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Abstract 26 

A novel algorithm, AlphaMissense, has been shown to have an improved ability to predict 27 

the pathogenicity of rare missense genetic variants. However, it is not known whether 28 

AlphaMissense improves the ability of gene-based testing to identify disease-causing 29 

genes. Using whole-exome sequencing data from the UK Biobank, we compared gene-30 

based association analysis strategies including sets of deleterious variants: predicted 31 

loss-of-function (pLoF) variants only, pLoF plus AlphaMissense pathogenic variants, pLoF 32 

with missense variants predicted to be deleterious by any of five commonly utilized 33 

annotation methods (Missense (1/5)) or only variants predicted to be deleterious by all 34 

five methods (Missense (5/5)). We measured performance to identify 519 previously 35 

identified positive control genes, which can cause Mendelian diseases, or are the targets 36 

of successfully developed medicines. These strategies identified 850k pLoF variants and 37 

5 million deleterious missense variants, including 22k likely pathogenic missense variants 38 

identified exclusively by AlphaMissense. The gene-based association tests found 608 39 

significant gene associations (at P<1.25x10-7) across 24 common traits and diseases. 40 

Compared to pLOFs plus Missense (5/5), tests using pLoFs and AlphaMissense variants 41 

found slightly more significant gene-disease and gene-trait associations, albeit with a 42 

marginally lower proportion of positive control genes. Nevertheless, their overall 43 

performance was similar. Merging AlphaMissense with Missense (5/5), whether through 44 

their intersection or union, did not yield any further enhancement in performance. In 45 

summary, employing AlphaMissense to select deleterious variants for gene-based testing 46 

did not improve the ability to identify genes that are known to cause disease. 47 

 48 
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Introduction 49 

Rare genetic variants are important contributors to human diseases. They contribute to 50 

most Mendelian disorders, and their effect sizes upon common diseases are larger than 51 

those attributed to common variants (1–4). Importantly, associated rare genetic variants 52 

are often coding and can therefore be directly attributed to a gene. Loss of function rare 53 

variants can offer insights into the direction of genetic effect on disease outcome.  54 

However, studying rare causal variants is challenging, since most of the genetic variation 55 

in the genome is both rare and benign. Thus, gene-based analysis is usually employed 56 

to improve statistical power by aggregating multiple rare variants across a gene into one 57 

test to improve statistical power to detect disease associations (5). 58 

 59 

Previous gene-based multi-variant tests like exome-wide association studies (ExWAS) 60 

have successfully identified disease-causal genes, like WNT1 for osteoporosis (6), and 61 

drug-targeting genes, such as PCSK9 for low-density lipoprotein (LDL)-cholesterol levels 62 

(7). Nevertheless, the power of ExWAS relies heavily on the prior identification of variants 63 

with a likely functional impact (5) to reduce the number of irrelevant genetic variants 64 

included in the tests. While predicted loss-of-function (pLoFs) rare variants are most likely 65 

to contribute to gene-based tests, deleterious missense variants can also increase 66 

statistical power as they tend to be more common. However, to use deleterious missense 67 

variants, one must understand which of the missense variants is most likely to influence 68 

protein function—a process referred to as variant annotation. Moreover, all deleterious 69 

missense variant annotation strategies must strike a balance between false positive and 70 

false negative identification of such variants (8,9). 71 
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 72 

Recent advances in missense variant effect prediction have made progress towards 73 

resolving this problem. AlphaMissense, a recently described method based on an 74 

unsupervised language model, combines protein structural context with evolutionary 75 

conservation and has claimed to achieve over 90% precision when predicting the known 76 

clinical impact of missense variants (9). Additionally, their variant pathogenicity 77 

annotations improved the prediction of gene essentiality for cell survival and fitness.  78 

 79 

However, it is not known whether the improvements observed in AlphaMissense’s ability 80 

to predict the deleteriousness of missense variants results in improved association testing 81 

between genes and diseases. If this improvement were striking, it could help to identify 82 

new causes of disease and consequently drug targets for needed drug development. 83 

