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Abstract 

Although rare neurodevelopmental conditions have a large Mendelian component, common 

genetic variants also contribute to risk. However, little is known about how this polygenic risk is 

distributed among patients with these conditions and their parents, its interplay with rare 

variants, and whether parents’ polygenic background contributes to their children’s risk beyond 

the direct effect of variants transmitted to the child (i.e. via indirect genetic effects potentially 

mediated through the prenatal environment or ‘genetic nurture’). Here, we addressed these 

questions using genetic data from 11,573 patients with rare neurodevelopmental conditions, 

9,128 of their parents and 26,869 controls. Common variants explained ~10% of variance in 

overall risk. Patients with a monogenic diagnosis had significantly less polygenic risk than those 

without, supporting a liability threshold model, while both genetically undiagnosed patients and 

diagnosed patients with affected parents had significantly more risk than controls. In a trio-based 

model, using a polygenic score for neurodevelopmental conditions, the transmitted but not the 

non-transmitted parental alleles were associated with risk, indicating a direct genetic effect. In 

contrast, we observed no direct genetic effect of polygenic scores for educational attainment 

and cognitive performance, but saw a significant correlation between the child’s risk and non-

transmitted alleles in the parents, potentially due to indirect genetic effects and/or parental 

assortment for these traits. Indeed, as expected under parental assortment, we show that 
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common variant predisposition for neurodevelopmental conditions is correlated with the rare 

variant component of risk. Our findings thus suggest that future studies should investigate the 

possible role and nature of indirect genetic effects on rare neurodevelopmental conditions, and 

consider the contribution of common and rare variants simultaneously when studying cognition-

related phenotypes. 

Main 

Rare conditions affect 3.5%-6% of the global population1 and of these, the majority involve the 

central nervous system2. While genomic sequencing has revolutionized the diagnosis of rare 

neurodevelopmental conditions, which typically include intellectual disability and/or 

developmental delay, a monogenic diagnosis is only identified for about 30-40% of patients3–5. 

Common variants also contribute to risk for rare neurodevelopmental conditions6,7. In particular, 

this common variant contribution overlaps with polygenic risk for schizophrenia and for 

predisposition to reduced educational attainment and cognitive performance6. Accordingly, rare 

damaging variants in constrained genes, which play a major role in risk of rare 

neurodevelopmental conditions, are also associated with reduced educational attainment and 

cognitive performance and increased risk of mental health conditions in UK Biobank 8–12. In this 

work, we seek to better understand the nature of common variant risk for rare 

neurodevelopmental conditions, its interplay with rare variants and its distribution amongst 

different patients and their parents.  

 

We begin by leveraging new, larger genome-wide association studies (GWASs) than were 

previously available6 to explore the extent to which common variant effects on rare 

neurodevelopmental conditions are correlated with their effects on a broad range of mental 

health conditions. This is motivated by findings that some psychiatric conditions have a partial 

neurodevelopmental origin 13–15, and that people with rare neurodevelopmental conditions16, as 

well as their relatives 17–19, are more likely to have psychiatric conditions. Furthermore, some of 

this overlap appears to be driven by certain rare copy number variants with variable 

expressivity20–22, suggesting some shared etiology between psychiatric and rare 

neurodevelopmental conditions. Here we explore whether shared common variant effects may 

also contribute, and whether this is independent of the genetic overlap between these conditions 

and cognitive traits. 

 

Little is known about the interplay between rare and common variants in the context of rare 

neurodevelopmental conditions, and dissecting this will be key to fully understanding their 

genetic architecture and improving genetic diagnosis and risk prediction. Here we address two 

hypotheses in this space, testing the liability threshold model and whether common variants 

modify the penetrance of rare variants. The liability threshold model predicts that an individual 

will develop a condition once the sum of independent genetic and environmental risk factors 

exceeds some threshold23–26. Under this model, one might expect that patients with 

neurodevelopmental conditions who have a highly penetrant damaging variant would require, 

on average, less polygenic load to cross a diagnostic threshold than those without such variants 

(Extended Data Figure 1). We previously saw no significant difference in polygenic scores 

between patients with versus without a monogenic diagnosis6, but in this work, we anticipated 

that increased sample size and improved diagnostic rate5,27 might improve power. Since rare 

variants associated with neurodevelopmental conditions appear to act additively with polygenic 
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scores in affecting cognitive ability in UK Biobank9,10, we hypothesized that polygenic 

background would modify the penetrance of these inherited rare variants in families with 

neurodevelopmental conditions, as it does, for example, in the context of BRCA1/2 variants 

predisposing to breast cancer28.  

 

Finally, we explore the extent to which common variants predisposing to rare 

neurodevelopmental conditions act directly on the affected individuals carrying them (“direct 

genetic effects”). Many studies have shown that genetic associations between common genetic 

variants and educational and cognitive phenotypes shrink when estimated within families 29–33. 

One possible explanation for this is that variants associated with these traits have indirect 

genetic effects, i.e. they have some effect on the parents, and this then affects the offspring 

through the family environment 29,33–35. These indirect genetic effects are under-explored in the 

context of rare diseases, but we hypothesized that they may play a role in rare 

neurodevelopmental conditions given the genetic overlap with educational attainment. 

 

We address these questions using two large UK-based cohorts of individuals with rare 

neurodevelopmental conditions, the Deciphering Developmental Disorders study (DDD; 

N=7,955 patients with genotype array and exome sequence data) and the Genomics England 

100,000 Genomes project (GEL; N=3,618 patients with genome sequence data), combined with 

several control cohorts (Supplementary Table 1). We have included a “Frequently Asked 

Questions” document in less technical language to explain the study, and to address some 

possible misunderstandings. 

Results 

GWAS meta-analysis for neurodevelopmental conditions reveals novel 

genetic correlations with other brain-related traits and conditions 

We first sought to replicate the key findings from our previous GWAS for neurodevelopmental 

conditions6 in a large independent cohort. We identified a subset of GEL rare disease families 

with neurodevelopmental conditions and removed families overlapping with the DDD study 

(Methods). Almost all probands with neurodevelopmental conditions in GEL (97%) had 

intellectual disability or global developmental delay, versus 88% of those in DDD. The cohorts 

were broadly phenotypically similar (Extended Data Figure 2; Supplementary Note 1). To 

avoid spurious results due to population stratification, all genetic analyses were conducted in a 

genetically homogeneous subset of individuals with genetic similarity to British individuals from 

the 1000 Genomes Project 36, henceforth referred to as having GBR ancestry. 

 

When comparing 3,618 unrelated patients with neurodevelopmental conditions to 13,667 

unrelated controls within GEL, polygenic scores (PGSs) for educational attainment37, cognitive 

performance37, and schizophrenia38 each explained a significant but small amount of variance 

on the liability scale (<1%; logistic regression p<3.9x10-4). This was similar to that observed 

when comparing 6,397 unrelated patients from DDD with 9,270 independent unrelated controls 

(Supplementary Table 2). The polygenic score for neurodevelopmental conditions derived 

from our GWAS in DDD6 was also associated with neurodevelopmental conditions within GEL 

(p=1.1x10-6, R2=0.11% on the liability scale; Supplementary Table 2). 
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These results suggested that the polygenic contribution to rare neurodevelopmental conditions 

was similar between these two cohorts. Thus, to increase power to study common variant effects 

on these conditions, we conducted a GWAS in GEL, then meta-analyzed the results with the 

DDD GWAS (Extended Data Figure 3; Supplementary Data 1, 2 and 3). No single nucleotide 

polymorphism (SNP) passed genome-wide significance (p<5x10-8) in either DDD or GEL alone, 

but in the meta-analysis, six SNPs were significant in two independent loci on chromosomes 15 

and 22, respectively (lead SNPs: rs113446150, p=4.0x10-8; rs2284084, p=1.7x10-8; 

Supplementary Note 2). Variants at one of these loci are associated with cognitive traits39,40. 

The fraction of phenotypic variance explained by genome-wide common variants - the SNP 

heritability - was estimated at between 3.7% (95% CI: 1.7–5.7%) and 11.2% (8.5–13.8%), 

depending on the method used (Supplementary Table 3).  

 

To test for possible shared genetic contributors to rare neurodevelopmental conditions and other 

brain-related traits and conditions, we calculated genetic correlations (rg) between them using 

our own and published GWAS meta-analyses. We observed the expected negative genetic 

correlations between neurodevelopmental conditions and educational attainment 37 (EA; rg=-

0.65 [-0.84, -0.47], p=4.9x10-12) and cognitive performance 37 (CP; rg=-0.56 [-0.73, -0.39], 

p=1.6x10-10), stronger in magnitude than those observed with the DDD GWAS alone, and a 

positive genetic correlation with schizophrenia38 (SCZ; rg=0.27 [0.13, 0.40], p=9.7x10-5) (Figure 

1A; Supplementary Table 4). Additionally, we detected significant genetic correlations 

(p<0.0038=0.05/13 traits) with several other mental health conditions including Attention-Deficit 

Hyperactive Disorder (ADHD)41 (rg=0.46 [0.28, 0.64], p=5.2x10-7), and with the non-cognitive 

component of educational attainment derived from GWAS-by-subtraction (NonCogEA) 42 (rg=-

0.37 [-0.52, -0.22], p=1.2x10-6) (Figure 1A). We hypothesized that the genetic correlations with 

mental health conditions could be explained at least in part by their relationship with educational 

attainment42,43, given the strong negative genetic correlation between that and 

neurodevelopmental conditions. To explore this, we used Genomic Structural Equation 

Modelling 44 (GenomicSEM) to re-estimate the genetic correlations while conditioning on the 

educational attainment GWAS summary statistics (Figure 1B). This significantly attenuated the 

genetic correlation with ADHD (rg=0.14 [-0.06, 0.34], p=0.18; two-sided z-test p=0.021 

compared to unconditional rg), but the genetic correlations with the other conditions did not 

significantly change.  

 

These results confirmed that common variants collectively associate with rare 

neurodevelopmental conditions in two independent cohorts, and that these common variant 

effects are shared with other brain-related conditions and cognitive traits. To further explore the 

contribution of polygenic background, below we used polygenic scores for neurodevelopmental 

conditions from the DDD-derived GWAS6 (PGSNDC,DDD) and for the most significantly genetically 

correlated traits (PGSEA, PGSCP, PGSNonCogEA, PGSSCZ) for which much larger GWASs and thus 

more powerful polygenic scores are available. All polygenic scores were corrected for principal 

components and standardized such that the controls from GEL and the UK Household 

Longitudinal Study have mean 0 and variance 1, except PGSNDC,DDD which was standardized in 

the GEL controls alone. We note that several of these polygenic scores are significantly 

correlated with each other (Supplementary Figure 1), so, in the analyses below, our correction 

for multiples of five tests is conservative.  
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Figure 1 

Genetic correlations between neurodevelopmental conditions (NDCs) and other brain-related 

traits and conditions. A) shows the estimates from Linkage Disequilibrium Score Regression for the 

DDD GWAS (orange) and the meta-analysis of neurodevelopmental conditions between DDD and GEL 

(blue). B) shows the estimates for the meta-analysis after conditioning on the GWAS summary statistics 

for educational attainment (green) or cognitive performance (purple) using GenomicSEM. Error bars show 

95% confidence intervals.  

