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Abstract  

Polygenic risk scores (PRSs) depend on genetic ancestry due to differences in allele frequencies 

between ancestral populations. This leads to implementation challenges in diverse populations. 

We propose a framework to calibrate PRS based on ancestral makeup. We define a metric 

called “expected PRS” (ePRS), the expected value of a PRS based on one’s global or local 

admixture patterns. We further define the “residual PRS” (rPRS), measuring the deviation of the 

PRS from the ePRS. Simulation studies confirm that it suffices to adjust for ePRS to obtain 

nearly unbiased estimates of the PRS-outcome association without further adjusting for PCs. 

Using the TOPMed dataset, the estimated effect size of the rPRS adjusting for the ePRS is 

similar to the estimated effect of the PRS adjusting for genetic PCs. Similarly, we applied the 

ePRS framework to six cardiovascular-related traits in the All of Us dataset, and the results are 

consistent with those from the TOPMed analysis. The ePRS framework can protect from 

population stratification in association analysis and provide an equitable strategy to quantify 

genetic risk across diverse populations. 
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Introduction 
 
Polygenic risk scores (PRS) combine information from multiple genetic variants, summarizing 

disease risk due to genetics into a single score. They are typically constructed based on 

summary statistics from genome-wide association studies (GWAS). PRSs are now being 

incorporated into the clinic (1,2). Potential applications of PRS in healthcare settings include 

disease risk screening, risk prediction, and identification of target populations that may benefit 

from early interventions; all are the ultimate goals of precision and preventive medicine (3–5). 

Using PRS in multi-ancestry populations has received increasing attention due to the 

recognition that genomics research has been “failing on diversity” (6), with most genetic studies 

being carried out in populations of European ancestry. Consequently, PRS performance is lower 

in populations that are not of European ancestry or that have some European ancestry admixed 

with other continental ancestries (7). Aside from efforts to increase the diversity of GWAS 

participants, recent PRS research has proposed to improve upon PRS in individuals of diverse 

ancestries by combining information from summary statistics from multiple GWASs, each from 

a different genetic ancestry, while borrowing information across (8,9). However, there is still a 

gap in PRS performance between individuals of European ancestry and of other diverse 

populations (10,11). 

 

To alleviate population stratification bias in association studies, adjusting for principal 

components (PCs) constructed using genome-wide genetic data is a standard procedure. 

Recently, the “ancestry-adjusted PRS” method was utilized to analyze diverse populations 

(4,12,13), where PCs are regressed out of the PRS via a linear model, and then the PRS-outcome 
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 5 

association is estimated with the residuals from the first stage regression model. Khera et al. (4) 

showed that the ancestry-adjusted PRS had similar distribution across diverse populations, 

which indicated the removal of ancestry-related genetic effects. However, different studies may 

adjust for different number of PCs, and the meaning of PCs are inequivalent across different 

datasets. Furthermore, PCs can only capture global genetic structure and not local ancestry 

pattern. Hence, it still needs to be determined whether the adjustment of PCs in PRS-outcome 

association analyses in admixed population is sufficient to account for unknown ancestry-

related confounding due to the complex admixture pattern (14–16).  

 

Motivated by the challenges of using PCs in the translation of PRS for clinical use in diverse 

populations, we aim to propose a new method in which the ancestry-related factors that cause 

the differences in the distribution of PRS between populations can be captured by a single 

variable, and the interpretation is identical across datasets. The intuitive difference in PRS 

distribution between populations is that they have different baseline genetic characteristics, 

i.e., the mean of the PRS distribution, which is caused by the difference in ancestry composition 

and ancestry-specific allele frequency. Therefore, if the baseline genetic value of each individual 

can be computed, the corresponding PRS can be calibrated to obtain a distribution that is 

homogeneous across populations. Because the calibrated PRS is now independent of genetic 

ancestry, utilizing a single threshold to classify individuals into high- or low-risk groups across 

diverse populations is feasible, which achieves the goal of equitably quantifying genetic risk. 
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Based on the above rationale, this work introduces a novel framework that uses individual’s 

genetic ancestry composition in PRS construction. This framework can be applied in 

combination with many existing strategies to develop PRSs, as it does not deal with selection of 

variants and weights, but rather with the use of PRSs in ancestry-heterogenous populations. 

We propose a metric called expected PRS (ePRS), in which the expected value of a PRS is 

calculated based on either their global ancestry proportions or their local ancestry pattern. 

Therefore, the ePRS can be interpreted as the baseline trait-specific genetic parameter based 

on an individual's ancestral composition. Coupled with ePRS, we introduce another two 

metrics: the residual PRS (rPRS), which measures the deviation of the PRS from its expected 

mean according to admixture patterns (i.e., from the ePRS), and the quantile PRS (qPRS), 

defining the distribution-based percentile of the PRS accounting for both the ePRS and its 

variability. Therefore, the rPRS and qPRS can distinguish genetic risk between individuals 

regardless of their genetic ancestry patterns. We performed simulation studies to examine 

whether our proposed method can provide a nearly unbiased estimation of the PRS-outcome 

effect by adjusting for ePRS in the association model. Other standard adjustment procedures 

are considered as comparators. We applied our method to analyze data from the Trans-Omics 

for Precision Medicine (TOPMed) study and compare the PRS-outcome effect estimation with 

the standard PC-adjusted approach. We also implemented the ePRS framework in the All of Us 

(AoU) research program to analyze six cardiovascular disease (CVD)-related traits, 

demonstrating the generalizability of our proposed method for multi-ancestry PRS analysis.  
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Results 
 
PRS-outcome association model 

The underlying PRS-outcome association model is provided by:  

𝑔(𝐸(𝑌)) = 𝛽! + 𝑿"𝜹# + 𝛽$ × 𝑃𝑅𝑆 + 𝛾 × 𝑈%  (1) 
 

In equation (1), 𝑌  is the trait of interest. The PRS of individual 𝑖, 𝑃𝑅𝑆& = ∑ 𝜔'
(
')$ × 𝑔&' , is 

calculated by the aggregation of SNP allele effect sizes 𝜔' , 𝑗 = 1, 2, … , 𝑝 and the individual allele 

counts 𝑔&' , 𝑗 = 1, 2, . . , 𝑝. The parameter of interest is 𝛽$, representing the effect size of the PRS-

outcome association; 𝑿 is a vector of covariates and 𝜹 is the vector of corresponding effect sizes; 

and 𝑈%  is an unknown ancestry-related genetic factor, which may confound the PRS-outcome 

relationship (population stratification bias), and 𝛾 is its effect.  The function 𝑔(⋅) is known as the 

link function, relating the outcome distribution to the covariates.  

 

Overview of the ePRS framework 
 
We define the ePRS as the expectation of individual’s polygenic risk score 𝑒𝑃𝑅𝑆& = 𝐸(𝑃𝑅𝑆&). The 

ePRS provides the baseline genetic characteristic based on one’s ancestry composition. We 

define the residual PRS (rPRS) as the difference between PRS and ePRS, i.e., 𝑟𝑃𝑅𝑆& = 𝑃𝑅𝑆& −

𝑒𝑃𝑅𝑆&. The rPRS can be used to compare genetic risk between individuals with different genetic 

ancestry composition. The working association model in the ePRS framework is illustrated in 

equation (2) 

𝑔(𝐸(𝑌)) = 𝛽?! + 𝑿"𝜹@# +	𝛽?$ × 𝑟𝑃𝑅𝑆 + 𝜑 × 𝑒𝑃𝑅𝑆 (2) 
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One can see that both the rPRS and the ePRS are used as covariates in the model. The estimated 

effect of the rPRS is equivalent to the estimated effect of the PRS in a standard association model. 

Importantly, the ePRS is used to control for stratification bias, instead of the standard adjustment 

for genetic PCs.  This is illustrated in Figure 1a, where one can see that the ePRS blocks the “back 

door path” from the unknown genetic factors (𝑈%  from equation (1)) that are related to ancestry 

by having ancestry-related differences in allele frequencies.  

 

To focus on the phenomena of interest (population stratification bias), in this work we assume 

that the SNP effect size 𝜔' , are fixed and known values, and this work does not discuss 

uncertainty in their estimation nor potential differences in effects across genetic ancestries. To 

model the allele count of each variant and each individual, we assume that 𝑔&'  follows a mixture 

distribution based on individual 𝑖’s ancestry makeup:  

𝑔&'~∑ 𝜋&* × 𝑃*(𝑔'; 	𝑓'
+!),

*)$ , (3) 
 

with 𝐾 being the number of genetic ancestries 𝑎& ∈ {𝑎$, 𝑎-, … , 𝑎,}; 𝑓'
+!  is the ancestry-specific 

allele frequencies of allele 𝑗 in ancestry 𝑘 𝑗 = 1, 2, … , 𝑝; 𝑘 = 1, 2, … , 𝐾; 𝑃*(𝑔'; 	𝑓'
+!) is the 

Binomial distribution 𝐵𝑖𝑛O2, 𝑓'
+!P; 𝜋&* represents the proportion of the entire genome of 

individual 𝑖 inherited from ancestral population 𝑘, i.e., the global ancestry proportion. We 

assume that 𝜋&* are known. Note that if 𝜋&* = 1 for a specific 𝑘 ∈ {1,… , 𝐾}, equation (3) 

reduces to a standard allele count model without admixture. We can use global ancestry 

proportions to calculate the “global” ePRS (gePRS) as: 

𝑔𝑒𝑃𝑅𝑆& = ∑ 𝜔'
(
')$ × Q∑ 2 ×,

*)$ 𝑓'
+! × 𝜋&*R. (4) 
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 9 

 

With rearrangement of terms in equation (4), for individual 𝑖 the global ePRS can be expressed 

as a weighted combination of ancestry-specific ePRSs, with weights being their global ancestry 

proportions. If the 𝑝 variants are independent, the variance of the PRS conditional on the global 

ancestry proportions is:  

𝑉𝑎𝑟(𝑃𝑅𝑆&) =TU𝜔'V
-

(

')$

× WT2 ×
,

*)$

𝑓'
+! × (1 − 𝑓'

+!) × 𝜋&*X. (5) 

 

If the ancestry makeup is available in each locus (local ancestry), we can also derive local ePRS 

(lePRS). Assuming that each chromosomal copy's local ancestry is known and fixed, we now use 

the binomial distribution with count of 1 for chromosomal copy m=1,2, i.e. 𝑔&'.|𝑎&'. =

𝑎*~𝐵𝑒𝑟(1, 𝑓'
+!). Exploiting the same strategy of deriving global ePRS, the local ePRS can be 

written as  

𝑙𝑒𝑃𝑅𝑆& = ∑ 𝜔' × (𝑓'
+"#$ + 𝑓'

+"#%)(
')$ . (6) 

 

And the variance of PRS based on local ancestry is provided in equation (7): 

𝑉𝑎𝑟(𝑃𝑅𝑆&) = TU𝜔'V
-

(

')$

× Q𝑓'
+"#$ × O1 − 𝑓'

+"#$P + 𝑓'
+"#% × O1 − 𝑓'

+"#%PR. (7) 

 

More details about the ePRS framework and derivations can be found in the Methods section.  

