology for classification, employing the suggested deep network developed from 
scratch, was identified when the inputs comprised a channel-wise combination of the 
thicknesses of the mRNFL, GCIP, and INL retinal layers.  

The reason for this outcome can be expressed that by combining the channels of images, the 
interconnection between the channels is established within the network. Given that neural-
cellular, the layers are not independent of each other, by merging the channels of images, we 
intend for the network to establish connections between the layers, resulting in a better 
outcome. 

As regards the analysis, it was observed that the inner retinal layers (mRNFL, GCIP, and INL) in 
the macular region exhibited the most significant impact, thereby demonstrating the highest 
capability to differentiate between control subjects and patients. 

Utilizing a size of 60×256×3 among the employed channel wise combination combination, the 
proposed deep network developed from scratch yielded a balanced accuracy of 97.3%, 
specificity of 97.35%, recall of 97.4%, and a g-mean of 97.3% in discriminating between MS and 
HC OCTs. The execution time of an experiment for this model using Google Colaboratory, was 
calculated as 0.008 ± 0.007 seconds. This value was obtained by running the experiment five 
times, calculating the mean and standard deviation.   

To prevent overfitting, data augmentation was employed in all networks. Moreover, patient-
wise cross-validation was implemented in the training and testing datasets to avoid the leakage 
of testing data information into the training dataset. The study evaluated the generalizability of 
the proposed CNN model by training it on a local dataset and subsequently testing it on an 
independent Public dataset obtained from a new device in another country, and vice versa. The 
interpretability of the models was demonstrated through two approaches, namely occlusion 
sensitivity and Grad-CAM, to illustrate the contribution of regional layers to the classification 
performance. The heat maps generated by GCIP and INL revealed that the temporal and central 
regions had a greater impact on the classification of MS and HCs, as depicted in Figure 5 that 
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was also achieved using machine learning algorithms in our previous study[36]. Therefore, the 
information from GCIP and INL layers in segregating MS and HC data, consistent with prior 
studies [22,24], was observed in interpretable outcomes of deep learning-based networks as 
well. Moreover, the thickness of the mRNFL was found to have a lesser impact on distinguishing 
MS disease when compared to GCIP.  

Grad-CAM and occlusion sensitivity methods are common techniques for interpreting deep 
learning models. Despite sharing the same goal, they serve different purposes. Grad-CAM 
identifies crucial areas in an image by computing gradients of the target class relative to the 
feature maps in the network. The resulting heat map illustrates which portion of the image 
significantly influences the model's prediction. On the other hand, the occlusion method 
systematically obstructs various regions of an input image and observes the impact on the 
model's output. By assessing the change in the model's prediction when different parts of the 
image are occluded, this method offers insights into the significance of various image regions. 

To address age as a potential confounding variable between the MS and control groups, 
stochastic age-matching was applied to the test dataset before each model run. For every MS 
eye, the control eye with the closest age was included in the age-matched test dataset. This 
age-matching process was iterated five times for each model, and the outcomes were 
consolidated. This approach led to a well-balanced test dataset with no noteworthy differences 
in age between the MS and control groups. 

The findings indicate that each protocol has its own merits depending on the dataset size. 
Specifically, for smaller datasets, the combination of feature extraction using AE and a shallow 
neural network demonstrates superior performance. On the other hand, deep learning-based 
methods provide interpretability in the results.  

Table 6 shows a summary of the previous studies on ML and DL algorithms in distinguishing MS 
and HCs.  

Table 6. Summary of previous studies. 

Previous works Number of datasets 
Input retinal 

layers 
Performance metrics 

The most 

discriminant retinal 

layer 

Classification method 

Garcia-Martin 

et al. [29] 2012 
115 MS, 115 HC Peripapillary area Specificity=95% pRNFL 

Linear Discriminant 

Function (LDF) 

Garcia-Martin 

et al. [30] 

2013 

106 MS, 115 HC Peripapillary area AUC=0.945 pRNFL ANN 

Garcia-Martin 

et al. [31] 

2015 

112 MS, 105 HC 
Peripapillary 

Area 

Recall=89.3% 

Specificity=87.6% 

 

pRNFL ANN 

Palomar et al. 