Probands with monogenic diagnoses have less polygenic risk 

Since 36% of patients in these cohorts have a molecular monogenic diagnosis (including de 

novo, recessive, X-linked or inherited dominant diagnoses), we next tested whether these 

diagnosed patients differed from undiagnosed patients in terms of their polygenic risk. 

Consistent with the liability threshold model (Extended Data Figure 1), we observed 
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significantly higher PGSEA (DDD and GEL combined; average difference Δ=0.12 SD, two-sided 

t-test p=3.0x10-9), PGSCP (Δ=0.068 SD, p=1.2x10-3), and PGSNonCogEA (Δ=0.085 SD, p=3.7x10-

5) in probands with versus without a monogenic diagnosis (all passing Bonferroni significance 

i.e. p<0.05/5; Figure 2A). Despite this, we observed that for all polygenic scores except for 

PGSNonCogEA, the diagnosed probands still had significantly more polygenic risk than the controls 

(p<0.05/5; Figure 2A; Supplementary Table 5). Sensitivity analyses suggest that this 

observation is not driven by ascertainment bias in the controls, although the effect size is 

sensitive to the choice of control cohort, particularly for PGSEA (Supplementary Note 3, 

Extended Data Figure 4, Extended Data Figure 5, Supplementary Table 6). The difference 

between the diagnosed probands and controls is driven by those with affected parents (i.e. 

those reported by clinicians to show a similar phenotype to their child), who had significantly 

more polygenic risk for several traits than those with unaffected parents (e.g. PGSEA Δ=0.26 SD, 

p=3.4x10-3) (Extended Data Figure 4; Supplementary Table 5). However, amongst 

undiagnosed probands, both those with affected parents and with unaffected parents showed 

significantly more polygenic risk than controls (Extended Data Figure 4, Supplementary Table 

7). 

 

We next explored whether the difference in polygenic risk between diagnosed and undiagnosed 

probands was related to various technical, clinical and prenatal factors that are associated with 

receiving a monogenic diagnosis in DDD5 (Figure 2B). For example, diagnosed probands were 

more likely to be in a trio (probably due to the ability to distinguish de novo from inherited 

variants) and to have severe intellectual disability, and less likely to have been born prematurely 

(a known epidemiological risk factor for neurodevelopmental conditions45–47) (Supplementary 

Table 8). We hypothesized that some of these associations might be confounding, or be 

confounded by the association between PGSEA and diagnostic status, since, for example, 

single-parent households and premature birth are associated with higher levels of 

deprivation/lower parental educational attainment48,49. Indeed, we observed that the probands’ 

PGSEA was significantly associated with several of these factors (Figure 2C): a higher chance 

of being in a trio and having more severe intellectual disability, and a lower chance of being born 

prematurely and having any affected first-degree relatives (Extended Data Figure 6). However, 

it was not associated with sex (Supplementary Note 4; Extended Data Figure 7) or maternal 

diabetes (Figure 2C; Supplementary Table 8). Controlling for PGSEA minimally altered the 

association between these factors and diagnostic status (Figure 2B). Only a small part of the 

association between PGSEA and diagnostic status was mediated by the effects of trio status 

(11%, 95% CI: 6.2–20.8%) and prematurity (3.1%, 95% CI: 0.4–7.3%). Thus, the observation 

that diagnosed patients tend to have lower polygenic risk than undiagnosed probably largely 

reflects the liability threshold model under which both common and rare variants contribute to 

risk (Extended Data Figure 1). 
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Figure 2  

 
Disentangling polygenic score associations with diagnostic status. A) Average polygenic scores in 

probands with (“diagnosed”; N=3,821; dark blue) versus without (“undiagnosed; N=6,345; red) a 

monogenic diagnosis, from DDD and GEL combined. Subsets of diagnosed probands from trios are in 

light blue. The polygenic scores have been standardized such that the controls (UK Household 

Longitudinal Study+GEL for all polygenic scores except PGSNDD,DDD, for which only GEL controls were 

used) have mean 0 and variance 1. See Supplementary Table 5 for results of statistical tests comparing 

the various groups. See also Extended Data Figure 4. B) Associations between various factors and 

diagnostic status within the full DDD cohort5, with or without correcting for the proband’s PGSEA, 

calculated within GBR-ancestry probands with neurodevelopmental conditions from DDD using logistic 

regression (see Supplementary Table 8). C) Associations between these factors and DDD probands’, 

mothers’ or fathers’ PGSEA, assessed via linear regression. Two asterisks indicate that the association 

passed Bonferroni correction for seven factors. Error bars show 95% confidence intervals. FROH: the 

fraction of the genome in runs of homozygosity; the expected value is 0.0625 for individuals whose 

parents are first cousins. EA: educational attainment; CP: cognitive performance; NonCogEA: the non-

cognitive component of EA42; SCZ: schizophrenia; NDC,DDD: neurodevelopmental conditions, with the 

GWAS conducted in DDD versus the UK Household Longitudinal Study, and the polygenic score tested 

only in samples excluded from the GWAS (GEL and DDD Omni chip).  

Limited evidence for over-transmission of polygenic risk from unaffected 

parents to probands 

Common variants are inherited from parents, and most of the parents in our sample are reported 

by clinicians to be clinically unaffected (89.2% in DDD and 95.4% in GEL, although the clinical 

annotation of parental affected status may be imperfect). Given this, and results in autism50, we 
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hypothesized that probands without monogenic diagnoses inherit higher common variant risk 

for neurodevelopmental conditions from unaffected parents than one would expect given their 

parents’ mean risk. Applying the polygenic transmission disequilibrium test (pTDT)50 to 

undiagnosed trios with unaffected parents (Figure 3A) (1,343 in GEL plus 1,523 in DDD), we 

saw nominally significant over-transmission of PGSNDC,DDD in 1,567 families not included in the 

original GWAS (pTDT deviation = 0.062; paired t-test p=0.014). This over-transmission was 

significant in females (pTDT deviation = 0.10, p=0.0078 in 589 trios) but not in males (pTDT 

deviation = 0.036, p=0.27 in 978 trios) (Extended Data Figure 7C; Supplementary Note 4). 

However, we saw no significant transmission disequilibrium for the other polygenic scores 

(paired t-test p>0.05), in either sex or in both sexes combined. Given the known over-

transmission of PGSEA to autistic individuals50, we excluded autistic individuals from our sample 

and repeated the pTDT, but conclusions were unchanged (Supplementary Figure 2). When 

focusing on probands with a monogenic genetic diagnosis, we saw no significant transmission 

distortion for any polygenic score tested (Supplementary Figure 3). 

 

To put the pTDT results in context, we compared average polygenic scores between unaffected 

parents of undiagnosed patients and controls (Figure 3B; Supplementary Table 7). For all five 

polygenic scores tested, the parents had more polygenic risk than controls (two-sided t-test 

p<5.2x10-6 for all polygenic scores except PGSSCZ which had p=0.0093). Given this observation 

and the results from the pTDT, we conclude that risk for neurodevelopmental conditions is 

affected both by familial polygenic background, or factors correlated with it, and by polygenic 

risk (specifically, PGSNDC,DDD) that is over-transmitted from unaffected parents to affected 

children. 

Figure 3 

 
Polygenic background in parents of patients with neurodevelopmental conditions. A) Polygenic 

transmission disequilibrium test (pTDT) in undiagnosed probands with unaffected parents. We tested if 

probands’ polygenic score deviated from mean parental polygenic score in trios from GEL (N=1,343) and 

DDD (N=1,523, or N=224 for testing PGSNDC,DDD). Plotted is the mean pTDT deviation (difference between 

the child’s polygenic score and the mean parental polygenic score, in units of the SD of the latter), with 

error bars showing 95% confidence intervals. B) Mean polygenic score difference from control samples 

(GEL+UK Household Longitudinal Study, or GEL alone when testing PGSNDC,DDD). This includes only the 

samples in the trios used in the pTDT analysis. Error bars indicate 95% confidence intervals estimated 

from two-sided t-tests. See also Extended Data Figure 4 and Supplementary Table 7. 
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Non-transmitted common alleles in unaffected parents are associated with 

their children’s risk 

We next explored one way in which familial polygenic background might affect children's risk of 

neurodevelopmental conditions, namely indirect genetic effects, i.e. effects of alleles in parents 

on parental phenotypes that affect their offspring’s risk through the family environment. Indirect 

genetic effects have been argued to explain around ~30-45% of the association between 

polygenic predictors of educational attainment and school grades33,51 and educational 

attainment29,40,52, although these inferences have been contested as confounded by parental 

assortment and population stratification51,53. To investigate the possible role of indirect genetic 

effects in risk of neurodevelopmental conditions, we compared 2,866 affected trio probands 

whose parents are unaffected with 4,804 control trios from two UK birth cohorts (N=3,932 trios) 

and from GEL (N=872 trios without neurodevelopmental conditions). Using logistic regression, 

we tested whether the children’s polygenic scores for traits related to neurodevelopmental 

conditions were significantly associated with case status (“proband only” model), and whether 

this held after conditioning on the parents’ polygenic scores (i.e. including all three trio members’ 

polygenic scores as covariates in the “trio model”)54 (Figure 4). The idea of this model is to 

isolate the environmentally-mediated portion of polygenic risk in the parents from the direct 

effects of alleles transmitted to their children. Following Young et al.31, we refer to the 

coefficients on the parental polygenic scores in the trio model as the “non-transmitted 

coefficients”, since they are mathematically equivalent to the coefficients on the polygenic score 

constructed from the non-transmitted alleles in a joint regression with the proband polygenic 

score (Methods).  