 

The mean and variance of a PRS (based on either global or local ancestry patterns) can next be 

used to construct a third metric: the quantile PRS (qPRS). We assume that given the mean and 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.03.05.24303738doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303738
http://creativecommons.org/licenses/by/4.0/


 10 

variance, the distribution of the PRS for individual 𝑖 follows the Normal distribution with mean 

𝐸(𝑃𝑅𝑆&) and variance Var(𝑃𝑅𝑆&), i.e., 

𝑃𝑅𝑆&|	𝐸(𝑃𝑅𝑆&), 𝑉𝑎𝑟(𝑃𝑅𝑆&)~𝑁(𝜇 = 𝐸(𝑃𝑅𝑆&), 𝜎- = 𝑉𝑎𝑟(𝑃𝑅𝑆&)). (8) 
 

The qPRS then can be computed as  

𝑞𝑃𝑅𝑆& = Φ(𝑃𝑅𝑆&; 	𝜇 = 𝐸(𝑃𝑅𝑆&), 𝜎- = 𝑉𝑎𝑟(𝑃𝑅𝑆&)). (9) 
 

where the notation Φ is the cumulative Normal distribution function. Thus, the qPRS is a 

person-specific percentile of PRS value conditional on an individual’s ancestral makeup. The 

schematic illustration of the ePRS framework as well as example distributions of PRS, ePRS and 

rPRS for body mass index (BMI) in the TOPMed datasets are shown in Figure 1.  
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Figure 1: Schematic overview of the ePRS framework 
 

 

Panel a: Directed acyclic graph demonstrating that the ePRS blocks a pathway between the PRS and unknown 
confounding genetic measures 𝑈&. Panel b: The rPRS is computed by subtracting the value of the ePRS from that 
of the PRS. The ePRS is determined according to an individual’s ancestral makeup. Panel c:  The distribution of 
BMI and its PRS, ePRS, and rPRS in the TOPMed dataset. The distributions stratified based on harmonized self-
reported race/ethnicity. 
Abbreviations: BMI: body mass index; PRS: polygenic risk scores; ePRS: expected polygenic risk scores; rPRS: 
residual polygenic risk scores; TOPMed: Trans-Omics for Precision Medicine. 

 

Results from simulation studies 
 
Overview of the simulation settings 
 
We conducted extensive simulation studies to examine the estimation performance of PRS-

outcome association (𝛽$ in equation (1)) when using the ePRS framework in comparison with 

other possible association models. We simulated a few ancestry makeup patterns and used 

them to generate a PRS and an unobserved confounder 𝑈% . Figure 2 provides an overview of 

the procedure for generating global and local ancestries as well as the PRS, the unknown 

genetic confounder 𝑈% , and the outcome. To guide the definition of the simulated PRS, we used 
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summary statistics from a GWAS of systolic blood pressure (SBP) of the UK Biobank and ICBP 

consortium (17). We used the top 100 SNPs after clumping using PLINK and extracted their 

estimated effect sizes from the GWAS as the true variant weights. The ancestry-specific 

frequencies 𝑓'
/!  of these SNPs were taken to be the estimated ancestry-specific frequencies 

from the global ancestry-specific allele frequency estimation in admixed populations (GAFA) 

procedure applied over the TOPMed dataset (18). Two types of PRSs were considered in our 

simulations: homogenous weighting PRS, where the variant weights are set to be the same 

across ancestries, and heterogenous weighting PRS, where some of the weights are ancestry-

specific (see Methods).  We simulated the unknown confounder 𝑈%  in a few forms 

(Supplementary Table 1), and it was generally sampled to be ancestry-related using a similar 

strategy to the PRS. Further, a few forms of 𝑈%  were a weighted sum of alleles, just like a PRS.  

Thus, similar to the simulation of the main PRS, we used summary statistics from GWAS to 

guide the selection of SNPs to inform of ancestry-specific allele frequencies and weights.  SNPs 

were sampled from either the UKBB-ICBP SBP GWAS (conf-PRS1) or from the SBP GWAS of the 

Million Veteran Program (MVP), in which case, top SNPs that were highly common (MAF > 0.4) 

in African ancestry and relatively rare (MAF < 0.1) in European ancestry were used (conf-PRS2). 

We also used a single variant or a combination of two variants as genetic confounders, again 

enriching for African frequency. The purpose of simulating alleles that are common in one 

particular ancestry was to create a strong genetic ancestry confounding effect. For comparison, 

we also set the “unobserved” confounder to be a known (i.e., observed) genetic principal 

component (conf-pc*), essentially another weighted sum of SNPs. Notably, in all simulations 

other than when using a conf-pc* as a confounder (for benchmarking purposes), the 
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association model is always different than the data generating model. The PRS value considered 

in each association model (compare with data generating model) is the homogenous weighting 

PRS, which forms a model misspecification scenario when the underlying model is generated by 

the heterogeneous weighting PRS. We summarized the settings and the rationale for creating 

different simulation scenarios in Supplementary Note 1 and Supplementary Table 1. 

Comprehensive details about the simulation studies are provided in the Methods section.  

 

Figure 2: Visual illustration of the data generating mechanism in simulations  

 

To generate data in simulations we used the 5 steps illustrated above. In step 1 we sampled global proportions 
of ancestry for each individual assuming 3-way admixture. Step 2 sampled the local ancestry at each SNP, on 
each chromosomal copy, according to the proportions of ancestry. Step 3 used the local ancestry at each SNP 
position and copy to sample an allele from a Bernoulli distribution (with the probability was set as the ancestry-
specific allele frequency). Step 4 summed alleles with weights to obtain a PRS and genetic confounder (𝑈&). Step 
5 simulated the outcome from a regression model that includes an intercept, the PRS, the unobserved 
confounder, and normally distributed errors.  
Abbreviations:  PRS: polygenic risk score; SNP: single nucleotide polymorphism. 
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Simulation results: estimation performance of the PRS-outcome association in the ePRS 

framework 

Selected results from simulation studies are shown in Figures 3 to 5, demonstrating that: (a) the 

estimated effect size of rPRS when adjusting for either global or local ePRS in the model is 

unbiased for 𝛽$ (Figure 3); (b) if the unknown genetic confounders share similar local ancestry 

intervals with the variants that make up the PRS of interest (conf-PRS1 setting), adjusted lePRS 

in the association model results in more efficient estimation than gePRS (Figures 3 and 4); (c) 

setting strong genetic ancestry confounding (conf-PRS2) causes biased estimates and 

dramatically increases the MSE of the estimated 𝛽$ in models that do not adjust for ePRSs 

(none and conf-pc*) but has nearly no increase in bias when applying the ePRS framework 

(Figures 3 and 4); (d) in the setting where the underlying simulated model is homogenous 

weighting PRS with conf-pc* confounding, the ePRS framework performed comparably to the 

benchmark model (conf-pc*) and outperformed other competing approaches (Figures 3 and 4); 

(e) compared with the approach that adjusts for PCs in the model, in which the PCs were 

computed based on the genetic data that generated the PRS of interest, the ePRS framework 

has smaller variance of 𝛽$ estimates (Figure 3) and smaller MSE (Figure 4); (f) estimation using 

the ePRS framework is more robust to PRS model misspecification (heterogeneous weighting 

PRS setting, Figures 3 and 4); (g) the efficiency in the estimation of 𝛽$ decreases (i.e., increased 

MSE) as the effect size 𝛾 of the genetic confounder, but the increase in MSE is less severe when 

using the ePRS framework (Figure 5). Full results from these simulations are provided in 

Supplementary Note 1 and Supplementary Figures 1 to 3.  
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Supplementary Note 2 provides comprehensive results from secondary simulations. Specifically, 

we conducted additional simulations: (a) sensitivity analyses to examine the performance of the 

ePRS approach under the assumption that random error exits in the global or local ancestry 

inference (Supplementary Figure 4); (b) simulation studies demonstrating that the estimated 

effect of the ePRS is related to the strength of the unknown genetic confounding effect 

(Supplementary Figures 5 and 6); and finally (c) simulations demonstrating the use of quantile 

PRS (qPRS) in binary trait risk classification analyses (Supplementary Figure 7). Each of the 

global and local qPRS approaches may outperform the other in some settings.  