Using the UK Biobank whole exome sequencing (WES) data, we tested the ability of 84 

AlphaMissense variant annotation to improve the ability to identify positive control genes 85 

(known to cause disease) through collapsing gene-based tests on 12 continuous traits 86 

and 12 diseases. We compared its performance to other leading algorithms. The results 87 

empirically test the ability of AlphaMissense to improve the identification of genes causing 88 

disease.  89 

 90 

 91 

 92 

 93 
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Methods 95 

UK Biobank cohort 96 

The UK Biobank is a cohort study that has recruited over 500,000 participants between 97 

40 and 69 years of age at 22 testing centers across the United Kingdom and collected a 98 

large set of phenotypes and biological samples. We included in our analyses a total of 99 

444,072 genetically predicted European genetic ancestry individuals with available WES 100 

data generated following the OQFE protocol (10) and with measurements of selected 101 

phenotypes and diseases. The detailed steps for the sample preparation, sequencing, 102 

filtering, and calling of UK Biobank WES data have been previously described (10,11). 103 

 104 

Phenotype definitions 105 

From the UK Biobank, we selected 12 continuous traits and 12 diseases for analysis 106 

based on the trait sample sizes and whether there were known disease causal genes or 107 

drug target genes for each trait. The continuous traits included estimated bone mineral 108 

density, serum triglyceride levels, systolic blood pressure, diastolic blood pressure, 109 

standing height, serum low-density lipoproteins, serum bilirubin, serum glucose, red blood 110 

cell counts, and serum calcium level, body mass index, and waist-hip circumference ratio 111 

and the 12 diseases included hypertension, hypercholesterolemia, diaphragmatic hernia, 112 

osteoarthritis (localized), cataract, type 2 diabetes, major depressive disorder, 113 

hypothyroidism, acute renal failure, atrial fibrillation, cancer of prostate (males only) and 114 

breast cancer (females only). The sample sizes for the analysis of each trait and disease 115 

can be found in Supplementary table 1. ICD-10 codes were grouped to construct diseases 116 
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following the phecodes system (12). The list of used ICD-10 codes for each phecode can 117 

be found in Supplementary table 2. 118 

 119 

Variant annotation 120 

We annotated the variants from exome sequencing after alignment using the Ensembl 121 

Variant Effect Predictor (VEP) (v.110). Variant annotations among transcript ablation, 122 

splice acceptor, splice donor, stop gained, frameshift, stop lost, start lost, transcript 123 

amplification, feature elongation, and feature truncation, were considered as predicted 124 

loss-of-function (pLoF) variants (10). Missense variants were classified with two 125 

strategies.  The first strategy used  AlphaMissense  (9), and missense variants were 126 

included in our analyses if AlphaMissense predicted them to be “likely pathogenic”. We 127 

built a second strategy by combining results from five commonly used annotation 128 

methods (i.e., SIFT (13), PolyPhen2 (HDIV) (14), PolyPhen2 (HVAR) (15), 129 

MutationTaster (16), and LRT (17)). We classified a missense variant as “likely 130 

deleterious” if all five algorithms predicted it to be deleterious (i.e., Missense (5/5)), and 131 

“possibly deleterious” if at least one of the five algorithms predicted it to be deleterious 132 

(i.e., Missense (1/5)), similar to methods used before (6,10).  133 

 134 

Gene-based disease and trait association test 135 

For each gene, variant annotations and alternative allele frequency (AAF) categorized the 136 

inclusion of variants into 20 gene burden exposures, created by the combination of four 137 

annotation mask definitions and five AAF thresholds and statistical testing method 138 

combinations. The four masks categories included: (1) pLoF variants; (2) pLoF or “likely 139 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.05.24303647doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.05.24303647
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