Figure 4 

 
Regressions comparing undiagnosed probands with neurodevelopmental conditions to controls, 

with and without controlling for parental PGSs. The plot shows effect sizes of PGSs on case/control 

status, testing either the child’s PGS alone (“proband only”) amongst trio probands, or while additionally 

controlling for the parents’ PGSs (“trio model”). These were obtained from a logistic regression comparing 

undiagnosed proband with neurodevelopmental conditions from 2,866 trios in which parents are 

unaffected with 4,804 control trios from GEL (N=872), the Avon Longitudinal Study of Children and 
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Parents (N=1,434) and the Millennium Cohort Study (N=2,498). Error bars indicate 95% confidence 

intervals. 

 

For PGSEA, PGSCP, and PGSNonCogEA, we found that undiagnosed probands’ polygenic scores 

were no longer significantly associated with having a neurodevelopmental condition after 

conditioning on their parents’ polygenic scores in the trio model (implying limited or no direct 

genetic effects), whereas the non-transmitted coefficients were highly significant (Figure 4). 

This result held for PGSEA and PGSNonCogEA when analyzing trios with versus without 

neurodevelopmental conditions from GEL alone, and when using different combinations of 

control cohorts (Supplementary Figure 4); for PGSCP, results from these sensitivity analyses 

were more equivocal, but no evidence of direct genetic effects was seen. This finding could 

imply that there are aspects of the environment — including the prenatal environment — that 

are correlated with these non-transmitted alleles and that affect risk of neurodevelopmental 

conditions, including genetically-influenced parental phenotypes. However, our observations 

could also be due to the effects of parental assortment (i.e. phenotypic correlation between 

partners), which we discuss further below.  

 

For PGSNDC,DDD, we found that the probands’ polygenic scores were still nominally significantly 

associated with having a neurodevelopmental condition after controlling for their parents’ 

polygenic scores in the trio model (Figure 4). This implies that there is a direct genetic effect of 

PGSNDC,DDD on the probands’ risk of neurodevelopmental conditions, consistent with the over-

transmission observed in Figure 3A. For schizophrenia, we saw no significant effect of the 

probands’ PGSSCZ (p=0.089) in the trio model, whereas the mothers’ PGSSCZ was significant 

(p=8.6x10-3). Thus, in summary, there is evidence for direct genetic effects of the polygenic 

score for rare neurodevelopmental conditions, but not for polygenic scores for related traits. 

Exploring the role of prenatal factors 

We explored whether prenatal factors might mediate the effects of non-transmitted parental 

alleles on risk of neurodevelopmental conditions (Supplementary Note 5). Preterm delivery 

(i.e. giving birth prematurely)55, which is a risk factor for neurodevelopmental conditions in the 

offspring45–47, showed significant genetic correlations with lower educational attainment (rg=-

0.30 [-0.39, -0.21], p=2.3x10-10), mirroring the epidemiological association56, and with 

neurodevelopmental conditions (rg=0.58 [0.18, 0.97], p=0.004) (Extended Data Figure 8A, 

Supplementary Table 9). Premature birth was also associated with lower PGSEA in DDD 

(Extended Data Figure 8B). In theory, the genetic correlation between educational attainment 

and premature delivery could reflect a causal effect of lower educational attainment on 

premature birth, and/or a causal effect of premature birth on lower educational attainment. Using 

Mendelian randomization, we found some evidence that lower educational attainment causally 

increases the risk of giving birth prematurely and of neurodevelopmental conditions (p=1.5x10-

5 and p=6.5x10-19 respectively, using the inverse variance-weighted method; Extended Data 

Figure 9; Supplementary Note 5). The fact that the neurodevelopmental conditions of the kind 

studied in this paper are, by definition, childhood-onset, implies that individuals’ own educational 

attainment is unlikely to causally influence their risk of developing a condition; instead, our 

finding of a causal effect of educational attainment on these conditions is more likely to reflect 

a causal effect of parents’ educational attainment on their children’s risk, consistent with the 

presence of indirect genetic effects. However, we did not find significant evidence that 

prematurity explained the association between neurodevelopmental conditions and non-
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transmitted common variants in the parents that are associated with educational attainment 

(Supplementary Note 5; Supplementary Figure 5). 

Parental assortment obscures the true nature of common variant effects 

Another factor that may contribute to the significant correlation between non-transmitted alleles 

in parents and neurodevelopmental conditions in their children is parental assortment, the 

phenomenon whereby people are more likely to choose partners with similar traits to 

themselves. Parental assortment is known to be particularly strong for educational attainment 

and cognitive ability, with estimates of phenotypic correlation between spouses ranging from 

0.25 to 0.657–64. It is also observed for psychiatric conditions63,65–67, including in parents of autistic 

individuals and of individuals with neurodevelopmental conditions due to the 16p12.1 deletion68. 

One consequence of parental assortment is that it induces a correlation between alleles that act 

in the same direction on a trait, both between parents and, in their descendents, within and 

between loci57. Thus, parental assortment on cognitive ability or correlated traits (e.g. 

educational attainment) would be expected to lead to individuals with inherited rare variants 

associated with reduced cognitive ability8,9,12,69 also having a polygenic background of common 

variants associated with reduced cognitive ability57,68. In the context of our polygenic score 

analyses in Figure 4, in the proband-only model, the proband’s polygenic score would 

statistically capture (‘tag’) the correlated effects of these rare variants (which causally impact 

neurodevelopmental conditions69,70). However, in the trio model, the proband’s polygenic score 

would no longer be correlated with the rare variant component after conditioning on the parents’ 

polygenic scores, because the rare and common variant components segregate approximately 

independently within-family; instead, this correlation with the rare variant component would be 

reflected by the non-transmitted coefficients on the parents’ polygenic scores53.  

 

To explore this potential genetic consequence of parental assortment in our cohorts, we tested 

whether the common and rare variant components contributing risk of neurodevelopmental 

conditions are indeed correlated. From the sequencing data in DDD and GEL, we extracted rare 

(MAF<1x10-4) protein-truncating variants (PTVs) and damaging missense variants in genes 

intolerant of loss-of-function (LoF) variation (“constrained genes”), which are associated with 

reduced cognitive ability9 and risk of neurodevelopmental conditions69,70. Consistent with the 

effects of parental assortment, amongst unaffected parents of probands with 

neurodevelopmental conditions, we observed that the number of rare damaging coding variants 

in constrained genes (the “rare variant burden score”, RVBS) in one parent was significantly 

negatively correlated with the other parent’s PGSEA (r=-0.065, p=5.5x10-9), PGSCP (r=-0.036, 

p=1.4x10-3) and PGSNonCogEA (r=-0.046, p=4.3x10-5) (Figure 5), after correcting for genetic 

principal components. As expected, a similar correlation was seen within the probands 

themselves (Figure 5), regardless of whether including all probands, undiagnosed probands, or 

probands with de novo diagnoses, and if restricting RVBS to haploinsufficient genes associated 

with developmental disorders (Supplementary Figure 6). We also saw a similar result amongst 

control children from the Millennium Cohort Study, including after applying weights to adjust for 

non-random sampling and attrition in that cohort, indicating that this correlation is not only 

observed in patients with neurodevelopmental conditions (Supplementary Figure 7). We saw 

no significant correlation between any of the polygenic scores and the burden of rare 

synonymous variants in constrained genes or dominant genes associated with developmental 

conditions (Figure 5, Supplementary Figure 6), confirming that the result observed for 

deleterious variants is unlikely to be due to population structure artifacts. The correlations 
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between polygenic scores and rare damaging variants may explain why we saw very limited 

evidence that these polygenic scores modify the penetrance of such variants in families with 

neurodevelopmental conditions (Supplementary Note 6, Supplementary Figure 8). 

 

Figure 5 

 
Correlation between rare variant burden scores and polygenic scores in patients with 

neurodevelopmental conditions and their parents. Correlation coefficients between the number of 

rare inherited rare damaging coding (left) or synonymous variants (right; negative control) in constrained 

genes and polygenic scores within/between different sets of individuals. In blue are the correlations within 

probands with neurodevelopmental conditions whose parents are unaffected (i.e. the child’s rare variant 

burden score, RVBS, with their own polygenic score, PGS), and in purple are the correlations within their 

parents. In orange is the cross-parental correlation i.e. one parent’s RVBS correlated with the other 

parent’s PGS. We calculated the correlations in a combined sample of trios with neurodevelopmental 

conditions from DDD and GEL (N=3,999 or 2,553 for PGSNDC,DDD excluding samples from the original 

GWAS6). Note that both the RVBSs and PGSs have been corrected for 20 genetic principal components. 

Error bars represent 95% confidence intervals.  

 

To explore whether the correlation between common and rare variants associated with 

neurodevelopmental conditions could be driving the association between non-transmitted 

common alleles and children’s risk shown in Figure 4, we extended the trio model to control for 

the probands’, mothers’ and fathers’ rare variant burden scores as well as polygenic scores 

(Extended Data Figure 10). This did not change our original conclusion from the trio regression, 

namely that the risk of neurodevelopmental conditions is correlated with non-transmitted 

common alleles in the parents that are associated with cognitive performance, educational 

attainment and the non-cognitive component thereof, but not with the transmitted common 

alleles. However, we cannot rule out that this association with non-transmitted common alleles 

is primarily driven by the assortment-induced correlation between common and rare variants, 
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since the rare variant burden score we have used likely only captures a small proportion of the 

total rare variant component (just as the polygenic score only captures a small fraction of SNP 

heritability).  

 

In summary, we find that parents’ non-transmitted alleles at common variants ascertained for 

their association with educational attainment and cognitive performance are correlated with their 

children's risk of neurodevelopmental conditions, but we do not see evidence for direct genetic 

effects from transmitted alleles. Further work is needed to confirm whether this association with 

the non-transmitted alleles is due to true indirect genetic effects and/or parental assortment.   

Discussion 

Here we combined two large cohorts of patients with rare neurodevelopmental conditions to 

explore the contribution of common variants to risk. After first demonstrating that polygenic 

scores for neurodevelopmental conditions and several related traits were significantly 

associated with case/control status within both DDD and GEL (Supplementary Table 2), we 

conducted a GWAS meta-analysis of patients with neurodevelopmental conditions from the two 

cohorts and revealed significant genetic correlations with several psychiatric conditions which 

had not been previously reported6 (Figure 1A). Conditional genetic correlations (Figure 1B) 

show that several of these (e.g. schizophrenia, Tourette’s) are not simply driven by the 

component of polygenic risk for neurodevelopmental conditions that is shared with educational 

attainment. This suggests that these mental health conditions share underlying biology with 

neurodevelopmental conditions that is independent of that captured by effects of common 

variants on educational attainment, although we acknowledge that estimates of genetic 

correlations can be biased by cross-trait parental assortment and other confounding factors71. 