 

Figure 3: PRS effect size estimates in simulation studies  

 

The figure provides box plots of the distribution of estimated effect sizes of the PRS ( 𝛽#') across simulation settings. 
Results on the top row correspond to data generating model with homogenous weighting PRS, and results in the 
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bottom row correspond to heterogeneous weighting PRS. Columns correspond to four forms of confounding factors 
defined in the data generating model: conf-PRS1, conf-PRS2, conf-pc*, and no confounding (from the left to the right). 
Each panel provides boxplots visualizing distributions of  𝛽#' obtained in 7 association analysis models, with the y-axis 
representing 𝛽#' values. The true value, 𝛽' = 1.5, is highlighted as a red dotted line. Association analyses that estimate 
(standard) PRS effect while adjusting to covariates include PC10, PC20 (adjusting for top 10 and 20 genetic PCs, 
respectively), none (no covariate adjustment), conf-pc* (adjustment for a known confounder, for benchmarking), and 
gaProp (adjustment for global proportions of ancestry). Association analyses applying the ePRS framework include 
gePRS and lePRS (estimation of rRPS effect adjusting for ePRS, based on global and local models, respectively). 
Distributions are provided from 1000 simulation repetitions.  
Abbreviations: conf: confounding; ePRS: expected PRS; gePRS: global ancestry expected PRS; lePRS: local ancestry 
expected PRS; PC: principal component; PRS: polygenic risk score; gaProp: global ancestry proportion. 

 

Figure 4: Mean squared error of PRS effect size estimates in simulation studies 

 

The figure provides bar plots visualizing the MSE of estimated effect sizes of the PRS (𝛽#') across simulation settings. 
Results on the top row correspond to data generating model with homogenous weighting PRS, and results in the 
bottom row correspond to heterogeneous weighting PRS. Columns correspond to four forms of confounding factors 
defined in the data generating model: conf-PRS1, conf-PRS2, conf-pc*, and no confounding (from the left to the right). 
Each panel provides bars with heights corresponding to the MSE of  𝛽#' estimated in 7 association analysis models. 
Association analyses that estimate (standard) PRS effect while adjusting to covariates include PC10, PC20 (adjusting 
for top 10 and 20 genetic PCs, respectively), none (no covariate adjustment), conf-pc* (adjustment for a known 
confounder, for benchmarking), and gaProp (adjustment for global proportions of ancestry). Association analyses 
applying the ePRS framework include gePRS and lePRS (estimation of rRPS effect adjusting for ePRS, based on global 
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and local models, respectively). MSEs were computed over 1000 simulation repetitions. Intervals around the 
estimated MSE correspond to the MSE +/- one estimated standard error.  
Abbreviations: MSE: mean square error; conf: confounding; ePRS: expected PRS; gePRS: global ancestry expected PRS; 
lePRS: local ancestry expected PRS; PC: principal component; PRS: polygenic risk score; gaProp: global ancestry 
proportion. 

 
 

Figure 5: Estimation performance of the PRS effect size across increasing strength of the 
unknown genetic ancestry-related confounding factor 

 

The figure provides the estimated MSE of the estimated PRS effect size (𝛽#') across simulation settings and analysis methods. 
Results on the top row correspond to data generating model with homogenous weighting PRS, and results in the bottom 
row correspond to heterogeneous weighting PRS. Columns correspond to four forms of genetic ancestry-related 
confounding factors defined in the data generating model: conf-PRS1, conf-PRS2, conf-pc*, and no confounding (from the 
left to the right). Each panel provides MSE (y-axis) obtained across 1000 simulation repetitions with association analyses 
using 7 combinations of PRS and adjustment approaches, and across 3 simulated effect sizes (𝛾) of the genetic ancestry-
related confounder. In this simulation, we fixed 𝛽' = 1.5 in the data generating model across all settings. Association 
analyses that estimate (standard) PRS effect while adjusting to covariates include PC10, PC20 (adjusting for top 10 and 20 
genetic PCs, respectively), none (no covariate adjustment), pc* (adjustment for a known confounder, for benchmarking), 
and gaProp (adjustment for global proportions of ancestry). Association analyses applying the ePRS framework include 
gePRS and lePRS (estimation of rRPS effect adjusting for ePRS, based on global and local models, respectively). MSEs were 
computed over 1000 simulation repetitions. Intervals around the estimated MSE correspond to the MSE +/- one estimated 
standard error. 
Abbreviations: MSE: mean square error; conf: confounding; ePRS: expected PRS; gePRS: global ancestry expected PRS; 
lePRS: local ancestry expected PRS; MSA: mean squared error; PC: principal component; PRS: polygenic risk score; gaProp: 
global ancestry proportion. 
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PRS association analyses in the Trans-Omics for Precision Medicine (TOPMed) dataset  

The TOPMed dataset provides aggregated whole genome sequencing (WGS) data from 

individuals from multiple parent studies representing genetically (and environmentally) diverse 

populations. We applied the ePRS framework to estimate the associations of a few PRSs with 

their outcomes in the TOPMed dataset. We considered five continuous phenotypes: body mass 

index (BMI), diastolic blood pressure (DBP), systolic blood pressure (SBP), high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), and two binary outcomes: venous 

thromboembolism (VTE) and obstructive sleep apnea (OSA). Across traits, up to 49,626 

individuals were included in a given analysis, with sample sizes and parent studies of 

participants varying across traits. Supplementary Table 2 characterizes TOPMed participants in 

the continuous trait analyses, Supplementary Table 3 provides summary statistics of these 

continuous traits in the sample. Supplementary Tables 4 and 5 characterize TOPMed 

participants in the VTE and OSA analyses, respectively. Supplementary Table 6 provides the 

number of individuals participating in each of the analyses (combined and broken down by 

harmonized self-reported race/ethnicity). 

 

Characteristics of PRS, ePRS, and rPRS across TOPMed individuals and traits 

Figure 6 illustrates the impact of genetic ancestry on BMI and LDL PRSs. Panel a shows that the 

distribution of conventional PRS differ across self-reported race/ethnicity groups, where African 

American individuals have higher BMI PRS values and lower LDL PRS values, compared to other 

groups. This is driven by their ancestral makeup, as demonstrated by the ePRS distributions. In 

contrast, the rPRS distributions are similar across self-reported race/ethnicity groups and are 
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centered around zero. Panel b provides another view of the ePRS and PRS relationship. For 

example, it demonstrates that the highly admixed groups, such as African American and 

Hispanic/Latino individuals, have large variation in ePRS values, while genomes of most Asian 

and European individuals have little admixture. Panel c demonstrates that while African 

American individuals are enriched in high BMI and low LDL PRS values, this pattern disappears 

when using the rPRS and the qPRS. Supplementary Figures 8-14 provide similar visualizations 

for other traits (SBP, DBP, HDL, OSA, and VTE). 

 

Figure 6: Patterns of BMI and LDL ePRS-related measures in TOPMed participants 

 

Panel a: BMI and LDL PRS, global ePRS, and global rPRS distributions in TOPMed participants. Panel b: The 
relationship between BMI and LDL PRSs and global ePRSs. Each point represents an individual's global ePRS (y-
axis) and PRS (x-axis) values. Panel c: Scatterplots visualizing, on the x-axis, percentiles of PRS, global rPRS, and 
global qPRS, against mean values of the corresponding phenotypes (y-axis), averaged across individuals with the 
corresponding PRS, rPRS, or qPRS percentile. For instance, for each phenotype and PRS measure, individuals 
were binned into 100 strata defined by PRS measure percentiles. The color of a given point corresponds to the 
proportion of African American individuals among individuals in the relevant percentile stratum. Darker color 
reflects a higher proportion of African American individuals. Global ePRSs were constructed based on each 
individual’s global ancestry proportion and the ancestry-specific allele frequency estimated using GAFA.  
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Abbreviations: TOPMed: Trans-Omics for Precision Medicine; BMI: body mass index; LDL: low-density 
lipoprotein; PRS: polygenic risk score; ePRS: expected PRS; rPRS: residual PRS; qPRS: quantile PRS. 

 
 
Estimation of PRS-outcome associations 

We apply the ePRS framework to estimate PRS-outcome associations and compare the results 

to those from association models using conventional PRS and adjusting for genetic PCs or the 

estimated global ancestry proportions. When using the ePRS framework, we estimated the 

association of the rPRS while adjusting for the corresponding ePRS (global or local), computed 

with ancestry-specific allele frequencies calculated by GAFA.  

 

Figure 7 shows the estimated effect sizes of the PRSs and of the rPRSs with their 95% 

confidence intervals. Results are provided from multi-population analysis, and stratified by self-

reported race/ethnicity groups. The results from the multi-population analyses show that all 

four models had similar estimates, matching what we observed in simulation studies. In some 

cases, local ePRS analysis resulted in slightly higher estimated effect sizes (this is more apparent 

for DBP). The estimates obtained via multi-population analyses are close to those from the 

European American population, as it usually dominates other populations in sample size 

contribution. The estimates corresponding to the Asian American group have large standard 

errors due to small sample sizes. Generally, effect estimates often differ across race/ethnic 

groups. For example, the estimated effect sizes in the Asian American group are substantially 

lower than other groups for LDL and HDL traits. The estimated effect size for the African 

American group is higher than others for OSA (BMI adjusted) and HDL; however, the estimated 

effect sizes are lower than other three populations for most of the other traits. All association 
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analysis results, including the estimated effect sizes, standard error, sample size used for each 

trait, are summarized in Supplementary Data 1.  

 

In secondary analysis we developed genome-wide PRSs using LDpred2 (19), and constructed 

PRS, ePRS, and rPRS for each trait. The estimated PRS-outcome associations across all traits are 

similar between the ePRS framework and conventional association models (adjusting for 

genetic PCs or global ancestry proportions), with the same conclusion as the primary analyses. 

Details of secondary data analysis are summarized in Supplementary Note 4, Supplementary 

Figure 15, and Supplementary Data 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://sciwheel.com/work/citation?ids=10216417&pre=&suf=&sa=0&dbf=0
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Figure 7: The estimated PRS-outcome effect sizes for TOPMed studies traits. 