7 

pathogenic” variants by AlphaMissense (pLoF with AlphaMissense); (3) pLoF or “likely 140 

deleterious” missense variants by the five commonly used methods (pLoF with Missense 141 

(5/5)); (4) pLoF or “possibly deleterious” missense variants by the five commonly used 142 

methods (pLoF with Missense (1/5)). The five AAF and statistical test method 143 

combinations included (1) standard burden test with AAF < 1%; (2) standard burden test 144 

with AAF < 0.1%; (3) standard burden test with singletons; (4) SKAT variance-component 145 

test with AAF <1%; (5) SKAT-O combined test with AAF <1%). The smallest p-value of 146 

the five AAF and test combinations for each gene under different masks were retained 147 

for subsequent significance and classification testing. For our primary method, we built 148 

masks for burden tests using the maximum number of alternative alleles found across all 149 

selected variant sites of a gene. As a sensitivity analysis, we also tested whether building 150 

masks by total number of alternative alleles across these sites, a approach assuming 151 

these sites have cumulative effect, would impact the results of association analyses. 152 

 153 

All analyses were performed using Regenie software (18). The regression analyses 154 

included age, age2, sex, sex*age, sex*age2, 10 genetic principal components (PC) 155 

obtained from common genetic variants (MAF>1%), and 20 genetic PCs obtained from 156 

rare genetic variants (MAF<1%) as covariates. The statistical significance threshold was 157 

P < 1.25x10-7 (0.05 / (approximately 20,000 genes * 20 gene-burden exposures)). 158 

 159 

Selection of positive control genes 160 

To evaluate whether different masks have different abilities to identify genes that were 161 

known to cause Mendelian forms of disease, or the targets of successfully developed 162 
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medicines, we compiled a list of positive control genes from two sources. We first included 163 

positive control genes from two previous studies where these genes were used to train 164 

their algorithms to prioritize disease-causal or drug-targeting genes from genome-wide 165 

association study (GWAS) signals (19,20). Their positive control gene lists were 166 

generated by combining genetic evidence, drug–target–indication associations, and 167 

manual curation from board certified physicians and domain experts. Additionally, we 168 

included Mendelian diseases genes from the MendelVar database which was created by 169 

integrating functional annotations from the Online Mendelian Inheritance in Man (OMIM), 170 

Deciphering Developmental Disorders Study (DECIPHER), Orphanet and Genomics 171 

England databases (21). The full list of 509 positive control genes for the selected traits 172 

and diseases can be found in Supplementary Table 3. 173 

 174 

Evaluation of classification accuracy 175 

The ability to accurately identify positive control genes using gene burden tests with 176 

different variant sets and mask settings was measured by the area under the receiver-177 

operator curves (AUROC) and precision-recall curves (AUPRC). Specifically, PRC and 178 

ROC were generated using results from 21 traits and diseases where we could confirm 179 

at least one positive control gene. The 95% confidence intervals (CI) for AUROC and 180 

AUPRC were determined using 1000 bootstrap replicates. The baseline for AUROC is 181 

0.5, an uninformative classifier. The baseline level for AUPRC is 0.0018 which equals the 182 

proportion of positive control genes among tested genes. 183 

 184 

 185 
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Results 186 

Starting with 19,606 genes, for every exon, we annotated deleterious variants into four 187 

categories: pLoF, AlphaMissense, Missense (5/5), and Missense (1/5). Then we 188 

assembled four sets of predicted deleterious variants (i.e., masks): (1) pLoF, (2) pLoF 189 

with AlphaMissense, (3) pLoF with Missense (5/5), and (4) pLoF with Missense (1/5). 190 

Each mask provided a list of variants for genes in gene-based association analysis. Lastly, 191 

we retained the smallest p-values from the five different combinations of alternative allele 192 

frequency and statistical test method for the association between each gene and each 193 

tested trait or disease under different masks (Figure 1a). 194 

 195 

 196 

Figure 1. Overview of ExWAS analysis and comparison of variants annotations by 197 

different methods. (a) strategy to obtain single P value for each gene (b) overlap of 198 

annotated likely deleterious variants by different ExWAS mask settings (c) Number of 199 

tested genes with different mask settings. 200 
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 201 