 

We showed that polygenic scores for several traits that are genetically correlated with 

neurodevelopmental conditions were significantly associated with having a monogenic 

diagnosis, with the strongest effect observed for educational attainment (Figure 2A). Our 

previous work had found no such difference in polygenic background between diagnosed and 

undiagnosed probands in DDD 6, and it is likely that power has been improved here by our larger 

sample size and better definition of which probands truly have a monogenic diagnosis 5,27. Our 

result is consistent with a liability threshold model for rare neurodevelopmental conditions; 

children without a large-effect monogenic variant may require higher polygenic load (or a major 

environmental contribution such as a teratogenic infection e.g. Zika virus) to move their 

phenotype over the threshold required to be clinically diagnosed with a neurodevelopmental 

condition (Extended Data Figure 1). Perhaps important for consideration in clinical settings, 

we find probands with more affected first-degree relatives had both a lower PGSEA and a lower 

chance of getting a monogenic diagnosis in DDD (Extended Data Figure 6), emphasizing that 

if there are multiple first-degree relatives with neurodevelopmental conditions in a family, this 

may not necessarily be due to a monogenic cause. Our observation that diagnosed patients 

with affected parents (most of whom have inherited dominant diagnoses), and their parents, 

have lower average PGSEA than those with unaffected parents (Extended Data Figure 4) is 

consistent with the effects of parental assortment (Figure 5).  

 

Since most parents of the patients we studied are annotated as clinically unaffected, we 

hypothesized that they might be over-transmitting polygenic risk to their affected offspring. We 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.05.24303772doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303772
http://creativecommons.org/licenses/by/4.0/


 

14 

saw nominally significant over-transmission of PGSNDC,DDD from unaffected parents to 

undiagnosed probands, but saw no significant transmission distortion for PGSEA or PGSCP 

(Figure 3A), despite these polygenic scores explaining much more variance in risk than 

PGSNDC,DDD (Supplementary Table 2). Consistent with this, in a two-generation model (Figure 

4), we found evidence for a direct genetic effect of PGSNDC,DDD on risk of neurodevelopmental 

conditions, but no evidence for direct genetic effects of the other polygenic scores tested. 

Instead, we observed that the parents’ PGSEA, PGSCP and PGSNonCogEA were significantly 

associated with their children’s risk even after controlling for the children’s PGS, indicating a 

correlation between non-transmitted alleles and the children’s phenotype. This may be due to 

indirect genetic effects and/or the consequences of parental assortment.  

 

Previous papers have shown that non-transmitted alleles in the parents are associated with 

children’s educational attainment and school grades, explaining a third to a half of the overall 

association between educational outcomes and PGSEA that is seen in population-based 

samples29,33,34,51. However, the interpretation of this finding is still a matter of debate, since most 

of these papers use models that can give spurious or inflated indirect genetic effect estimates 

due to population stratification and/or parental assortment51,53,72. Parental assortment induces a 

correlation between the polygenic score associated with the trait under assortment and the 

remaining genetic component of the phenotype with which the polygenic score would be 

uncorrelated under random assortment. This includes the component due to rare variants, which 

could have a much stronger effect on risk of neurodevelopmental conditions than the common 

variant component. We demonstrated (to our knowledge, for the first time) a correlation between 

the rare and common variant components affecting cognitive and educational outcomes, both 

between parents and within both offspring and parents (Figure 5 and Supplementary Figure 7). 

This supports the hypothesis that the association of PGSEA with lower risk of 

neurodevelopmental conditions is at least partly due to the assortment-induced correlation of 

PGSEA with rare variants affecting both neurodevelopmental conditions and educational 

attainment. Although these observed correlations are small in magnitude (|r|<0.1), it is likely that 

the correlation between the total common and rare variant components of educational outcomes 

and neurodevelopmental conditions is substantially higher than this53, since only small fractions 

of these components are likely to be captured by the polygenic scores and our rare variant 

burden score, respectively. Very large whole-genome sequenced datasets will be required to 

better characterize the total rare variant component of these traits and estimate this correlation 

more accurately. 

 

With the current study design, we were unable to demonstrate the presence of indirect genetic 

effects on risk of neurodevelopmental conditions unambiguously, and nor could we test whether, 

if present, these are mediated by parenting behaviors. However, we did explore whether 

common genetic variants might influence risk by affecting prenatal risk factors (a form of indirect 

genetic effects). We found that educational attainment showed a significant negative genetic 

correlation with preterm delivery, whereas neurodevelopmental conditions showed a significant 

positive genetic correlation with it even after conditioning on educational attainment with 

GenomicSEM (rg=0.47) (Extended Data Figure 8A). This is consistent with epidemiological 

studies that found an association between prematurity and poorer neurocognitive outcomes 

even after controlling for socioeconomic confounders45,73–79. We found some evidence from 

Mendelian randomization that lower educational attainment is causally associated with preterm 

delivery (Extended Data Figure 9B; Supplementary Note 5); this may be because lower 

educational attainment is associated with several factors that increase the risk of preterm 
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delivery in the mother (such as a short inter-pregnancy interval80, exposure to tobacco smoke 

during pregnancy81,82, and pre-eclampsia56). We acknowledge that causal estimates from 

Mendelian Randomization analyses may be biased when using population-based GWASs, as 

we have done, so these findings should be considered tentative until confirmed using sufficiently 

well-powered within-family GWASs32. Although we did not find evidence for a causal effect of 

prematurity on neurodevelopmental conditions (Extended Data Figure 9C), several factors 

may have reduced the power of this analysis (Supplementary Note 5). We also saw no 

significant evidence that prematurity mediates indirect genetic effects of common alleles 

associated with educational attainment (Supplementary Note 5). However, it may be that our 

analysis was simply underpowered at this sample size, since we did see some attenuation 

(albeit not significant) of the non-transmitted coefficients for PGSEA when removing premature 

probands (Supplementary Figure 5). Nonetheless, our results emphasize how genetics may 

confound epidemiological associations between risk factors and neurodevelopmental 

conditions83,84, and also suggest that studies seeking to characterize the nature of indirect 

genetic effects on educational outcomes should consider the contribution of prenatal factors.  

 

Our study has several limitations. Firstly, the overall variance in risk of neurodevelopmental 

conditions explained by common variants is low (~10%) and the polygenic scores tested here 

explain only a fraction of this. Having said that, these polygenic scores are statistically significant 

predictors of neurodevelopmental conditions (Supplementary Table 2) and are likely to explain 

more variance as GWAS sample sizes grow. Secondly, the reported significance of detected 

PGS effects does not simply reflect the strength of the real associations, but also the power of 

the original GWAS from which SNP effect sizes were derived. Thus, one must be cautious when 

comparing effects between polygenic scores for different traits. Thirdly, the phenotypic 

heterogeneity of the cohorts likely limits our power and may confound results. For example, 

missed diagnoses of autism amongst DDD and GEL participants with neurodevelopmental 

conditions (perhaps due to the young average age; Supplementary Note 1) could be 

confounding our result of there being no apparent under-transmission of PGSEA (Figure 3A; 

Supplementary Figure 2), since PGSEA may be over-transmitted to autistic individuals26,50 but 

under-transmitted to patients with intellectual disability who are not autistic. Fourthly, the fact 

that probands in trios tend to have higher polygenic scores for educational attainment than those 

not in trios (Extended Data Figure 5B) suggests that the trio probands are a non-random 

sample, which could potentially induce biases in trio-based analyses; for example, the 

undiagnosed trio probands may be enriched for monogenic causes in as-yet-undiscovered 

genes, which could reduce power when assessing over-transmission of polygenic risk. 

Additionally, many of our analyses are predicated on the assumption that the “unaffected 

parents” (i.e. those reported by the clinician not to have a similar phenotype to the proband) do 

not have phenotypes related to neurodevelopmental conditions. It may be that some fraction of 

them do have (or did have, earlier in life) relevant phenotypic features (e.g. learning difficulty, 

speech delay), but that these were not detected and recorded by the clinicians. The inclusion of 

these parents could be reducing power or confounding results in several analyses. Another 

caveat is that our estimates of effect size when comparing to controls are sensitive to the choice 

of control cohort, likely reflecting differences in educational-related ascertainment bias between 

them 85 (Supplementary Note 3; Extended Data Figure 5). Despite this, sensitivity analyses 

suggest that our main conclusions are robust and not driven by ascertainment bias of a 

particular control cohort (Supplementary Note 3; Extended Data Figure 4; Supplementary 

Figure 4; Supplementary Table 6). Finally, the correlation between the rare and common 
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variant components of neurodevelopmental conditions (Figure 5), which is likely due to parental 

assortment, may have confounded several of these analyses.  

 

In future, as GWAS discovery cohorts for both rare neurodevelopmental conditions and related 

traits increase in size, we will have more power to explore these common variant effects on risk, 

penetrance and phenotypic expressivity of these conditions. These studies should seek to 

confirm whether there really are no direct genetic effects of common variants influencing 

educational attainment and cognitive performance on risk of neurodevelopmental conditions, or 

whether these are just small. To disentangle the contribution of indirect genetic effects and 

parental assortment to common variant associations with neurodevelopmental conditions, future 

studies will need to use extended genealogies and/or more sophisticated modeling of the 

influence of parental assortment on common and rare variants than is currently possible 51,53,72. 

If these studies also had measures of epidemiological and prenatal risk factors such as 

prematurity, and of parental phenotypes and nurturing behaviors, one could explore how indirect 

genetic effects (if present) are mediated, which has potential implications for assessing the 

modifiability of risk. Finally, it will be important for future studies to explore the role of polygenic 

background in neurodevelopmental conditions in families with non-European genetic ancestries. 
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Online Methods 

Cohort Descriptions and phenotypes 

Deciphering Developmental Disorders (DDD) 

The aim of the DDD study is to find molecular diagnoses for families and patients affected by 

previously genetically undiagnosed, severe developmental conditions. Recruitment was 

conducted from 2011 to 2015 across twenty-four clinical genetics services in the United 

Kingdom (UK) and Ireland86. The DDD study has UK Research Ethics Committee approval 

(10/H0305/83, granted by the Cambridge South Research Ethics Committee and GEN/284/12, 

granted by the Republic of Ireland Research Ethics Committee). The clinical inclusion criteria 

included neurodevelopmental conditions, congenital, growth or behavioral abnormalities and 

dysmorphic features. Probands were systematically phenotyped via DECIPHER87 using Human 

Phenotype Ontology (HPO)88 terms and a bespoke online questionnaire that collected 

information on developmental milestones, growth measurements, number of affected relatives, 

prematurity, maternal diabetes, and other clinically-relevant parameters. The cohort has been 

described extensively5,70,86,89.  