 

Estimated PRS-outcome effect sizes (y-axis) and their corresponding 95% confidence intervals in the TOPMed 
dataset. Conventional PRS model estimated the PRS effect size by either adjusting for genetic PCs or for global 
ancestry proportions. For the ePRS model, we show the estimated rPRS effect size either adjusting for global or 
local ePRS. Estimated association are provided, for each trait, for the combined dataset (Multi), and stratified by 
self-reported race/ethnicity. For continuous traits (BMI, SBP, DBP, HDL, and LDL), effect sizes are in the original trait 
scale (kg/m2, mmHg, mmol/L). OSA and VTE are binary traits, and their estimated effect sizes are in the log odds 
ratio scale. For OSA, we provide results for two OSAs: OSA_bmi_adj and OSA_bmi_unadj, based on GWAS that did 
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and did not adjust for BMI, respectively. Due to the limited sample size, we did not perform an Asian-specific 
analysis of VTE. More details of the analytic approaches for all the analyses can be found in the Methods section. 
Abbreviations: BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL: high-density 
lipoprotein; LDL: low-density lipoprotein; OSA: obstructive sleep apnea; VTE: venous thromboembolism; Multi: 
Multi-ethnic; EA: European American; AA: African American; HA: Hispanic/Latino; AsA: Asian American; PRS: 
polygenic risk score; PC: principal component; gaProp: global ancestry proportion; gePRS: global ancestry expected 
PRS; lePRS: local ancestry expected PRS. 
 

Analysis of CVD-related traits in All of Us (AoU) research program 

We applied the proposed ePRS framework to the AoU dataset using publicly-available 

resources. This analysis focused on six CVD-related phenotypes: atrial fibrillation (AF), coronary 

artery disease (CAD), chronic kidney disease (CKD), heart failure (HF), hypertension (HTN), and 

type 2 diabetes mellitus (T2DM), which are all binary outcomes. We used short-read whole-

genome sequencing (srWGS) genetic data (version 7), restricting the analysis to variants with a 

population-specific allele frequency (AF) ≥ 1% or a population-specific allele count (AC) > 100. 

Summary statistics for PRS computation were obtained from the PGS Catalog. For computing 

ePRS, we used ancestry-specific allele frequencies from gnomAD (version 3.1.2), which align 

with the ancestry definitions in AoU. This analysis focused on computing global ePRS, which 

was derived using the global ancestry proportions estimated for each individual in the AoU 

Research Program. The characteristics of AoU participants and the selected phenotypes are 

summarized in Supplementary Tables 8 and 9, while details of the PGS (PGS catalog IDs, 

number of variants) used for PRS computation are provided in Supplementary Table 10. 

Additional details on the AoU analysis are available in the Methods section and Supplementary 

Note 5. 
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Figure 8 summarizes the results. We compared the estimated PRS-outcome associations 

obtained using the proposed approach, which adjusts for global ePRS, with the estimates 

derived from models either adjusting for genetic PCs or global ancestry proportions. We also 

included a method that uses PC-adjusted PRS (denoted as PC* in the figure) as covariate 

instead of PRS, following the procedure described in (4), for comparison. Overall, the PRS-

outcome association estimates were consistent between the models adjusted for global ePRS 

and global ancestry proportions and, in most cases, were similar to those from models adjusted 

for PCs. However, using PC-adjusted PRS as the PRS measure, particularly for binary traits, led 

to underestimation of the PRS effect size estimates, as observed in the analyses of CAD and 

T2DM. This underestimation is because the standard deviation (SD) of the PC-adjusted PRS was 

sometimes very different than the SD of the PRS (prior to its regression on PCs), leading to 

these differences in effect sizes measured per 1 SD of the PRS measure. The characteristic of 

the PRSs, ePRSs, rPRSs, and qPRSs across AoU individuals and the considered traits are 

summarized in Supplementary Figures 16-20. 

 

  

https://sciwheel.com/work/citation?ids=6246183&pre=&suf=&sa=0&dbf=0
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Figure 8: Estimated PRS-outcome effect sizes in AoU analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimated PRS-outcome effect sizes (y-axis) and their corresponding 95% confidence intervals in the AoU 
dataset. The conventional PRS model estimated the PRS effect size by adjusting either for genetic PCs or for 
global ancestry proportions. For the ePRS model, we report the estimated rPRS effect size, adjusted for global 
ePRS. We also include the effect size of PC-adjusted PRS (denoted as PC*), further adjusted for PCs in the 
association analysis, for comparison. Estimates are provided for each trait in the combined dataset (labeled 
“Multi”) and stratified by self-reported race/ethnicity. Effect sizes are reported on the log odds ratio scale. 
Further details on the analytical approaches used in all analyses can be found in the Methods section. 
Abbreviations: AF: atrial fibrillation; CAD: coronary artery disease; CKD: chronic kidney disease; HF: heart failure; 
HTN: hypertension; T2DM: type 2 diabetes mellitus; Multi: Multi-ethnic; EA: European American; AA: African 
American; HA: Hispanic/Latino; AsA: Asian American; PRS: polygenic risk score; PC: principal component; 
gaProp: global ancestry proportion; gePRS: global ancestry expected PRS.  
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Discussion 

We proposed an individual-level metric, the ePRS, calculated according to one’s ancestral 

makeup, to provide an equitable way to quantify genetic risk across diverse populations. By 

“equitable” we mean that an individual of a specific genetic ancestry will not be automatically 

annotated has “high” or “low” risk due to their ancestry, and that the same PRS would be useful 

independently of population descriptors such as genetic ancestry, or race and ethnicity (which 

are noisy correlates of genetic ancestry and have no biological meaning). By its definition, the 

ePRS can be considered as the baseline genetic characteristic of an individual according to their 

specific ancestry composition. The ePRS forms a basis for standardizing PRS across diverse and 

admixed individuals. We showed that adjustment for the ePRS accounts for population 

stratification in PRS-outcome association studies: we conducted several simulation studies and 

confirmed that it is sufficient to adjust for ePRS to obtain nearly unbiased estimates of the PRS-

outcome associations, while adjustment for PCs (with or without the ePRS) does not improve 

parameter estimates. The homogeneous distribution of rPRS across different populations 

further demonstrates the usefulness of calibrating a PRS by the ePRS. We applied this 

framework to study PRS associations with 7 phenotypes in the TOPMed dataset. Across 

phenotypes, the estimated effect size of the rPRS adjusting for the ePRS is similar to the 

estimated effect of the PRS adjusting for genetic PCs or global ancestry proportion. 

 

PRS distributions are affected by allele frequencies. As frequencies vary between groups 

defined by genetic ancestry patterns, PRS distributions may differ between groups, limiting the 

interpretation of an observed PRS value of an individual who is compared to other individuals 
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with different genetic makeup. One of the novelties of our ePRS framework is the 

conceptualization of personalized PRS distribution based on one’s genetic ancestry makeup.  

Thus, observed PRS values are contextualized based on an individual’s ancestry composition, 

which determines the potential attained PRS values. Consequently, “high” or “low” PRS values 

are determined in relation to this potential. Individuals can be classified into at-risk groups 

regardless of ancestral makeup, preventing a situation where all individuals with high 

proportion of one genetic ancestry all appear to be at a high (or low) risk compared to 

individuals with high proportion of a different genetic ancestry.  

 

Our proposed method has a few notable strengths. First, ePRS accounts for population 

stratification in a similar fashion to genetic PCs, however, because the ePRS is constructed such 

that it is specific to the PRS of interest, it has more intuitive interpretation. Further, the ePRS 

represents the same quantity across datasets, in contrast to PCs which are typically constructed 

independently in each dataset (though some approaches have been proposed for unifying PCs 

across datasets (e.g., (20)). While these authors also showed that PCs are used for prediction 

models when aligned across datasets, this alignment procedure requires joint quality control 

across multiple datasets, which is difficult, and critically, the ePRS framework is not inconsistent 

with this approach, because PCs can be incorporated to prediction models that include the 

ePRS. Second, the ePRS framework obviate the potential use of race and ethnicity in clinical use 

of PRS. While race/ethnic classification can be seen as proxies of genetic ancestry (e.g., because 

self-reported White individuals usually have large proportions of European genetic ancestries, 

etc.), two individuals self-identifying with the same race/ethnicity group may have different 

https://sciwheel.com/work/citation?ids=15157721&pre=&suf=&sa=0&dbf=0
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mixes of genetic ancestry proportions (21,22). Therefore, the distributions of PRS may 

arbitrarily differ across groups, potentially leading to wrong interpretations when stratifying 

individuals into risk groups. In contrast, genetic ancestry is defined or estimated by admixture 

pattern, which is a more accurate characteristic than the ambiguous definition of self-reported 

race ethnicity (23). How to explicitly use race/ethnicity self-reported information in biomedical 

or genetics research still debated, given that it is often unclear what such variables measure 

(22). For that reason, we expect our ePRS framework to be widely adopted and refined in order 

to limit potential use of self-reported race/ethnicity in clinical use of PRS while still providing 

accurate, well defined, measures of genetic risk.  

 

A major consideration and limitation of the proposed ePRS framework is the computational 

burden and estimation accuracy of the global/local ancestry as well as the ancestry-specific 

allele frequency. We conducted simulation studies to examine the sensitivity of the ePRS to 

accuracy of both global and local ancestry inference, and showed the robustness of both global 

and local ePRS. Still, the performance of the ePRS framework must be influenced by the 

accuracy of estimated global/local ancestry pattern. In our simulation studies, although local 

ePRS utilizes more information than global ePRS, and, if accurate, should theoretically perform 

better than global ePRS, there were settings in which global ePRS outperformed the local 

ePRSs. Many algorithms have been proposed to conduct local ancestry inference in the past 

few years, including LAMP (24) and RFMix (25)(26). Among these approaches, RFMix, the 

approach used to estimate global/local ancestry patterns in the TOPMed dataset, showed high 

accuracy in estimating ancestry (27,28). We expect a more accurate and efficient algorithm to 

https://sciwheel.com/work/citation?ids=5873299,13400686&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10262546&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13400686&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1635756&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3777659&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7537568&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9948838,8932385&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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be proposed to conduct local ancestry inference and, ultimately, incorporate it into the ePRS 

framework to increase the estimation performance.  