Of 26 million variants from UK Biobank WES data, we identified 850k pLoF variants and 202 

5 million predicted deleterious missense variants by AlphaMissense or any of the five 203 

commonly used annotation methods (i.e., SIFT, PolyPhen2 (HDIV), PolyPhen2 (HVAR), 204 

MutationTaster, and LRT). Specifically, AlphaMissense classified 1.4 million variants as 205 

“likely pathogenic”, including 22k identified exclusively by AlphaMissense. Missense (1/5) 206 

captured over 98% of AlphaMissense predicted “likely pathogenic” variants while 207 

Missense (5/5) covered 48% of AlphaMissense predicted “likely pathogenic” variants 208 

(Figure 1b). Moreover, our results showed that among the masks evaluated, Missense 209 

(1/5) labeled the highest number of deleterious variants per gene on average (267 210 

variants per gene), followed by AlphaMissense (74 variants per gene), Missense (5/5) (56 211 

variants per gene), and pLoF (43 variants per gene) (Supplementary Table 4). Despite 212 

the considerable variance in the number of annotated variants across different annotation 213 

categories, 99% of genes were tested in all masks (Figure 1c).  214 

 215 

In the exome-wide gene-based analysis, we first checked the genomic inflation factors of 216 

the p-values for each mask and test method combination. In general, no strong genomic 217 

inflation was observed (value range: 0.96-1.37) except for standing height (value range: 218 

1.11-1.94) (Supplementary Table 5). This is not surprising as height is a well-known highly 219 

polygenic trait (22).  220 
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 221 

Figure 2. Significant gene associations identified in exome-wide gene burden 222 

analysis across 12 traits and 12 diseases. The bars without outlines indicate the 223 

numbers of significant genes (P < 1.25x10-7) identified in each trait and disease by 224 

different masks. The bars with outlines indicate the number of significant genes that are 225 

also positive control genes for each trait and diseases identified by different masks. The 226 

inset figure shows the total number of significant genes and positive controls identified by 227 

each mask across all the tested traits and diseases. Abbreviations: estimated bone 228 

mineral density (eBMD), body mass index (BMI), waist-hip circumference ratio (WHR), 229 

serum low-density lipoproteins (LDL), type 2 diabetes (T2D).  230 

 231 
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In total, our gene-based association tests found 608 significant gene associations (P 232 

<1.25x10-7) across 24 common traits and diseases. We found that adding predicted 233 

deleterious missense variants to masks led to the identification of at least 60% more 234 

significant gene-trait associations and about 30% more positive control genes as 235 

compared to pLoF-only mask (Figure 2, Supplementary Figure 1a, and Supplementary 236 

Table 6). Despite different numbers of associations identified, 114 significant associations 237 

and 30 positive control genes were captured using any of the masks, which accounts for 238 

between 27-57% and 50-71% of the findings, respectively, of each mask (Supplementary 239 

Figure 1b and Supplementary Figure 1c). Comparing across four masks, pLoF with 240 

AlphaMissense and pLoF with Missense (5/5) resulted in more significant associations 241 

and positive control genes than the pLoF-only mask while keeping a lower false positive 242 

rate than pLoF with Missense (1/5) mask, indicating their superiority over the other masks. 243 

Between these two preferred masks, pLoF with AlphaMissense identified largely similar 244 

or slightly higher numbers of significant gene-trait and gene-disease associations 245 

compared to pLoF with Missense (5/5). Meanwhile, these two methods demonstrated a 246 

similar sensitivity in capturing positive control genes, as indicated by the proportions of 247 

positive control genes among significant associations (17.9% for pLoF with Missense 248 