 

We focused on probands in the DDD cohort who had neurodevelopmental conditions (NDCs), 

which were defined previously by Niemi et al.6. Briefly, these were probands who had at least 

one of the following neurodevelopmental HPO terms or their descendant terms: abnormality of 

higher mental function (HP:0011446), neurodevelopmental abnormality (HP:0012759), 

abnormality of the nervous system morphology (HP:0012639), behavioural abnormality 

(HP:0000708), seizures (HP:0001250), encephalopathy (HP:001298), abnormal synaptic 

transmission (HP:0012535), or abnormal nervous system electrophysiology (HP:0001311).   

Genomics England (GEL) 100,000 Genomes Project 

The 100,000 Genomes project is an initiative by the UK Department of Health and Social Care 

to whole-genome sequence individuals with rare conditions and cancer in the National Health 

Service90,91. The 100,000 Genomes project was approved by the East of England—Cambridge 

Central Research Ethics Committee (REF 20/EE/0035). The rare disease branch of the project 

consists of sequencing data from ~72,000 patients with rare conditions and their relatives, in 

~34,000 families with a variety of structures. There are over 190 rare conditions represented in 

the cohort, and about 23% of the patients have NDCs. The cohort was sequenced at around 

35x coverage, and variant calling and quality control (QC) were performed by Genomics 

England91,92.  

 

GEL NDC patients were defined as those recruited under the “Neurodevelopmental disorders” 

disease sub-category, or with more than one HPO term that was a descendent of 

“Neurodevelopmental Abnormality” (HP:0012759). We removed probands whose age of onset 

was >16 years or who had neurodegenerative conditions.  

 

The set of unrelated GEL controls included cancer patients over 30 years old (N=10,469) and 

unaffected relatives (N=3,198) of probands with rare conditions who were not in the NDC set 

and did not have phenotypes similar to probands from DDD (“DDD-like”). The “DDD-like” 

probands were defined as those who: 
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1) were recruited into a disease model which was also used to recruit probands who had 

previously been recruited into DDD (see section below on identifying probands 

overlapping between the two cohorts), or  

2) had one the top five HPO terms used in DDD and their descendants, namely 

HP:0000729 (autistic behaviour), HP:0001250 (seizure), HP:0000252 (microcephaly), 

HP:0000750 (delayed speech and language development) and HP:0001263 (global 

developmental delay).  

Probands recruited into the neurodegenerative disorders subcategory or with an age of 

onset >16 years were removed from the DDD-like set, as were probands recruited into a disease 

subcategory for which the average age of probands was >16 years. 

 

To define relatedness, we used a file generated by GEL consisting of a pairwise kinship matrix 

produced using the PLINK293,94 implementation of the KING robust algorithm95 and a --king-

cutoff of 0.0442 (i.e. 
1

29/2).  

Control cohorts 

The UK Household Longitudinal Study (UKHLS) cohort consists of a continuation of the British 

Household Panel Survey (BHPS) of individuals living in the UK96,97. The Avon Longitudinal Study 

of Parents and Children (ALSPAC) is a birth cohort study of children born in Avon, England with 

expected dates of delivery between 1st April 1991 and 31st December 199298. Eligible pregnant 

women (N=13,761) were recruited and their children have been phenotyped extensively over 

the last 30 years. Ethical approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committees. Please note that the study website 

(http://www.bristol.ac.uk/alspac/researchers/our-data/) contains details of all the data that is 

available through a fully searchable data dictionary and variable search tool. The Millennium 

Cohort Study (MCS) is a birth cohort study of children born across the UK during 2000 and 2001 

from 18,552 families 99,100. Further information about recruitment of these cohorts is given in 

Supplementary Note 3. 

Preparation of genetic data 

Individuals from DDD, UKHLS, ALSPAC, and MCS were genotyped on various arrays, whereas 

GEL individuals were whole-genome sequenced. The available data are summarized here 

briefly: 

● A subset of the DDD cohort (all children and several thousand parents) was genotyped 

on three genotype array chips: the Illumina HumanCoreExome chip (CoreExome), the 

Illumina OmniChipExpress (OmniChip), and the Illumina Infinium Global Screening 

Array (GSA). Some probands were genotyped on more than one chip, as shown in 

Supplementary Figure 9. In downstream analysis, we used the CoreExome and 

OmniChip data for analyses of probands, and the GSA and OmniChip data for analyses 

of trios. QC of CoreExome (including DDD patients and 9,270 UKHLS controls 

genotyped on the same chip) and Omnichip data were performed by Niemi et al. 6 and 

we performed QC in the GSA data specifically for this paper (Supplementary Tables 

10 and 11). The DDD cohort was also exome sequenced, and those data were used for 

the analyses involving rare variants. QC and processing of the exome data are described 

below in the section “Extracting and annotating rare variants”. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.05.24303772doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303772
http://creativecommons.org/licenses/by/4.0/


 

20 

● GEL individuals were whole genome sequenced with 150bp paired-end reads using 

Illumina HiSeqX. Variant calling and QC were performed by Genomics England. We 

used 78,195 post-QC germline genomes from the Aggregated Variant Calls (aggV2) 

prepared by the GEL team. We kept variants that passed the QC filters shown in 

Supplementary Table 12.  

● Data we received from ALSPAC were processed in two batches97. In the first batch, we 

received post-QC array data for G0 mothers (N=8,884) who were genotyped on the 

Illumina Human 660W chip and G1 children (N=8,932) genotyped on the HumanHap550 

quad chip. In the second batch, we received another 2,198 parents (G0 mothers and G0 

partners101) who were genotyped on the CoreExome array.  

● We received data for 21,181 MCS samples who were genotyped using the GSA array 

chip102.  

We applied standard QC filters in each dataset separately, described further in Supplementary 

Methods. 

Genetically predicted ancestry 

The Supplementary Methods provide detailed information on ancestry inference, but we 

summarize it briefly here. The identification of GBR-ancestry samples from the DDD 

CoreExome and OmniChip data was described previously6. To identify individuals of genetically 

inferred GBR ancestry in DDD GSA samples, we first projected post-QC samples onto 1,000 

Genomes phase 3 individuals36 (Supplementary Figure 10). We then performed another 

principal component analysis (PCA) within the loosely defined European ancestry subset and 

identified a homogeneous subgroup (Supplementary Figure 11) using Uniform Manifold 

Approximation and Projection (UMAP)103. Since we merged parent-offspring trios genotyped on 

GSA and Omnichip array chips in downstream analysis, we kept GSA individuals who were 

similar to Omnichip individuals in terms of genetic ancestry in PCA space (Supplementary 

Figure 12). In GEL, we used individuals with genetically inferred European ancestry, which were 

identified by the GEL bioinformatics team. We further restricted to a homogeneous subset 

(N=56,249) that represents white British individuals (Supplementary Figure 13). Array data 

received from the ALSPAC all had genetically predicted European ancestry, so we did not 

perform any filtering based on genetic ancestry. We performed similar PCA and UMAP 

clustering to identify GBR-ancestry individuals in MCS (Supplementary Figure 14; 

Supplementary Figure 15), and further filtered to individuals who self-reported as being of 

White ethnicity.  

Identifying and removing relatives within and across cohorts 

Within each dataset, we identified up to third-degree relatives (kinship coefficient > 0.0442 by 

KING v2.2.495) using post-QC genotyped array data or WGS data. We always used a subset 

of unrelated individuals (i.e. more distant than third-degree relatives) in downstream analysis. 

In analyses using trios, we made sure probands in trios were unrelated and parents were 

unrelated with parents from other families.  

 

In analyses combining DDD and GEL, we removed from GEL any participants who were also 

recruited into DDD and or who were related to DDD participants, and also removed Scottish 

samples from DDD since we were unable to check whether GEL samples were related to 

them (Supplementary Methods). We removed individuals from the two birth cohorts who 
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were related to each other or to DDD participants, which left 1,434 and 2,498 trios from 

ALSPAC and MCS, respectively (Supplementary Methods).  

Imputation and post-imputation QC 

Imputation of array data was performed in each genotyped cohort separately using the 

maximum number of variants available after QC. Prior to imputation, we removed palindromic 

SNPs, SNPs that were not in the imputation reference panel, and SNPs with mismatched alleles. 

DDD samples and UKHLS controls who were genotyped on the CoreExome array were imputed 

with the HRC r1.1 reference panel by Niemi et al.6. DDD GSA and Omnichip samples and 

ALSPAC samples were imputed to the TOPMed r2 reference panel using the TOPMed 

imputation server, and the MCS samples to the HRC r1.1 reference panel 104–106. We kept well 

imputed common variants with Minimac4 R2 >0.8 and minor allele frequency (MAF) >1%. For 

polygenic score analyses, we subsequently restricted to common variants that passed these 

QC filters in all genotyped cohorts and also passed QC in the GEL WGS data. 

Defining patients with versus without monogenic diagnoses  

DDD 

The DDD study identified clinically relevant rare variants from exome sequencing and 

chromosome microarray data using a filtering procedure described in Wright et al.86. The 

procedure focuses on identifying rare damaging variants that fit an appropriate inheritance mode 

in a set of genes that cause developmental disorders (DDG2P, 

https://www.deciphergenomics.org/ddd/ddgenes). Variants that pass clinical filtering are 

uploaded to DECIPHER87, where the patients’ clinicians are asked to classify them as definitely 

pathogenic, likely pathogenic, uncertain, likely benign or benign. We defined “diagnosed” 

probands as those with one or more variants either annotated as pathogenic/likely pathogenic 

in DECIPHER by their referring clinician, or predicted as pathogenic/likely pathogenic using 

autocoded ACMG diagnoses as described in 5. All remaining probands were classed as 

“undiagnosed”. Probands with a de novo diagnosis are those with a de novo mutation in a 

monoallelic or X-linked DDG2P gene that was either annotated or predicted as pathogenic/likely 

pathogenic. 

GEL 

The probands assigned diagnostic status were those included in the Genomic Medicine Service 

exit questionnaire, in which a clinician evaluated the pathogenicity of variants of interest 

identified through GEL’s custom pipeline. We defined “diagnosed” probands as those that had 

a pathogenic or likely pathogenic variant that is annotated as partially or fully explaining their 

phenotype in this exit questionnaire. Probands with a de novo diagnosis are those whose 

pathogenic/likely pathogenic variants from the exit questionnaire were annotated as de novo 

protein truncating or missense variants in DDG2P monoallelic or X-linked genes. We defined 

“undiagnosed” probands as those that were present in the exit questionnaire but not annotated 

as having a pathogenic or likely pathogenic variant and not annotated as “yes” or “partially” in 

the “case_solved_family” column. We further removed from this undiagnosed set any probands 

who have potential diagnoses in the Diagnostic Discovery data in GEL, which is a list of variants 

submitted by researchers that are thought likely to be pathogenic by the GEL clinical team.  
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Extraction and quality control on rare variants 

Quality control of DDD exome sequencing data and extraction of rare single nucleotide variants 

(SNVs), and insertion and deletions (indels) is summarized in Supplementary Table 13. Indels 

in the same gene and sample were removed (4% of indels with MAF < 1%), since these were 

often part of complex mutational events that would require haplotype-aware annotation.  