 

The ePRS is proposed to calibrate the PRS to obtain the rPRS and qPRS, which do not depend on 

ancestry. Another approach that have been used to “remove” the effect of ancestry on PRS is 

the “ancestry-adjusted PRS” method, where PCs are regressed out of the PRS via a linear 

model, and then the PRS-outcome association is estimated with the residuals from this 

regression used in lieu of the PRS (4,12,13). Khera et al. (4) showed that the ancestry-adjusted 

PRS had similar distribution across diverse populations, which is the same as what we found in 

the distribution of rPRS. However, the conventional problems of utilizing PCs, including the 

number of PCs to use and their generalization across datasets, are still unsolved. Moreover, 

local ancestry patterns specific to the PRS are not captured by standard PCs. Even though the 

homogenous distribution of ancestry-adjusted PRS highlights the success of adjusting PCs to 

account for population stratification, we think that a PRS-specific adjustment is useful. Yet, the 

ePRS is currently limited, compared to the PCs-adjustment method, in that it is harder to use 

given the computational complexity and the choices that have to be made regarding ancestry 

inference. Global ePRS is very easy to compute, it only requires the computation of ancestry-

specific ePRS, followed by weighting according to individual’s ancestry proportion. Still, this 

requires choosing the level of ancestry to use (e.g., continental ancestry? more refined ancestry 

levels?), and inference of that ancestry, while PC-adjustment does not. Notably, PC adjustment 

does not account for dependency of PRS variance on admixture patterns, as it only removes 

mean effects. While the rPRS does not account for the variance of the PRS distribution 

https://sciwheel.com/work/citation?ids=6246183,9391935,13489161&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6246183&pre=&suf=&sa=0&dbf=0
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according to genetic makeup, the qPRS does. However, currently we did not account for linkage 

disequilibrium between variants in the computation of the variance, and therefore only used 

PRSs that rely on a limited number of highly significant, independent, trait loci. It is an 

important extension of the ePRS framework to account for LD when computing individual PRS 

distribution. This will allow for computing qPRS for a PRS that is constructed based on hundreds 

of thousands or millions of variants. The challenge is mostly computational. 

 

A limitation of our framework is that it uses reference populations to defined ancestry. While 

this is very much a standard, an important direction of current research encourages the 

expansion of methodology to the realm of continuous ancestry (29). When using reference 

populations to define ancestry, allele frequencies need to be available for the same reference 

populations as the ones used to quantify ancestry in the data in which ePRS is to be computed. 

In TOPMed, we used continental ancestries as reference populations, for local ancestry 

inferences, which was then averaged to provide global ancestry fractions. We computed 

ancestry-specific allele frequencies using the TOPMed WGS data. AoU used a different method 

to compute genetic ancestry fractions, and the reference populations are a bit different as 

Admixed Latinos are included in one category with Native American individuals (30). The AoU 

categories match those of gnomAD, which we used for ancestry-specific allele frequencies in 

ePRS computation. In all, this demonstrates that our method can be applied with existing PRS 

“instructions” (defined by variants and weights, independent of method used to develop them), 

and using available frequencies and global ancestry proportions provided by AoU. Importantly, 

the results in AoU are consistent with those from TOPMed, where the ePRS framework 

https://sciwheel.com/work/citation?ids=13078979&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16065092&pre=&suf=&sa=0&dbf=0
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prevents population stratification bias in effect estimates in association analyses, with no need 

for further adjustment with genetic PCs.  

 

In addition to clarifying the meaning of rPRS when using the ePRS, we demonstrated in our 

simulation studies that the estimated effect size of the ePRS is also meaningful, to some extent 

(Supplementary Note 2). We showed that the effect size of the ePRS can reflect the strength of 

unknown genetic factors based on ancestry composition. In contrast, the estimated effect sizes 

of PCs usually are not interpreted.  

 

In this work, we use an individual-specific PRS distribution, assuming the variant effect sizes are 

fixed, admixture patterns are known, and the source of randomness is the variant frequencies. 

Other publications studied uncertainty in PRS quantifications by incorporating uncertainty in 

estimating variant weights. For example, Ding et al. (31) used a Bayesian framework to account 

for the potential distribution of variant weights. An exciting potential extension of this work is 

incorporating genetic ancestry information to simultaneously update the ancestry-specific 

effect size and the admixed pattern of genetics composition. It is a promising future direction 

for providing comprehensive PRS analysis results. 

 

In summary, the proposed ePRS approach provides a strategy to differentiate individual genetic 

risk from differences in PRS distributions due to ancestral makeup, computed based on 

reference populations. The ePRS improves over PCs in its interpretation and transferability 

across datasets while protecting from population stratification bias in association analysis. 

https://sciwheel.com/work/citation?ids=14846107&pre=&suf=&sa=0&dbf=0
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Methods 

Computing expected PRS (ePRS) 
 
The polygenic risk score (PRS) of an individual 𝑖, 𝑖 = 1, 2, … , 𝑛, is calculated by the weighted 

sum of alleles, with weights being the alleles’ estimated effect sizes. This can be written as 

𝑃𝑅𝑆& = ∑ 𝜔' × 𝑔&'
(
')$ . We use the clumping and thresholding method, e.g., as implemented in 

the PRSice software (32), in order to have a set of independent genetic variants, to enable 

efficient computation of the PRS variance, conditional on ancestry, as later described. Here we 

treat the weighting parameter 𝜔'  as a fixed and known value. We define the expected PRS 

(ePRS) for an individual 𝑖 as  

𝑒𝑃𝑅𝑆& = 𝐸(𝑃𝑅𝑆&), (10) 
 

where the 𝐸(. ) is the expectation, over the random sample of alleles. By the definition of PRS 

and the calculation of expectation, we can write the ePRS in the following form,  

𝑒𝑃𝑅𝑆& = 𝐸(𝑃𝑅𝑆&) = 𝐸U∑ 𝜔'
(
')$ × 𝑔&'V = ∑ 𝜔'

(
')$ × 𝐸(𝑔&'). (11) 

 

In equation (11), we assume that 𝑔&'  is a random variable and the estimated effect size 𝜔'  is 

fixed value. When focusing on a homogenous population, one can assume the genetic variant 

follows a binomial distribution 𝑔&'~𝐵𝑖𝑛(2, 𝑓'), where 𝑓'  is the allele frequency of the allele 𝑔'. 

Therefore, the expected value of the variant 𝑗 can be computed as 𝐸U𝑔&'V = 2 × 𝑓'  and the 

resulting ePRS is 2 × ∑ (𝜔'
(
')$ × 𝑓') for individual 𝑖. In addition, by assuming that the 𝑝 variants 

are independent, we can apply the Binomial model to compute the variance of the PRS of 

individuals 𝑖 as 

https://sciwheel.com/work/citation?ids=7214818&pre=&suf=&sa=0&dbf=0
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𝑉𝑎𝑟(𝑃𝑅𝑆&) = 𝑉𝑎𝑟 aT𝜔'

(

')$

× 𝑔&'b =TU𝜔'V
-

(

')$

× 𝑉𝑎𝑟U𝑔&'V

=Tc𝜔'- × 2 × 𝑓' × (1 − 𝑓')d
(

')$

. 

(12) 

 

We define the residual PRS (rPRS) for individual 𝑖	as the difference between 𝑃𝑅𝑆&  and the 

corresponding 𝑒𝑃𝑅𝑆&, which is  

𝑟𝑃𝑅𝑆& = 𝑃𝑅𝑆& − 𝑒𝑃𝑅𝑆&. (13) 
 

The rPRS is an index indicating the additive deviation of the PRS value from the underlying ePRS 

value. In a homogenous population, each individual has the same ePRS value, while they likely 

have different rPRS values. 

 

Consider the “mixed population” case, in which we assume the genome for each individual is 

inherited from one ancestry. Assume that in the studied population there are 𝐾 ancestries	𝑎& ∈

{𝑎$, 𝑎-, … , 𝑎,}, and the allele frequency for each genetic variant 𝑗 in ancestry 𝑘 is 𝑓'
+!, 𝑗 =

1, 2, … , 𝑝; 𝑘 = 1, 2, … , 𝐾. The ePRS for each individual conditioned on their ancestry can be 

computed as 

𝐸(𝑃𝑅𝑆&|𝑎& = 𝑎*) = ∑ 𝜔'
(
')$ × 𝐸U𝑔&'e𝑎& = 𝑎*V = 2 × ∑ (𝜔'

(
')$ × 𝑓'

+!). (14) 
 

By equation (14), the ePRS for two individuals from the same ancestry is identical. Extending 

the idea of modeling mixed populations to admixed populations, in which the genome consists 

of mosaic segments inherited from different genetic ancestries, the Binomial distribution 
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𝑔&'~𝐵𝑖𝑛(2, 𝑓'
+!) needs to be revised. In the next section, we illustrate how to calculate ePRS 

for admixed populations according to global and local ancestry patterns.  