(5/5), and 17.5% for pLoF with AlphaMissense) (Figure 2). Furthermore, the pLoF with 249 

AlphaMissense and pLoF with Missense (5/5) masks shared 245 (71 and 75%) significant 250 

association findings and 46 (77 and 80%) of identified positive control genes 251 

(Supplementary Figure 1b and 1c).  252 

 253 

 254 
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 255 

Figure 3. Performance curves (ROC and PRC) for all four masks to identify positive 256 

controls genes across all 21 tested traits and diseases with positive control genes. 257 

 258 

Next, to evaluate whether different masks enhanced the distinction between positive 259 

control genes and non-positive control genes by offering more divergent P values, we 260 

evaluated the performance of using different masks in classifying these genes by 261 

calculating the operating characteristic curve (ROC) and precision-recall curve (PRC). 262 

Upon comparison, we observed that all four masks have statistically indistinguishable 263 

area under the receiver-operator curves (AUROC) (Figure 3, left panel). However, pLoF 264 

with Missense (5/5) and pLoF with AlphaMissense have a higher estimated area under 265 

the precision-recall curves (AUPRC) than the other two masks despite the fact that all the 266 

95% confidence intervals of  AUPRCs overlapped (Figure 3, right panel). Similar AUROC 267 

and AUPRC patterns can be observed across tested traits, but we did observe that 268 

specific masks could perform better for certain traits and diseases (Supplementary Figure 269 
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2). Additionally, we tested whether using different aggregating methods for counting 270 

alleles, in burden tests, across genetic sites within genes changed the mask performance. 271 

Using the maximum number of alternative alleles across sites (the default approach) and 272 

using the sum of the number of alternative alleles in gene-based association analyses 273 

performed similarly (Supplementary Figure 3). 274 

 275 

Considering that performance was better when pLoF variants were combined with either 276 

Missense (5/5) or AlphaMissense annotated deleterious variants, we further investigated 277 

whether merging AlphaMissense and Missense (5/5) annotations before combining with 278 

the pLoF variants could improve their ability to classify positive control genes. We tested 279 

two designs: using pLoF variants and variants predicted to be deleterious by (1) both 280 

AlphaMissense and Missense (5/5) or by (2) either AlphaMissense and Missense (5/5).  281 

 282 
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 283 

Figure 4. Significant gene-trait and gene-disease associations identified in exome-284 

wide gene burden analysis across 24 traits using pLoF with the intersection or 285 

union of predicted deleterious variants by AlphaMissense and Missense (5/5). The 286 

inset figure shows the total number of significant genes and positive controls identified by 287 

each mask across all the tested traits and diseases. Abbreviations: estimated bone 288 

mineral density (eBMD), body mass index (BMI), waist-hip circumference ratio (WHR), 289 

serum low-density lipoproteins (LDL), type 2 diabetes (T2D).  290 

 291 

As shown in Figure 4, utilizing deleterious variants predicted by either method identified 292 

slightly more significant associations (372 pairs), although the precision remained similar 293 

(17.7%) (Supplementary Table 7). In contrast, using the overlapping predictions led to 294 

fewer significant associations (287 pairs) but marginally higher precision (18.5%). The 295 
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AUROC and AUPRC of these two new mask definitions are similar to other masks 296 

(Supplementary Figure 4). Overall, little improvement was observed by merging Missense 297 