 

For GEL, details of the QC of SNVs and indels in the WGS data are provided by the GEL 

team91,92 and variant QC is summarized in Supplementary Table 12. We use a custom 

python script to extract rare variants from GEL aggregated WGS variant call format files 

(aggV2). We filtered genotypes to those with genotype quality (GQ) ≥ 20 and read depth (DP) 

≥ 10. We removed heterozygous genotypes that did not pass a binomial test of balanced REF 

and ALT alleles (p < 1x10-3) or for which ALT/(REF+ALT) (AB ratio) was not between 0.2 and 

0.8. We further removed variants with missing high quality genotypes in more than 5% of all 

samples in aggV2. We removed indels in the same gene and sample for the same reason 

described above for DDD. 

 

For MCS, details of the QC of exome sequencing data are in Supplementary Methods. 

 

Defining trio sample sets in DDD and GEL 

The procedure used for filtering trios used in DDD and GEL is shown in Supplementary 

Figure 16. Briefly, in DDD, we combined data across GSA and OmniChip arrays and kept 

trios in which all three members had GBR ancestry and the proband had an NDC. We 

excluded trios recruited from Scottish centres and kept unrelated trios. We then split trios into 

those with both parents unaffected and those with one or both parents affected. These were 

then categorized as genetically diagnosed or undiagnosed. We applied similar filtering in GEL 

trios. See Supplementary Methods for more information. 

GWAS of neurodevelopmental conditions in GEL and meta-analysis with 

DDD 

We used PLINK v1.9 to conduct a GWAS comparing individuals with NDCs (N=3,618) to 

controls (N=13,667) in GEL, controlling for 20 genetic principal components (PCs), age, and 

sex. Prior to running the GWAS, we removed variants with MAF < 1%, missingness > 2% or 

Hardy-Weinberg equilibrium (HWE) P-value < 1x10-5, and performed a differential missingness 

test between the NDC patients and controls and removed variants with p-value < 1x10-5. We 

repeated the GWAS comparing DDD patients with neurodevelopmental conditions on the 

CoreExome array (N=6,397) to UKHLS controls (N=9,270) using PLINK v1.9, after excluding 

DDD patients recruited from Scottish centres.  

 

We used METAL107 to conduct an inverse variance-weighted GWAS meta-analysis between the 

DDD-UKHLS and GEL NDC GWASs. We removed palindromic SNPs with MAF > 0.4 since the 

strand could not be easily inferred using MAF. We also excluded SNPs with discordant AF 

(difference > 0.05) between the two cohorts. This left 5,451,801 overlapping SNPs in the meta-

analysis.  
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Heritability and genetic correlations 

We used Linkage Disequilibrium Score Regression (LDSC)108 to estimate SNP heritability using 

summary statistics from the GWAS of NDCs in DDD, in GEL, and a meta-analysis of the two 

cohorts. We used ~1 million common SNPs from HapMap3 with precomputed LD scores. SNP 

heritability on the liability scale was estimated assuming a cumulative population prevalence of 

1% for rare neurodevelopmental conditions6. We used the effective sample size (4/(1/Ncases + 

1/Ncontrols)) or the sum of two effective sample sizes for the meta-analysis and a sample 

prevalence of 50% in LDSC, as recommended previously109. In addition, we also applied two 

methods to estimate SNP heritability using individual-level data in DDD and GEL separately. 

We performed GREML-LDMS110 stratified by LD (two bins of equal size) and MAF (three bins: 

1%–5%, 5%–10%, >10%). We also ran phenotype correlation–genotype correlation (PCGC) 

regression111, using the LDAK-Thin Model to compute the kinship matrix using the direct 

method. We corrected for sex, and ten genetic principal components as covariates in both 

methods. We then meta-analyzed the SNP heritability estimates from DDD and GEL using an 

inverse-variance weighted method.  

 

We used LDSC to estimate genetic correlations between the DDD NDC GWAS or the meta-

analyzed NDC GWAS and various brain-related traits and conditions listed in Supplementary 

Table 14. We did not use the GEL NDC GWAS to calculate genetic correlations as the SNP 

heritability was not significantly different from zero according to LDSC. 

Estimating conditional genetic correlations with GenomicSEM 

To estimate the genetic correlations between various traits/conditions (Supplementary Table 

14) and NDCs independent of cognitive performance or educational attainment signals, we used 

genomic structural equation modelling (GenomicSEM)42,44. We estimated the genetic correlation 

between the target trait and a latent variable representing the non-cognitive component of 

NDCs, which was genetic influences on NDCs that were not explained by cognitive skills. We 

applied the GenomicSEM model without SNP effects. We also estimated genetic correlation 

with the “non-educational attainment” latent variable, which represented genetic influences on 

NDCs that were not accounted for by the educational attainment latent variable. 

Calculating polygenic scores 

For calculating PGSs, we used the set of SNPs that were well-imputed in all array cohorts 

(Minimac4 R2 > 0.8), passed QC in GEL aggV2 samples, and had MAF >1% in all cohorts. We 

used LDPred112 to estimate weights for calculating PGSs and an LD reference panel composed 

of HapMap3113 common variants based on 5,000 unrelated individuals of white British 

genetically-inferred ancestry from the UK Biobank114 (Supplementary Methods). GWAS 

summary statistics for years of schooling (a measure for EA)37, the non-cognitive component of 

educational attainment (NonCogEA)42, cognitive performance (CP)37, schizophrenia (SCZ)38, 

and NDCs6 were matched with the list of overlapping SNPs (Supplementary Table 14). 

PGSNDC,DDD was evaluated in the DDD Omnichip samples and the GEL samples which were not 

in the DDD GWAS. To make PGSs comparable across cohorts (DDD, GEL, UKHLS, MCS and 

ALSPAC), we performed a joint PCA across all cohorts and adjusted the raw scores for 20 PCs. 

For all analyses, residuals were scaled so that the combined set of unrelated control samples 

from GEL and UKHLS (or GEL controls only for PGSNDC,DDD) had mean = 0 and SD = 1.  
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Analyses of polygenic scores 

Evaluating variance explained by the PGSs 

We evaluated how much variance in risk of NDCs was explained by the PGS on the liability 

scale111,115,116. We compared 6,397 NDC probands from DDD to 9,270 controls from UKHLS, 

and 3,618 NDC probands from GEL to 13,667 GEL controls defined as described above. We 

assumed the population prevalence of NDCs to be 1%6.  

Comparison of PGS between different subsets of probands and parents 

We used two-sided t-tests to compare PGSs between different groups of probands, parents and 

controls seen in Figure 2A, Figure 3B, Extended Data Figure 4, Extended Data Figure 5, 

and Supplementary Tables 5, 6 and 7. We report the mean difference in PC-corrected PGS 

between groups. Groups who were compared with each other include: 

● Combined set of controls from GEL and UKHLS 

● Control individuals from UK birth cohorts, ALSPAC and MCS 

● Undiagnosed NDC probands regardless of trio status 

● Diagnosed NDC probands regardless of trio status 

● Undiagnosed NDC probands for whom both parents are unaffected 

● Unaffected parents of undiagnosed NDC probands 

● Undiagnosed NDC probands with one or both parents affected 

● Affected parents of undiagnosed NDC probands 

● Diagnosed NDC probands for whom both parents are unaffected 

● NDC probands with de novo diagnoses for whom both parents are unaffected  

● Unaffected parents of diagnosed NDC probands 

● Diagnosed NDC probands with one or both parents affected 

● Affected parents of diagnosed NDC probands 

The sample size of each subset is listed in Supplementary Table 1. We excluded controls from 

UKHLS as well as DDD CoreExome and GSA probands when testing the DDD-derived NDC 

PGS (since these had been included in the original NDC GWAS, whereas the individuals 

genotyped on the Omnichip had not). All the t-tests involving NDC probands were performed in 

samples from DDD and GEL combined. 

 

We also compared female probands versus male probands without a monogenic diagnosis 

regardless of trio status (2,427 and 1,574 male probands from DDD and GEL, and 1,426 and 

918 female probands from DDD and GEL), and unaffected mothers versus unaffected fathers 

(1,523 trios from DDD and 1,343 trios from GEL) using two-sided t-tests (Extended Data Figure 

7AB). 

Associations between PGS and diagnostic status 

We compared average PGSs in NDC probands with and without a monogenic diagnosis using 

two-sided t-tests, combining NDC probands from DDD and GEL regardless of whether they 

were in a trio or not. We compared NDC subgroups to the combined control set from UKHLS 

and GEL, as well as to unrelated children from the MCS cohort who were reweighted using 

available sociodemographic data to make them more representative of the general UK 

population (Supplementary Note 3).  
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Within DDD (N=7,549 without excluding Scottish samples or samples who were related to GEL 

participants), we tested whether the proband’s PGSEA was associated with factors affecting 

getting a diagnosis in linear regression models: 

𝑃𝐺𝑆  ~ 𝑓𝑎𝑐𝑡𝑜𝑟 

We investigated the following binary factors: trio status (N=5,507 with both parents exome 

sequenced but not necessarily genotyped), proband sex (N=4,421 male probands), whether the 

proband had any affected first-degree relatives (N=1,623), whether the proband was born 

preterm (N=1,098 with gestation <37 weeks), whether the mother had diabetes (N=242), and 

whether the proband had severe intellectual disability or developmental delay (ID/DD; N=941) 

versus mild or moderate ID/DD (N=1,887). We compared probands with the above mentioned 

characteristics to all other probands, except when comparing probands with severe versus mild 

or moderate ID/DD for which we excluded probands without ID/DD or with ID/DD of unknown 

severity. We also investigated a continuous factor, the degree of consanguinity, quantified by 

the fraction of the genome in runs of homozygosity (FROH) divided by 0.0625, which is the 

expected fraction given a first-cousin marriage.   

 

We also tested whether the mother’s or father’s PGSEA was associated with the above factors, 

in a total of 2,497 samples; we did not test for association with trio status since parental genotype 

data were only available for full trios anyway.  