 
Construction of ePRS using global ancestry proportions and local ancestries 

Global ancestry ePRS 

 
We use global ancestry proportion to calculate global ancestry ePRS (gePRS) and later extend 

the idea to local ancestries ePRS (lePRS) using local ancestry inference. First, we assume that for 

each person, the proportions of their entire genomes inherited from each ancestry is known, 

which are the global ancestry proportion (example is shown in Figure 1 b). We further assume 

that the various ancestries are uniformly distributed across the genome. Let 𝜋&* represent the 

proportion of the entire genome inherited from ancestry 𝑘 for the participant 𝑖, where 𝑘 =

1, 2, … . , 𝐾. To model the genetic pattern of an admixed population, we assume that a genetic 

variant 𝑗 follows a mixture model 

𝑔&'~∑ 𝜋&* × 𝑃*(𝑔'; 	𝑓'
+!),

*)$ , (15) 

 

where 𝑃*(𝑔'; 	𝑓'
+!) is the Binomial distribution 𝐵𝑖𝑛(2, 𝑓'

+!) with an ancestry-specific allele 

frequency 𝑓'
+! .	Using the mixture model (15), we can now compute the gePRS for each 

individual as 

𝐸(𝑃𝑅𝑆&) = 𝐸U∑ 𝜔'
(
')$ × 𝑔&'V = ∑ 𝜔'

(
')$ × 𝐸U𝑔&'V = ∑ 𝜔'

(
')$ ×

f∑ 𝐸U𝑔&'e𝑎& = 𝑎*V,
*)$ × 𝜋&*g = ∑ 𝜔'

(
')$ × Q∑ 2 ×,

*)$ 𝑓'
+! × 𝜋&*R. 

(16) 
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From equation (16), the gePRS can be interpreted as a weighted combination of ancestry-

specific ePRSs, with weights being the global ancestry proportion. We can extend equation (12) 

to calculate the variance of a PRS based on equation (15). Assuming that the 𝑝 variants are 

independent, the variance of the PRS conditional on global ancestry proportions is:  

𝑉𝑎𝑟(𝑃𝑅𝑆&) = TU𝜔'V
-

(

')$

× 𝑉𝑎𝑟U𝑔&'V =TU𝜔'V
-

(

')$

× WT𝑉𝑎𝑟(𝑔&'|𝑎& = 𝑎*) × 𝜋&*

,

*)$

X

=TU𝜔'V
-

(

')$

× WT2 ×
,

*)$

𝑓'
+! × (1 − 𝑓'

+!) × 𝜋&*X. 

(17) 

 

Local ePRS 
 
Next, we show how to use local ancestries to construct ePRS, which we call lePRS. Suppose we 

know the ancestry of each locus and each chromosomal copy. Alleles for each variant are 

counted by the sum of two chromosomal copies, 𝑔&' = 𝑔&'$ + 𝑔&'-. Assume 𝑔&'.|𝑎&'. =

𝑎*~𝐵𝑒𝑟(1, 𝑓'
+!), where 𝑚 = 1, 2 denotes the two copies. The lePRS can be computed as:  

𝐸(𝑃𝑅𝑆&) = 𝐸U∑ 𝜔'
(
')$ × 𝑔&'V = ∑ 𝜔'

(
')$ × 𝐸U𝑔&'$ + 𝑔&'-V = ∑ 𝜔'

(
')$ × O𝐸U𝑔&'$V +

𝐸U𝑔&'-VP = ∑ 𝜔'
(
')$ × f∑ ∑ 𝐸(𝑔&'.|𝑎&'. = 𝑎*) × 𝑃𝑟(𝑎&'. = 𝑎*),

*)$
-
.)$ g. 

(18) 

 

Distinct from gePRS, we assume that each copy's local ancestry is known and fixed. Hence, by 

conditioning on 𝑎&'. = 𝑎*, the last term of equation (18) can be simplified as 𝑃𝑟U𝑎&'. = 𝑎*V =

1 and 𝑃𝑟U𝑎&'. = 𝑎0; 𝑡 ≠ 𝑘V = 0. Therefore, the lePRS can be expressed as followed 

𝐸(𝑃𝑅𝑆&) = ∑ 𝜔'
(
')$ × f∑ ∑ 𝐸(𝑔&'.|𝑎&'. = 𝑎*) × 𝑃𝑟(𝑎&'. = 𝑎*),

*)$
-
.)$ g =

∑ 𝜔' × (𝑓'
+"#$ + 𝑓'

+"#%)(
')$ . 

(19) 
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We can also compute the variance of the PRS based on local ancestry information but add 

additional assumptions. Here, assuming that the 𝑝 variants are independent, and that the two 

chromosomal copies are also independent, the variance of the PRS can be derived as: 

 

𝑉𝑎𝑟(𝑃𝑅𝑆&) =TU𝜔'V
-

(

')$

× f𝑉𝑎𝑟U𝑔&'$V + 𝑉𝑎𝑟U𝑔&'-Vg =

=TU𝜔'V
-

(

')$

× Q𝑓'
+"#$ × O1 − 𝑓'

+"#$P + 𝑓'
+"#% × O1 − 𝑓'

+"#%PR. 

(20) 

 

The technical considerations of computing ePRS and the related metrics are summarized in 

Supplementary Note 3. 

 

Quantile PRS 
 
Based on the ePRS and the PRS variance, we can construct a third metric: the quantile PRS 

(qPRS). We assume that given the gePRS or lePRS and the corresponding variance of PRS, the 

distribution of the PRS for individual 𝑖 follows the Normal distribution with mean 𝐸(𝑃𝑅𝑆&) and 

variance Var(𝑃𝑅𝑆&), i.e., 

𝑃𝑅𝑆&|	𝐸(𝑃𝑅𝑆&), 𝑉𝑎𝑟(𝑃𝑅𝑆&)~𝑁(𝜇 = 𝐸(𝑃𝑅𝑆&), 𝜎- = 𝑉𝑎𝑟(𝑃𝑅𝑆&)). (21) 
 

The qPRS is computed as the percentile of the PRS value conditional on an individual’s ancestral 

makeup, which can be written as 

𝑞𝑃𝑅𝑆& = Φ(𝑃𝑅𝑆&; 	𝜇 = 𝐸(𝑃𝑅𝑆&), 𝜎- = 𝑉𝑎𝑟(𝑃𝑅𝑆&)), (22) 
 

where Φ is the cumulative Normal distribution function.   
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Simulations 
 
Generating global ancestry proportions, local ancestries, and allele counts 

Without loss of generality, we assume that the genome of each individual in the simulation 

study is inherited from three ancestries {𝑎$, 𝑎-, 𝑎1}. The model could be readily extended to a 

higher number of ancestries. Three ancestries may represent Hispanic/Latino admixed 

individuals in the U.S., where, for example, 𝑎$ represents European, 𝑎- represents African, and 

𝑎1 represents American ancestry. We assume that 𝑎$ has the highest proportion across the 

entire genome, and generated the global ancestry proportions by sampling the three 

proportions of ancestry sequentially from uniform distributions, as follows: 

𝜋+$~𝑈𝑛𝑖𝑓(0, 1) 

𝜋+%~𝑈𝑛𝑖𝑓U0, 1 −	𝜋+$V 

𝜋+( = 1 −	𝜋+$ −	𝜋+% 	, 

where 𝜋+* , 𝑘 = 1,2,3 denotes the global ancestry proportion across the genome from 

ancestries  𝑎* and 𝑈𝑛𝑖𝑓(𝑎, 𝑏) is the uniform distribution with range (𝑎, 𝑏). After generating 𝜋&  

for each observation, we next generate local ancestry 𝑎&'.. Assuming that each SNP is 

independent, and the two chromosomal copies are also independent, we generate the local 

ancestry for each variant and each chromosome separately based on 𝝅& = (𝜋&+$ , 𝜋&+% , 𝜋+(). 

Thus, we assume that 𝑎&'. follows multinomial distribution, where 𝛼&'.~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙U𝑝$ =

𝜋&+$ , 𝑝- = 𝜋&+% , 𝑝1 = 1 − 𝑝$ − 𝑝-V, 𝑗 = 1,2, … , 𝑝;𝑚 = 1,2. For each simulated variant, allele 

counts are then generated with the local ancestry guiding its ancestry-specific allele frequency.  
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Generating PRS 

To select the parameters for the simulations, i.e., ancestry-specific allele frequencies and SNP 

effect sizes, we used summary statistics from a GWAS of systolic blood pressure (SBP), from UK 

biobank and the ICBP consortium (17). We preprocessed the summary statistics using PLINK 

with the standard parameters setting (genome-wide significance threshold (5x10-8), clumping 

parameter R2=0.1, and the distance was set to 1000 kb), and took 100 SNPs and their estimated 

effect sizes. Their ancestry-specific frequencies 𝑓'
/!  were taken to be the estimated frequencies 

from the GAFA procedure (18) applied over the TOPMed dataset (33). For each person and each 

SNP, we first sampled the local ancestry as described above, followed by sampling of allele 

count using the ancestry-specific allele frequency corresponding to that SNP and that local 

ancestry. We finally calculated the PRS as the weighted sum of SNP alleles with weights being 

the GWAS-estimated effect sizes. The flow chart to generate simulation data is illustrated in 

Figure 2. 

 

We considered two PRS models. In the primary model, the PRS was assumed to be 

homogenous across genetic ancestries, i.e., the SNP effects are assumed the same regardless of 

ancestry, which is the homogeneous weighting PRS. The second model allowed for some 

heterogeneity by assuming that the SNP effects are sometimes different by ancestry. When 

simulating heterogeneous weighting PRS settings, we selected the top 10 most frequent SNPs 

in each 𝑎- and 𝑎1 ancestries and set different effect sizes for these selected SNPs. Specifically, 

we set the effect sizes as 1.5 for the selected SNPs in 𝑎- (African) ancestry and 2 for 𝑎1 (Native 

American) ancestry. 

https://sciwheel.com/work/citation?ids=5752222&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13437911&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14989870&pre=&suf=&sa=0&dbf=0
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Generating the genetic ancestry confounder 𝑼𝑮 

We generated an ancestry-dependent genetic variable potentially confounding the PRS-

outcome association. Details are provided in Supplementary Table 1. Briefly, we considered a 

few types of unobserved confounder, namely conf-PRS1, conf-PRS2, with computation 

generally following the same procedure used to generate PRS (i.e., sampling of local ancestry 

followed by sampling of alleles). Each confounder type was used in separate simulations. For 

benchmarking, we also used in simulations a variable representing a genetic PC (conf-pc*), 

which is observed, as a confounder. 