[32] 

2019 

80 MS, 180 HC 

Peripapillary, 

macular 

and extended 

(between macula 

and papilla) areas 

Decision tree in the 

macular area: 

AUC=0.959 

In the extended area: 

AUC=0.998 

pRNFL 
Decision tree, ANN, 

SVM 

Cavaliere et al. 48 MS, Peripapillary and Recall=89% GCL++ SVM 
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[27] 

2019 

48 HC macular areas Specificity=92% 

 

and nasal quadrant 

of the outer and 

inner ring in pRNFL 

Garcia-Martin 

et al. [28] 

2021 

48 MS, 

48 HC 
Macular area 

Recall=98% 

Specificity=98% 

 

GCL++ 
SVM, 

ANN 

Zhang et al. 

2020 

58 MS, 

63 HC 
Macular area 

Recall=64% 

Specificity=94% 

 

GCIPL 

logistic regression 

(LR), logistic 

regression regularized 

with the elastic net 

penalty (LR-EN), SVM 

Montolio et al. 

[34] 

2021 

108 MS, 

104 HC 

Peripapillary and 

macular areas 

EC: 

Recall=87% 

Specificity=88.5% 

LSTM: 

Recall=81.1% 

Specificity=82.2% 

 

pRNFL 

MLR), SVM, decision 

tree, k-NN, NB, EC, 

LSTM recurrent neural 

network 

López-Dorado 

et al. 

[61] 

2022 

48 MS, 

48 HC 
Macular area 

Specificity = 100% 

Recall=100% 

 

GCL++, whole retina 

GCL+ (Cohen 

distance) 

Augmentation with 

GAN and classification 

with CNN 

Khodabandeh 

et al. [36] 2023 

Train: 106 MS,422 HC 

(Charite dataset) 

Test: 67 MS, 45 HC 

(Isfahan dataset) 

Macular area 

Precision = 89% 

Recall =88% 

 

GCIPL and INL SVM, RF, and ANN 

Garcia-Martin 

et al. [84] 

 2023 

100 MS, 

111 HC 

Posterior pole 

grid 8×8 and zone 

grouping 

Recall = 90.90 % 

Specificity = 95% 
RNFL and GCL 

Gradient boosting, RF, 

Explainable boosting 

machine 

Garcia-Martin 

et al. [85] 

2023 

79 MS, 

69 HC 

Inter-eye 

difference using 

posterior pole 

protocol  

Recall = 86%  

Specificity = 90 % 
RNFL, GCL, and IPL 

SVM- RFE- Leave-One-

Out cross validation 

(SVM-RFE-LOOCV) 

 

Previous studies lacked direct utilization of images as input for models, and there was a scarcity 

of deep learning methodologies employed in those investigations. The results of this study 

cannot be directly compared to previous works due to the unavailability of codes and datasets 

in those studies.  It is important to note that this study did not consider the presence of optic 

neuritis (ON), and therefore, MS patients with and without ON were combined for 

classification. Consequently, the lower performance compared to studies considering MS with 

ON is reasonable, as eyes without ON exhibit less thinning and are less distinguishable from 

healthy controls. Finally, some previous studies incorporated pRNFL data as input for 

classification, resulting in higher performance compared to the limited focus on the macular 

region in this study.  
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This study has several limitations. Firstly, it did not consider the history of ON, a prevalent 
clinical symptom of MS. Secondly, longitudinal follow-up of patients was not conducted, which 
could aid in the early diagnosis of the disease. Thirdly, the models were trained using data from 
a specific device, and it was not evaluated if the models are generalizable to other devices, such 
as TOPCON or ZEISS. To improve the model's ability to interact with new datasets, additional 
data from different devices should be included in the training dataset in future studies. We 
anticipate that addressing these limitations will lead to better results and a clearer 
demonstration of the generalizability of the proposed model.  
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