 

See the Supplementary Methods for a description of estimation of the odds ratio of diagnosis 

for different configurations of affected relatives shown in Extended Data Figure 6, and of the 

mediation analysis to explore whether trio status and prematurity were mediating the 

association between PGSEA and diagnostic status. 

Evaluating over-transmission of PGS: the polygenic transmission disequilibrium test  

We conducted polygenic transmission disequilibrium tests (pTDT) in undiagnosed and 

diagnosed probands from DDD (N=1,523 undiagnosed, 443 diagnosed) and GEL (N=1,343 

undiagnosed, 507 diagnosed) combined. We also conducted pTDT in these trios excluding 

autistic probands.  

 

The pTDT is a two-sided one-sample t-test of the probands’ PGS deviation from expectation, 

which is their parents’ mean PGS. The pTDT deviation is defined as: 

𝑝𝑇𝐷𝑇 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  𝑃𝐺𝑆𝑐ℎ𝑖𝑙𝑑 −
(𝑃𝐺𝑆𝑚𝑜𝑡ℎ𝑒𝑟 + 𝑃𝐺𝑆𝑓𝑎𝑡ℎ𝑒𝑟)

2
 

          

To evaluate whether the pTDT deviation is significantly different than 0, the pTDT test statistic 

(𝑡𝑝𝑇𝐷𝑇) is defined as:   

𝑡𝑝𝑇𝐷𝑇= 
𝑚𝑒𝑎𝑛(𝑝𝑇𝐷𝑇 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

𝑆𝐷(𝑝𝑇𝐷𝑇 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

√𝑛

 

Analyses of non-transmitted coefficients  

We evaluated direct genetic effects and effects of non-transmitted common alleles on NDC case 

status using logistic regression on PGSs:  

1𝑁𝐷𝐶  𝑠𝑡𝑎𝑡𝑢𝑠  ~ 𝑐ℎ𝑖𝑙𝑑 𝑃𝐺𝑆 +  𝑚𝑜𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 +  𝑓𝑎𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 
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where 1𝑁𝐷𝐶  𝑠𝑡𝑎𝑡𝑢𝑠 is an indicator variable for whether the individual is an NDC case (1) or control 

(0). 

 

Since a child’s PGS is calculated using transmitted alleles and the difference between the sum 

of parents’ PGS and the child’s PGS is equivalent to a PGS derived from non-transmitted alleles, 

this model can be rewritten as: 

1𝑁𝐷𝐶  𝑠𝑡𝑎𝑡𝑢𝑠 ~ (𝛽𝑇 − 𝛽𝑁𝑇)  ×  𝑐ℎ𝑖𝑙𝑑 𝑃𝐺𝑆 + 𝛽𝑁𝑇  ×  (𝑚𝑜𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 +  𝑓𝑎𝑡ℎ𝑒𝑟 𝑃𝐺𝑆) 

where 𝛽𝑁𝑇 indicates the non-transmitted coefficient and 𝛽𝑇 indicates the coefficient on 

transmitted alleles. The regression coefficient on child PGS in this trio model represents an 

unbiased estimate of direct genetic effect (difference between 𝛽𝑇  and 𝛽𝑁𝑇).  

 

NDC probands were from DDD and GEL trios where the proband was undiagnosed and both 

parents were unaffected (N=2,866 trios). Control samples were trios from the two birth cohorts 

(ALSPAC and MCS, N=1,434 and N=2,498, respectively) as well as trios from GEL where the 

proband did not have DDD-like developmental disorders or NDCs (N=872).  

 

We verified that the PGSs in the trio model did not exhibit excessive collinearity (see 

Supplementary Methods). 

 

We performed various sensitivity analyses in the following subsets (Supplementary Figure 

4): NDC probands versus controls from GEL trios only, and NDC patients from GEL and DDD 

versus each of the three control cohorts separately (GEL, MCS or ALSPAC). We also 

conducted the analysis while controlling for the rare variant burden score (RVBS) in GEL trios 

(Extended Data Figure 10; see the section below on “Analyses of PGSs and rare protein-

coding variants”). 

1𝑁𝐷𝐶  𝑠𝑡𝑎𝑡𝑢𝑠  ~ 𝑐ℎ𝑖𝑙𝑑 𝑃𝐺𝑆 + 𝑐ℎ𝑖𝑙𝑑 𝑅𝑉𝐵𝑆 +  𝑚𝑜𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 +  𝑚𝑜𝑡ℎ𝑒𝑟 𝑅𝑉𝐵𝑆 +  

 𝑓𝑎𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 + 𝑓𝑎𝑡ℎ𝑒𝑟 𝑅𝑉𝐵𝑆 

We restricted this latter analysis to GEL trios to minimize artifactual differences in rare variant 

calling and QC between cases and controls, which could otherwise create spurious 

associations.  

 

See the Supplementary Methods for a description of how we modified the running of this trio 

model to investigate the hypothesis that the effects of non-transmitted alleles associated with 

educational attainment and cognition might be mediated by prematurity. 

Analyses of PGSs and rare protein-coding variants 

Sequence data from DDD, GEL, and MCS were annotated with the Variant Effect Predictor 

(VEP) 117. We kept the ‘worst consequence’ annotation across transcripts. From parents and 

probands, we extracted autosomal heterozygous protein-truncating variants (transcript ablation, 

frameshift, splice acceptor, splice donor and stop gained) annotated as high-confidence by 

LOFTEE118 (HC PTVs), as well as variants in the following classes which we grouped as 

“missense”: missense, stop lost, start lost, inframe insertion, inframe deletion, and loss-of-

function variants annotated as low-confidence by LOFTEE118. We retained rare variants with 

MAF < 1 x 10-5 in each gnomAD super-population and MAF < 1 x 10-4 in the respective cohorts.  

 

We considered four (non-mutually-exclusive) groups of damaging rare variants:  

i) HC PTVs in constrained genes (pLI > 0.9119)  
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ii) HC PTVs and missense variants (MPC ≥ 2120) in constrained genes (pLI > 0.9)  

iii) HC PTVs in monoallelic DDG2P genes with a loss-of-function mechanism (i.e. “absent gene 

product”) 

iv) HC PTVs and missense variants (MPC ≥ 2) in monoallelic DDG2P genes with a loss-of-

function mechanism.  

We retained probands and parents who were heterozygous for these variants. We required the 

variants in the children to have been inherited from a parent. 

 

To investigate whether parental assortment leads to correlated rare and common variant 

burden, we calculated rare variant burden scores (RVBSs) as the number of rare variants in the 

classes described above, then calculated the Pearson’s correlation coefficients between RVBSs 

and PGSs using the “cor” function in R. We used trios in which both parents were unaffected in 

this analysis. RVBSs were corrected for 20 genetic principal components using linear regression 

models. We then calculated the correlation coefficients between the PC-adjusted RVBSs in 

parents and the PC-adjusted PGSs in their partners. We also assessed the correlation within 

the same person amongst either children or parents. We repeated the analysis in subsets of 

trios where the proband was undiagnosed as well as in trios where the proband had a 

monogenic de novo diagnosis (Supplementary Figure 6). The main analysis in Figure 5 and 

the sensitivity analysis in Extended Data Figure 10 is based on group (ii) above, whereas 

Supplementary Figure 6, 7 and 8 show the results for all four groups of variants. To investigate 

whether the results were affected by uncorrected population structure, we also calculated 

RVBSs using rare synonymous variants in either monoallelic DDG2P genes with a loss-of-

function mechanism or constrained genes, and assessed their correlation with PGS. 

 

To assess whether PGS modify penetrance of rare inherited variants, we conducted one-sided 

paired t-tests comparing the PGS between unaffected parents transmitting a damaging variant 

to their affected offspring who inherited the variant (Supplementary Figure 8). We 

hypothesized that the unaffected parents would have a more protective polygenic background 

than their affected offspring (i.e. higher PGSEA, PGSCP, PGSNonCogEA and lower PGSSCZ, 

PGSNDC,DDD). If more than one parent transmitted a variant to a proband, one parent-child pair 

was chosen at random from the trio. We used trios where the proband was undiagnosed and 

both parents were unaffected in this analysis.  

Construction and incorporation of weights for MCS 

We were concerned that control cohorts might not be random samples of the population with 

respect to educational attainment, and that this might bias our effect sizes for the difference in 

PGSs between cases and controls (Supplementary Note 3). We decided to use MCS, for which 

extensive sociodemographic data are available, to calculate a mean PGS that would be 

representative of the general population, using inverse-probability weighting. MCS deliberately 

oversampled minority ethnic and disadvantaged individuals 121 (sampling bias), and they provide 

sampling weights to account for this. Additionally, missingness in each wave of data collection, 

including the collection of DNA for genotyping, was nonrandom (non-response bias). To correct 

for non-response bias, we produced non-response weights per individual using the inverse of 

the probability of being genotyped estimated from a logistic regression, considering covariates 

collected at the first study sweep, as previously described121,122 (Supplementary Methods). We 

fitted the model to predict who was within the sample of unrelated GBR-ancestry children with 

genotype data (N=5,884 of 6,036 children who had complete data for these covariates), and 
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separately to predict who was within the subset of these that additionally had genotype data on 

both parents (N=2,445 of 2,498 trio children who had no missingness). To produce weights that 

account for both sampling bias and non-response bias, we multiplied the non-response weight 

from regression models by the sampling weights provided by MCS. These weights were then 

used to calculate adjusted PGSs shown in Extended Data Figure 4 and Extended Data Figure 

5C and adjusted correlation between PGS and RVBS shown in Supplementary Figure 7.  

 

Data availability 

The raw and post-quality control genotype array data and exome sequence data from DDD 
are available through European Genome-phenome Archive, under EGAS00001000775. 
Whole-genome sequence data and phenotypic data from the 100,000 Genomes project can 
be accessed by application to Genomics England 
(https://www.genomicsengland.co.uk/research/academic/join-gecip). GWAS summary 
statistics of neurodevelopmental conditions generated in this study are available in 
Supplementary Data. Researchers can apply to access genotype array data from ALSPAC 
(https://www.bristol.ac.uk/alspac/researchers/access/) and MCS (https://cls.ucl.ac.uk/data-
access-training/data-access/). Publicly available GWAS summary statistics can be accessed 
at various resources: http://www.thessgac.org/data, https://pgc.unc.edu/for-
researchers/download-results/, and https://egg-consortium.org/Gestational-duration-
2023.html. 
 