 

For the first genetic confounder (conf-PRS1), we assume the generated genetic variants shared 

the same local ancestry interval as the variants that computed the main PRS of interest. Based 

on the local ancestry interval, we then used ancestry-specific allele frequencies of 100 

randomly selected variants from the UKBB-ICBP SBP GWAS to generate genetic data, which is 

the same procedure for generating observed PRS. The only difference is that the weighting 

parameters of computing conf-PRS1 are generated from a standard normal distribution. 

 

A second type of genetic confounder (conf-PRS2) is generated based on a selection of SNPs 

from the MVP SBP GWAS. These SNP were selected to be enriched in frequency (MAF > 0.4) in 

the African ancestry population while having MAF<0.1 in the European ancestral population, as 

estimated by GAFA. Notably, the distribution of Conf-PRS2 is quite different from that of the 

observed PRS, leading to strong unknown genetic confounding effect in the simulation settings.  



 40 

 

The third continuous confounder, conf-pc*, intends to mimic a scenario where the true 

confounding is based on only one genetic principal component score. To guide the construction 

of this variable we randomly select 100 SNPs from MVP GWAS and generate the weighting 

parameters from standard Normal distribution. To emphasize, conf-pc* is not calculated via a 

principal component analysis procedure.  

 

Generating outcomes via a data generating model 
 
We generate a continuous outcome from a linear model summing the effect of the PRS of 

interest and the genetic confounder through the following model:  

𝑌& = 𝛽! + 𝛽$ × 𝑃𝑅𝑆& + 𝛾 ×
34564758&59

:8(34564758&59)
+ 𝜀&, 

Where the genetic confounder is standardized in each simulated dataset so that effect sizes are 

comparable across simulation settings. We set the PRS effect 𝛽$ to 1.5 and varied the effect of 

the genetic confounder to be 𝛾 = 0.5, 1, 1.5. The intercept was set to 𝛽! = 1 across all 

simulations. Finally, the errors were sampled from a Normal distribution with 𝜀&~𝑁(0,1). We 

sampled 𝑁 = 10,000 observations in each simulation repetition and repeated each simulation 

setting 1000 times. 

 

Estimation of PRS effect in simulations via a working association model 
 
We compare the estimation performance of 𝛽$ via seven working association model, M1-M7. In 

all models we evaluate the estimated  𝛽?$ as an estimator of 𝛽$, i.e., as 𝛽v$. Also, all association 

models use homogeneous weighting PRS. 
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𝑀1:	𝑌 = 𝛽?! + 𝛽?$ × 𝑃𝑅𝑆 

𝑀2:	𝑌 = 𝛽?! + 𝛽?$ × 𝑔𝑟𝑃𝑅𝑆 + 𝛽?- × 𝑔𝑒𝑃𝑅𝑆 

𝑀3:	𝑌 = 𝛽?! + 𝛽?$ × 𝑙𝑟𝑃𝑅𝑆 + 𝛽?- × 𝑙𝑒𝑃𝑅𝑆 

𝑀4:	𝑌 = 𝛽?! + 𝛽?$ × 𝑃𝑅𝑆 + 𝛽?- × conf-pc* 

𝑀5:	𝑌 = 𝛽?! + 𝛽?$ × 𝑃𝑅𝑆 + 𝛽?- × 𝑔𝑎𝑃𝑟𝑜𝑝 

𝑀6:	𝛽?! + 𝛽?$ × 𝑃𝑅𝑆 +T𝜆' × 𝑃𝐶'

$!

')$

 

𝑀7:	𝛽?! + 𝛽?$ × 𝑃𝑅𝑆 +T𝜆' × 𝑃𝐶'

-!

')$

 

In M1, we estimate PRS association without adjusting for other covariates (we named it as 

“none” in our results and figures). The proposed ePRS-based approaches are provided in M2 

and M3, which adjust for global and local ePRS with the corresponding rPRS. M4-M7 models 

again estimate the effect of the PRS, and further adjust for different ancestry-related measures. 

M4 uses conf-pc*, which is a benchmark when the true confounding factor is simulated as conf-

pc*. M5 adjusts for the global ancestry proportion (“gaProp” in our results and Figures). M6 and 

M7 use 10 and 20 PCs, respectively, where the PCs were calculated based on the genetic 

dataset used for computing the PRS.  

 

The TOPMed dataset 
 
The TOPMed project aggregates individual-level data from multiple parent studies. 

Supplementary Note 6 describes TOPMed parent studies contributing to the analyses.  
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Whole-genome sequencing  

We used genetic data from whole genome sequencing via the TOPMed program (34) freeze 8 

released. Information about genome sequencing, allele calling, and quality control in TOPMed is 

publicly available in https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-

freeze-8. The TOPMed Data Coordinating Center constructed a kinship matrix estimating recent 

genetic relatedness, the corresponding sparse kinship matrix, where values were set to zero 

when the genetic relationship was estimated to be more distant than 4th degree relatedness, as 

well as providing genetic principal components (PCs), using the PC-Relate algorithm (35). In the 

TOPMed data analysis, we adjusted for 11 genetic PCs in the standard PRS model (except the 

VTE analysis, in which we adjusted seven genetic PCs according to the previously published 

paper (36)).  

 

Genetic ancestry inference in TOPMed 

Ancestry inference was performed by the TOPMed Informatics Research Center (IRC). First, 

local ancestry was inferred using RFMix (25), with default parameter settings except the 

following option: --node-size=5. Then, global ancestry was computed as for each participant as 

a weighted average of the ancestries in inferred local ancestry intervals. The reference panel 

used was the Human Genome Diversity Panel (HGDP) downloaded from the Stanford HGDP 

website http://hagsc.org/hgdp/files.html. Genomic coordinates were lifted over from genome 

build 37 to build 38. The 53 HGDP populations were merged into 7 super-populations: Sub-

Saharan Africa, Central and South Asia, East Asia, Europe, Native America, Oceania, Middle 

East. Local ancestry inference was performed in two versions. First, for samples available in 

https://sciwheel.com/work/citation?ids=10461553&pre=&suf=&sa=0&dbf=0
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-methods-freeze-8
https://sciwheel.com/work/citation?ids=3828306&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15074877&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3777659&pre=&suf=&sa=0&dbf=0
http://hagsc.org/hgdp/files.html


 43 

TOPMed freeze 6, RFMix V1 was used, and local ancestry was inferred for the autosomes only. 

Later, for samples participating only in freeze 8 (but not in freeze 6), and for the X-

chromosome, local ancestry inference was performed using RFMix V2. Global ancestry 

proportions of an individual were defined as the proportions of the inferred ancestries 

(accounting for interval lengths) of each of the ancestries, genome-wide. Because the levels of 

Oceania ancestry were very low in the sample, we did not use it, and instead rescaled, for each 

person, the other ancestries so that they some to 1. So, if based on the RFMix global ancestry 

proportions we had 𝑝̂+6>&?+ +…+ 𝑝̂@7>4(@ + 𝑝̂4?@+5&+, with 𝑝̂+5?@:0>A is the estimated 

proportion of an ancestry for an individual, we summed the non-oceania proportions for each 

individual to get 𝜋 = 𝑝̂+6>&?+ +…+ 𝑝̂@7>4(@. The scaled proportions were set to 𝑝̂:?+B@8+6>&?+ =

𝑝̂+6>&?+/𝜋, etc.  

 

Computation of ancestry-specific allele frequencies 

Ancestry-specific allele frequencies were computed for all common variants as we previously 

described (33), using the GAFA algorithm (18) that uses global genetic ancestries to 

deconvolute ancestry-specific allele frequencies. We also computed ancestry-specific allele 

frequencies using the LAFA algorithm, i.e. using local genetic ancestry patterns at each variant 

location, however the results are similar, so we chose to move forward with the GAFA-

estimated frequencies.  

 

Harmonization of self-reported race/ethnicity in TOPMed 
 

https://sciwheel.com/work/citation?ids=14989870&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13437911&pre=&suf=&sa=0&dbf=0
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Most of the participating studies recruited individuals from pre-defined race/ethnicity 

categories, which were not always the same. For example, CARDIA uses the descriptor “Black” 

while JHS uses “African American”. Here, we used the race/ethnicity harmonized categorized 

prepared by the Data Coordinating Center of TOPMed as part of a phenotype harmonization 

effort (37), and as descriptors we use White (non-Hispanic White or European American), Black 

(non-Hispanic Black or African American), Asian (Asian or Chinese American), and 

Hispanic/Latino. We did not use genetic ancestry to categorize race/ethnic categories, as they 

are not biological and reflect sociopolitical and demographic patterns, though the distribution 

of genetic ancestry patterns generally differs by groups defined by race and ethnicity 

 

Phenotype harmonization  
 
We used 5 continuous phenotypes, SBP, DBP, HDL, LDL, and BMI, all harmonized by the 

TOPMed DCC (37). To account for medication use, SBP and DBP values were increased in 

antihypertensive medication users by 15 and 10mmHg, respectively. For LDL, the value was 

adjusted via dividing by 0.7 if the individual took lipid-lowering medication. 

 

Two binary variables used were VTE and OSA. VTE was also harmonized by the TOPMed DCC, as 

reported in the Seyerle et al. 2023 (36). We harmonized OSA as follows. COPDGene control 

participants (i.e., individuals without COPD) self-reported doctor-diagnosed OSA. Other 

participating studies used home sleep apnea testing device to measure the Apnea Hypopnea 

Index (AHI; measured in ARIC, CARDIA, CHS, and FHS as part of the sleep heart health study 

(38), and in MESA (39) and JHS (40)), or the Respiratory Event Index (REI; measured in 

https://sciwheel.com/work/citation?ids=11166457&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11166457&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15074877&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3691379&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4734919&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8249705&pre=&suf=&sa=0&dbf=0
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HCHS/SOL (41)). For these cases we categorized OSA based on AHI/REI≥ 15 (i.e., moderat or 

more severe OSA). Lower AHI/REI values were categorized as no OSA.  