(5/5) with AlphaMissense. 298 

 299 

Discussion 300 

Gene-based tests offer an elegant way to study the effect of rare coding variants on 301 

human traits by improving statistical power. However, the best way to combine genetic 302 

variants into gene sets is still not fully determined, simply because there are usually many 303 

irrelevant genetic variants in each gene set which may dilute any signal from the set of 304 

causal variants. Hence, such analyses usually rely on algorithms to predict which variants 305 

are likely to be loss of function or missense variants with deleterious effects. As gene-306 

based analyses are restricted to a likely deleterious subset of variants to increase this 307 

signal to noise ratio, the success of these analyses rest partially on the performance of 308 

the predictions. The emergence of a language model-based variant effect prediction 309 

methods, AlphaMissense, has been suggested to be able to improve gene-based 310 

association. However, our results showed that AlphaMissense did not importantly 311 

outperform the current state-of-the-art masks in gene-based association analyses using 312 

whole-exome data.  313 

 314 

There are multiple reasons why the inclusion of 'likely pathogenic' missense variants, as 315 

annotated by AlphaMissense, does not lead to significant improvements. First, the masks 316 

used in our analysis always included pLoF variants, which already contribute significantly 317 

to the associations observed between genes and traits. Furthermore, the addition of 318 
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AlphaMissense's predicted pathogenic missense variants expands the analyzed gene 319 

pool by only 184 genes (when added to pLOFs) or 33 genes (when added to pLOF and 320 

Missense (5/5)) beyond those tested using pLoF-only masks. This modest increase in the 321 

number of genes tested offers limited scope for enhancing the performance of gene-322 

based association tests. Lastly, as noted earlier in this report, other missense annotation 323 

methods largely capture the same 'likely pathogenic' variants identified by AlphaMissense. 324 

Given that all gene-based tests then summarize information across all analyzed variants 325 

in a gene (in various ways), the small number of differently-prediction variants may not 326 

render a large difference in the associated genes.  327 

 328 

AlphaMissense may provide useful and clarifying information in scenarios where 329 

understanding single variant effects is crucial. For example, AlphaMissense could be 330 

particularly helpful in pinpointing actionable genetic sites within known disease-causing 331 

genes. This may be particularly useful for patients with Mendelian diseases without major 332 

structural disruptions in the genetic region (23,24). Additionally, since AlphaMissense 333 

integrates protein structure context into its predictions of variant effects, it should be more 334 

effective when identifying deleterious variants for diseases where protein malfunction 335 

arises from changes in protein conformation. AlphaMissense could also be advantageous 336 

in predicting pharmacogenetic effects that involve protein-drug interactions (25). 337 

 338 

We recognize that while pLoF and missense variant annotations should not be affected 339 

by genetic ancestry, we only performed our analyses in European genetic ancestry 340 

individuals from the UK Biobank, and we only examined 24 traits. Hence, these results 341 
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will need replication in other populations once sample sizes allow this. Second, the UK 342 

Biobank cohort is a relatively healthy cohort. The number of disease cases is low, which 343 

can limit the statistical power to identify disease-related genes, which may make it more 344 

difficult to compare the performance of different masks in ExWAS. Lastly, there are other 345 

annotation masks that we have not tested, and which may perform differently. 346 

Nevertheless, we compared our results to the best currently available annotations (10), 347 

and we have established that any future work should make comparisons to 348 

AlphaMissense. 349 

 350 

In summary, we found that most of the "likely pathogenic" missense variants identified by 351 

AlphaMissense were also generally predicted to be deleterious by at least one of five 352 

commonly used variant annotation methods. Using masks combining AlphaMissense with 353 

pLoF did not outperform the state-of-the-art missense annotation tools for gene-based 354 

studies. 355 

 356 

Data availability  357 

Individual-level genotype, exome sequencing, and phenotype data is available to 358 

approved researchers via UK Biobank at: https://www.ukbiobank.ac.uk. ExWAS 359 

summary statistics will be made available at GWAS Catalog 360 

(https://www.ebi.ac.uk/gwas/).  361 

 362 

Code availability 363 
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VEP software can be downloaded at https://github.com/Ensembl/ensembl-vep. Regenie 364 

software can be found at https://github.com/rgcgithub/regenie. UK Biobank exome data 365 

was analyzed using Regenie 3.2.1. All other data analysis was performed using R 366 

(v.4.1.2). Additional codes can be accessed through Github upon publication. 367 
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