Code availability 

We used publicly available software: LDpred (https://github.com/bvilhjal/ldpred), LDSC 

(https://github.com/bulik/ldsc), GCTA-LDMS 

(https://yanglab.westlake.edu.cn/software/gcta/#GREMLinWGSorimputeddata), PCGC 

regression (https://dougspeed.com/pcgc-regression/), GenomicSEM 

(https://github.com/PerlineDemange/non-

cognitive/blob/master/GenomicSEM/Genetic%20correlations/Without%20using%20SNP%20ef

fects/function_rG_woSNP.R), and LHC-MR (https://github.com/LizaDarrous/lhcMR).  
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Extended Data Figures 

Extended Data Fig1  

Extended Data Figure 1. Schematic of the liability threshold model for rare 

neurodevelopmental disorders, illustrating why one might expect patients with a monogenic 

diagnosis to have less polygenic (common variant) risk than those without a monogenic 

diagnosis. The normal distribution represents the underlying distribution of liability in the 

population, which is assumed to be Gaussian. Both genetic and environmental factors of 

different effects contribute to this total liability. Each panel represents a hypothetical example of 

one individual, either unaffected (A), affected and diagnosed with a monogenic cause (B), or 

affected and without a monogenic diagnosis (C). The red line indicates a threshold for being 

diagnosed with neurodevelopmental conditions. Circles represent different genetic factors, and 

diamonds represent environmental factors. The size of circles and diamonds represents their 

impact on disease risk. The undiagnosed patient (C) has more green circles (i.e. risk-increasing 

common variants) than the patient with a monogenic diagnosis (B), in whom the orange circle 

(i.e. diagnostic large-effect variant) is sufficient on its own to push the patient over the diagnostic 

threshold. 
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Extended Data Fig2  

Extended Data Figure 2. Distribution of age at assessment (A) and number of HPO terms (B) 

in both DDD and GEL probands with neurodevelopmental conditions who have GBR ancestry. 

The vertical lines indicate the means. A small number of probands in each program were aged 

over 50 and had more than 30 HPOs, and these have been omitted from the plot due to data 

sharing restrictions. C) Proportion of probands from each cohort with at least one HPO term 

within the indicated chapter (black text) or specific phenotype (green text), ordered by the 

prevalence in DDD. The asterisks indicate results from a logistic regression testing whether 

there was a significant difference in phenotype prevalence between cohorts after controlling for 

sex and age (** indicates p-value < 0.05/43; * indicates p-value < 0.05). D) Proportion of 

probands recruited to both DDD and GEL (N=789) with at least one HPO term within the 

indicated chapter (black) or specific phenotype (green text) from the phenotype information from 

each program, ordered by the prevalence in DDD. The same logistic regression was used as in 

C).  
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Extended Data Fig3 

Extended Data Figure 3. Manhattan plot (A) and quantile-quantile plot (B) of GWAS meta-

analysis of neurodevelopmental conditions. We meta-analyzed the GWASs derived from DDD-

UKHLS (6,397 cases with neurodevelopmental conditions and 9,270 controls from UKHLS) and 

GEL (3,618 cases and 13,667 controls). We used overlapping SNPs with MAF >1% in both 

cohorts. The red line indicates the genome-wide significance threshold (5x10-8).  
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Extended Data Fig4  

Extended Data Figure 4. Average polygenic scores in undiagnosed (red) and diagnosed (blue) 

probands with neurodevelopmental conditions from DDD and GEL combined, as well as in MCS 

children reweighted to adjust for sampling bias and non-response bias (yellow). Subsets of 

probands with neurodevelopmental conditions and their parents from trios are shown in light red 

(undiagnosed subsets) and light blue (diagnosed subsets). The polygenic scores have been 

standardized such that the UKHLS+GEL controls have mean = 0 and standard deviation = 1 

(except for PGSNDC,DDD for which only GEL controls were used to standardise). Yellow horizontal 

lines indicate weighted average polygenic scores in MCS children, which should reflect an 

unbiased estimate for the background population. PGSNDC,DDD was tested in a held-out set of 

patients in DDD. Error bars show 95% confidence intervals. See also Supplementary Table 5 

and 7 for results of statistical tests of differences between groups.  
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Extended Data Fig5 

Extended Data Figure 5. A) Average polygenic score for educational attainment (PGSEA) in 

different control cohorts and subsets thereof, subsets of probands with neurodevelopmental 

conditions, and their unaffected parents. B) Comparing average PGSEA in trio probands and 

probands who did not have genetic data on both parents in ALSPAC, MCS, and affected 

patients from DDD and GEL. Note that in the case of DDD, “in trios” refers to those who had 

exome sequence data on both parents (only a subset of which also had genotype array data, 

since we prioritized genotyping full trios for which the child was undiagnosed), whereas in the 

rest of the manuscript (except for Figure 2B which uses the same definition as here), “trio 

proband” refers to those who had genotype data on both parents. C) Average polygenic scores 

for all five traits in MCS before and after reweighting to adjust for sampling bias and attrition. 

Note that the PGS are corrected for 20 PCs and then normalized so that a combined set of 

unrelated controls from UKHLS and GEL have mean = 0 and standard deviation = 1. Error bars 

show 95% confidence intervals.  
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Extended Data Fig6 

Extended Data Figure 6. Association between different configurations of affected relatives and 

the child’s PGSEA (left) or average diagnostic rate (right). Left: Average proband PGSEA in 

subgroups with different configurations of affected relatives based on the number of affected 

parents, siblings, and more distant relatives. Right: Odds ratio for having a monogenic 

diagnosis, compared to probands with no affected relatives. See Supplementary Methods for 

a description of how this was calculated. 
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Extended Data Fig7  

Extended Data Figure 7. A) Comparison of polygenic scores between undiagnosed male and 

female probands in DDD and GEL combined. We used all undiagnosed probands with 

neurodevelopmental conditions regardless of trio status in this analysis (N=1,426 females and 

N=2,427 males in DDD; N=112 females and N=146 males in DDD excluding GWAS samples; 

N=918 females and N=1,574 males in GEL). A positive difference indicates that female 

probands have higher PGS than male probands.  B) Comparison of polygenic scores between 

unaffected mothers and fathers of undiagnosed probands from a combined sample of 1,523 

trios and 1,343 trios from DDD and GEL, respectively. A positive difference indicates that 

mothers have higher PGS than fathers. C) pTDT results in undiagnosed female and male 

probands with unaffected parents (N=586 females and N=937 males in DDD; N=99 females 

and N=125 males in DDD excluding GWAS samples; N=490 females and N=853 males in GEL). 

Error bars show 95% confidence intervals. The significant result that passes Bonferroni 

correction of five tests is highlighted by two asterisks.  
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Extended Data Fig8 

Extended Data Figure 8. Exploring prenatal factors that may influence risk of 

neurodevelopmental disorders. (A) Genetic correlations between neurodevelopmental 

conditions and prenatal risk factors, before and after conditioning on educational attainment or 

cognitive performance. Genetic correlations with our GWAS meta-analysis for 

neurodevelopmental conditions was estimated using Linkage Disequilibrium Score Regression. 

Those conditioned on the GWAS summary statistics for educational attainment or cognitive 

performance were estimated using GenomicSEM. (B) Association between PGSs and 

prematurity, a risk factor for neurodevelopmental conditions, estimated in DDD. See 

Supplementary Table 8 for sample sizes. Note that for PGSNDC,DDD, probands who were 

included in the GWAS were not tested, which left 703 probands, of which 83 were born 

prematurely. A negative estimate indicates that probands who were born prematurely or their 

parents had a lower polygenic score. Associations that pass Bonferroni correction for five traits 

in (A) or five polygenic scores in (B) are indicated by two asterisks and nominally significant 

results by one asterisk. Error bars show 95% confidence intervals.  
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Extended Data Fig9 

Extended Data Figure 9. Causal effect estimates between educational attainment, 

neurodevelopmental conditions, and preterm birth from Mendelian randomization. The top 

panels show bi-directional relationships between educational attainment and giving birth 

prematurely, and between educational attainment and neurodevelopmental conditions, inferred 

by the Latent Heritable Confounder-Mendelian randomization method (LHC-MR), which uses 

all genome-wide SNPs. αX->Y indicates the causal effect of the exposure (X) on the outcome (Y) 

and αY->X indicates the reverse causal effect. The causal effects of the heritable confounder on 

the exposure and the outcome are annotated as tX and tY, respectively. The forest plots on the 

bottom show the causal effects inferred using the standard Mendelian randomization methods. 

Up to four different methods were used, as indicated in the legend, but not all were used to test 

each hypothesis, depending on the number of instruments available (see Supplementary 

Methods). The dots show point estimates and the lines are 95% confidence intervals calculated 

using standard errors. Estimates that are significant are highlighted with an asterisk and exact 

p-values are annotated.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.05.24303772doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303772
http://creativecommons.org/licenses/by/4.0/


 

39 

Extended Data Fig10 

Extended Data Figure 10. Association coefficients of polygenic scores (PGSs) and rare variant 

burden scores (RVBS) in the ‘proband only’ and ‘trio’ models, from logistic regressions of 

case/control status within GEL (N=1,343 trios in which the proband with a neurodevelopmental 

condition is undiagnosed and parents are unaffected and 872 trios without neurodevelopmental 

conditions). Case/control status was regressed on either the child’s PGS, the child’s PGS and 

child’s RVBS, all three trio members’ polygenic scores (trio model), or all three trio members’ 

polygenic scores and RVBSs (trio model+RVBS). The RVBS was defined as the number of rare 

damaging PTVs and missense variants in constrained genes (requiring these to be inherited in 

the child), corrected for genetic principle components.  

 

Supplementary Data 

Supplementary Data 1. Summary statistics from the GWAS of neurodevelopmental 

conditions comparing cases to controls within the Genomics England (GEL) 100,000 

Genomes Project. 

 

Supplementary Data 2. Summary statistics from the GWAS of neurodevelopmental 

conditions comparing DDD cases to UKHLS controls, excluding the Scottish samples from 

DDD. 

 

Supplementary Data 3. Summary statistics from the GWAS meta-analysis of 

neurodevelopmental conditions combining the DDD and GEL GWASs. 
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Supplementary Tables 

Supplementary Methods 

Supplementary Figures 

Supplementary Notes  

Supplementary Note 1: Phenotypic comparisons of the cohorts 

Supplementary Note 2: Genome-wide significant hits from the GWAS meta-analysis of 

neurodevelopmental conditions  

Supplementary Note 3: Potential ascertainment biases in control cohorts and their effects 

Supplementary Note 4: Examining sex differences in polygenic risk 
Supplementary Note 5: Exploring the role of prenatal risk factors in mediating common variant 
risk 
Supplementary Note 6: Role of PGS in modifying the penetrance of rare variants  
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