 

Selecting SNPs and effect sizes for PRS for the studied traits 

We used summary statistics from published GWAS to develop PRS (and ePRS) for each 

considered trait. These are reported in Supplementary Table 7, which includes information 

about accessing these summary statistics, the sample sizes of each GWAS population, and the 

number of variants used to compute PRSs. Briefly, for most traits we used summary statistics 

from MVP GWAS (42–45), which are multi-population GWAS. For BMI, we used the GWAS 

summary statistics from the Genetic Investigation of Anthropometric Traits (GIANT) consortium 

meta-analyzed with a UK Biobank (UKBB) BMI GWAS (46). The GIANT + UKBB study is mostly 

based on European ancestry. For each trait and its PRS, in primary analysis we focused on 

independent SNPs to allow for calculating the variance of PRS. Thus, we performed clumping 

using plink (47). The p-value thresholding parameter is set as the genome-wide significance 

threshold (5x10-8). The clumping parameter was set to R2=0.1, and the distance was set to 1000 

kb. In secondary analysis we also developed PRSs and corresponding ePRSs based on the same 

GWAS summary statistics using LDpred2 (19). These are secondary analyses because we 

currently cannot compute the PRS variance when using highly correlated SNPs in the PRS. 

Information about these PRSs and the association analyses is provided in Supplementary Note 

4. 

 

https://sciwheel.com/work/citation?ids=4734736&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6274316,5827947,7715876,14685906&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5748493&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1158431&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10216417&pre=&suf=&sa=0&dbf=0
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PRS-outcome association analyses  
 
PRS associations with continuous traits were estimated via linear mixed model, and with binary 

traits via logistic mixed models. All models used sparse kinship matrix to model a random effect 

to account for relatedness. Standard PRS model were adjusted for (a) 11 genetic PCs or (b) 

global ancestry proportions. EPRS models estimated the global or local rPRS association while 

adjusting for the corresponding ePRS. Other covariates were often trait-specific: BMI PRS 

associations were adjusted for sex, age, and squared age term, while SBP, DBP, HDL, and LDL 

associations were further adjusted for BMI. Logistic mixed model analysis of VTE used a similar 

approach to that in the published VTE GWAS (36): we adjusted sex, age, and lnratio (log of the 

ratio between the size of the case stratum and the matched control; to address the differences 

of case-control matched ratio). Because the model did not converge, we did not include 

“sample set” as a covariate. OSA analysis adjusted for sex, age, BMI, and the square of the BMI 

term as fixed effect covariates. All analyses were conducted via the R package GENESIS (version 

2.32.0; (48)) with the fitNullModel function.  

 

Assessment of qPRS as an equitable metric for genetic disease risk 
 
We assessed the use of qPRSs for ranking genetic liability quantified by PRS, instead of using the 

conventional PRSs which are highly affected by ancestral makeup. To this end, we visualized 

patterns of trait values and qPRS percentiles. For each trait, we stratified individuals to 100 bins 

defined by values of PRS, rPRS, and qPRS (each separately), and computed the mean value of 

the trait or proportion of the binary outcome, and visualized these as scatterplots. To 

demonstrate the impact of ancestral makeup on the PRS metric ranking, we colored each point 

https://sciwheel.com/work/citation?ids=15074877&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7863263&pre=&suf=&sa=0&dbf=0
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in the scatterplot by the proportion of African American individuals in the strata (or bin). We 

chose this population group because the sample is sufficiently large.  

 

The AoU data analysis 

We used short-read whole-genome sequencing (srWGS) data (version 7) from the AoU study to 

compute PRS and performed PRS-outcome association analyses. To minimize the memory 

storage requirements, we used the genomics data pre-filtered by the following criteria: 

population-specific allele frequency ≥ 1% or population-specific allele count > 100 (data from: 

gs://fc-aou-datasets-controlled/v7/wgs/short_read/snpindel/acaf_threshold_v7.1). Only 

unrelated individuals were included, with related individuals excluded based on information in: 

gs://fc-aou-datasets-

controlled/v7/wgs/short_read/snpindel/aux/relatedness/relatedness_flagged_samples.tsv. 

Detailed quality control (QC) procedures, including both genomic and sample QC, can be found 

in the Genomic Research Data Quality Report: 

https://support.researchallofus.org/hc/article_attachments/27634053350292. 

The analysis focused on adults aged 18 to 95 with BMI values ranging from 17 to 55, consistent 

with the selection procedure used in the TOPMed analysis. Sample sizes for self-reported 

race/ethnicity groups varied slightly depending on the phenotype to analyze. Six binary CVD-

related phenotypes were considered: atrial fibrillation (AF), coronary artery disease (CAD), 

cardiovascular disease (CVD), heart failure (HF), hypertension (HTN), and type 2 diabetes 

mellitus (T2DM). Selection criteria for clinical outcomes, including associated SNOMED codes 
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and OMOP Concept IDs in the AoU study, are detailed in Supplementary Table 9 and 

Supplementary Note 5. 

 

Genetic ancestry inference and ancestry-specific allele frequency 

The global ancestry proportion for each individual with srWGS data from the AoU is available 

at: gs://fc-aou-datasets-controlled/v7/wgs/short_read/snpindel/aux/ 

ancestry/ancestry_preds.tsv. Six ancestry populations are reported: African/African American 

(afr), American Admixed/Latino (amr), East Asian (eas), European (Eeur), Middle Eastern (mid), 

and South Asian (sas). These categories align with the ancestry definitions used in gnomAD, the 

Human Genome Diversity Project, and the 1000 Genomes Project. Additional details on 

computing categorical ancestry for individuals in AoU are provided in the Genomic Quality 

Report (https://support.researchallofus.org/hc/article_attachments/27634053350292) 

 

The ancestry-specific allele frequency used for computing ePRS were obtained from gnomAD 

(version 3.1.2). The data can be access at: gs://gcp-public-data--

gnomad/release/3.1.2/ht/genomes/gnomad.genomes.v3.1.2.hgdp_1kg_subset_variant_annota

tions.ht using Hail procedures. The genetic ancestry group labels from gnomAD are harmonized 

with those from Human Genome Diversity Project and the 1000 Genomes Project, aligning with 

the definitions used in AoU. Further details about genetic ancestry inference in gnomAD are 

available at: https://gnomad.broadinstitute.org/news/2023-11-genetic-ancestry/ 

 

https://gnomad.broadinstitute.org/news/2023-11-genetic-ancestry/
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PRS-outcome association analysis 

Since only unrelated individuals were included in this analysis, logistic regression was used to 

conduct PRS-outcome associations. All models were adjusted for sex at birth, BMI, age, and the 

square term of age. For the conventional PRS model, either 16 genetic PCs or global ancestry 

proportions were included to account for population stratification bias. For the ePRS 

framework, the outcome of interest was regressed on the rPRS with the global ePRS included as 

an adjustment in the model. Additionally, PC-adjusted PRS were analyzed instead of using 

unadjusted PRS as covariates, and the 16 genetic PCs were also adjusted in the model for the 

comparison purposes.  

 

Data availability 
 
TOPMed freeze 8 WGS data and harmonized BP and lipid phenotypes are available by 

application to dbGaP according to the study specific accessions: Amish: “phs000956”, ARIC: 

“phs001211“, CARDIA: “phs001612”, CFS: “phs000954”, CHS: “phs001368”, COPDGene: 

“phs000951”, FHS: “phs000974”, GENOA: “phs001345”, HCHS/SOL: “phs001395”, HVH: 

“phs000993”, JHS: “phs000964”, Mayo VTE: “phs001402”, MESA: “phs001211”, WHI: 

“phs001237”. Summary statistics from MVP GWAS are available from dbGaP by application to 

study accession “phs001672”. Summary statistics from GIANT + UKBB GWAS were downloaded 

from 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

. Data needed to construct the reported PRSs in this study include variants, alleles, and weights 

for each of the PRS are deposited on fighsare, and will be deposited on the PGS catalog. A 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000956.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001211.v4.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001612.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000954.v4.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001368.v3.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000951.v5.p5
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000974.v4.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001345.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001395.v2.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000964.v5.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001211.v4.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001237.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v4.p1
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dataset with ancestry-specific allele frequencies computed using GAFA on the TOPMed dataset 

for Europe, Africa, Middle East, East Asia, South Asia, and America ancestries for HapMap3 

variants, which are recommended for use by the LDpred2 software, are available on the 

figshare repository: 

https://figshare.com/articles/dataset/ePRS_project_summary_statistics_and_ancestry-

specific_allele_frequency/25336294. The summary statistics and ancestry-specific allele 

frequency used in AoU analysis can also be found in our figshare repository. Data from the NIH 

AoU study are available via institutional data access for researchers who meet the criteria for 

access to confidential data. To register as a researcher with AoU, researchers may use the 

following URL and complete the laid-out steps: https:// www.researchallofus.org/register/. The 

srWGS genomic data were available on: gs://fc-aou-datasets-controlled/v7/wgs/short_read/. 

The ancestry-specific allele frequency can be downloaded from gnomAD Google Cloud Public 

Datasets: gs://gcp-public-data--

gnomad/release/3.1.2/ht/genomes/gnomad.genomes.v3.1.2.hgdp_1kg_subset_variant_annota

tions.ht. 

 

Code availability 
 
R codes used for simulation studies and for constructing ePRSs are available on the GitHub 

repository: https://github.com/Gene-Huang/Expected_PRS 

 

https://figshare.com/articles/dataset/ePRS_project_summary_statistics_and_ancestry-specific_allele_frequency/25336294
https://figshare.com/articles/dataset/ePRS_project_summary_statistics_and_ancestry-specific_allele_frequency/25336294
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