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Abstract 
Background: 
Second-generation antipsychotics (SGAs) are commonly used to treat schizophrenia (SCZ), 

but SGAs may differ in the severity of side effects. Previous observational studies had 

limitations like failing to account for confounding factors and short follow-up periods. This 

study compared the long-term metabolic and anthropometric side effects of seven second-

generation antipsychotics (SGAs) in a Chinese schizophrenia population, using a within-

subject approach to reduce risk of confounding. 

Methods: 
Longitudinal data on SGA prescriptions, concomitant medications, fasting blood glucose, 

lipid profiles, and BMI were collected from 767 schizophrenia patients, with follow-up up to 

18.7 years (median ~6.2 years). Linear mixed models estimated the effects of SGAs, as binary 

predictors and by dosage, on metabolic profiles. 

Results: 
When considering SGAs as binary predictors, clozapine and olanzapine were associated with 

the most substantial worsening of lipid profiles and BMI, while clozapine alone showed a 

significant increase in blood glucose. Amisulpride, paliperidone, and quetiapine worsened 

lipid profiles and increased BMI. Conversely, aripiprazole improved lipid profiles but slightly 

increased BMI. Examining dosage effects showed consistent results overall. At minimum 

effective doses, clozapine had the most severe metabolic side effects, followed by 

olanzapine. Risperidone and aripiprazole had the least metabolic impact, with aripiprazole 

significantly lowering lipids. 

Conclusions: 
This study clarified the long-term, dose-dependent metabolic and anthropometric effects of 

different SGAs in Chinese schizophrenia patients. Our findings may inform clinicians and SCZ 

patients of SGA choices. 

 

Keywords:  second-generation antipsychotics; within-subject analysis; dose-dependent; 

metabolic side effect; longitudinal study; Chinese schizophrenia population 
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1. Introduction 
Antipsychotic medications are mainstream treatments for schizophrenia (SCZ)[1]. Second-

generation antipsychotic medications (SGAs) comprise pharmacological agents with different 

chemical structures and receptor affinities and have been widely used in treating psychosis, 

including first-episode SCZ patients[2-4]. Compared to first-generation antipsychotic 

medications (FGAs)[5], SGAs are associated with fewer extrapyramidal side effects[6]. 

However, SGAs can accompany anthropometric and metabolic side effects, including weight 

gain, diabetes mellitus and dyslipidemia[7-10], resulting in metabolic syndrome and 

cardiovascular diseases[11-13]. SCZ is associated with an average of around 15 years of 

potential life lost, mainly due to increased mortality caused by physical comorbidities, in 

particular cardiovascular disorders [14, 15]. 

Recent network meta-analysis of RCTs compared the efficacy and tolerability of different 

antipsychotics, and concluded that SGAs differed markedly in metabolic side effects[7, 16]. 

Despite these empirical evidence[7, 8, 17, 18], previous research on side effects of SGAs has 

several limitations, including modest sample size[19, 20], lacking baseline (pre-SGA 

prescription) metabolic data[6], failing to discern the causal relationship between SGAs and 

metabolic side effects (owing to confounding)[19-22], short duration of longitudinal 

observations (ranged from weeks to around one year)[7, 9, 10], and failing to account for 

concomitant prescriptions[7, 10, 21].  

We note that a number of RCTs (and meta-analyses of RCTs) have reported metabolic side 

effects of SGAs, and RCTs are generally regarded as free of confounding. However, RCTs may 

have shortcomings. One important limitation is that RCTs are usually of short duration. For 

example, a recent meta-analysis on “long-term” metabolic side effects of antipsychotics had 

a median follow-up of only less than a year (45 weeks), and the dropout rate was high (up to 

42%); many RCTs had even shorter follow-ups[16]. Besides, RCTs are primarily intended to 

study the efficacy of SGAs and are often conducted in selected subjects without physical 

comorbidities and concomitant medications. As such, the generalizability of RCT findings to 

the real-world setting may be a concern. In recent years, there has been growing recognition 

of the need to complement RCTs with real-world observational studies[23]. Moreover, 

heterogeneity between RCTs may further limit the generalizability of findings from RCT 

meta-analyses. Notably, many previous studies in SGAs’ effects were conducted in European 

populations, and rarely on Asian/Chinese settings. Given the difference in baseline BMI and 

metabolic profiles between Asian and European populations[24-27], it is valuable to study 

SGAs’ effects using a Chinese sample.  

Careful design and novel analytic approaches can mitigate confounding, including 

unmeasured confounding, in observational studies. Here we disentangle the between-

subject estimate from the within-subject estimate to reduce confounding bias when 

estimating associations between SGAs and metabolic measures[28]. In a hypothetical 

illustration that we set up in Figure 1, when looking at the between-subject estimate, a drug 

for treating diabetes may seemingly be associated with higher glucose levels. Yet if we look 

at the within-subject estimate, the same drug actually reduces an individual’s glucose levels. 

This issue of “confounding by indication/contra-indication”[29] can be addressed using 

advanced statistical modelling, such as the hybrid linear mixed model (LMM) (employed in 

this study) [30], which can be applied to longitudinal data for disentangling the within-
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subject estimate from the between-subject estimate of the effects of drugs[31-33]. By 

estimating the “within-subject changes”, we could account for unknown or unmeasured 

time-invariant confounders. 

Previous research mainly studied the differences in the severity of metabolic side effects 

between SCZ patients exposed to SGAs and controls, and seldom investigated the dose-

dependent side effects[7, 8, 10, 34]. Clarifying dose-dependent side effects of SGAs on SCZ 

patients is important for better prescribing practice.  

To the best of our knowledge, this is the first long-term (median follow-up > 5 years) 

longitudinal study on the (quantitative) anthropometric and metabolic side effects of SGAs, 

and the first study of such in the Chinese population setting. This study attempted to apply 

the hybrid LMM to a longitudinal cohort of SCZ patients who received SGAs for a period of 

0.4 to 18.7 years (median ~6.2 years). We aimed to compare long-term side effects on 

anthropometric and metabolic parameters between different SGAs in Chinese SCZ patients.  

This study has several unique strengths. Firstly, the use of within-subject estimates could 

substantially reduce the risk of confounding by indication/contra-indication. Second, we 

investigated the effects of SGA dosage on metabolic profiles, which have been seldom 

studied previously. Thirdly, the median follow-up duration for our sample was 6.2 years, with 

a maximum duration of 18.7 years, which was longer than most RCTs or observational 

studies in this area. Fourth, we employed linear mixed models to account for longitudinal 

changes in metabolic profiles, instead of using cross-sectional models. Fifth, the study 

controlled for the use of other drugs, ensuring that the observed effects are due to the SGAs 

instead of being confounded by other medications. Sixth, this study involved data of up to 

27,723 metabolic measures and 192,152 prescription records, covering 767 SCZ patients. To 

our knowledge, this study was the largest longitudinal observational studies to date for 

examining a wide range of metabolic abnormalities in Chinese SCZ patients. 

2. Method 
2.1 Longitudinal dataset  
SCZ participants were recruited from a research-oriented clinical programme at Castle Peak 

Hospital (CPH) Hong Kong in 2009-2021[35]. The inclusion criteria were (1) aged >18, (2) 

ethnic Chinese, (3) ICD-10 diagnosis of SCZ or schizoaffective disorders, (4) received SGAs, (5) 

having pre-SGA baseline measures of BMI, BG and lipid profiles, and (6) having >1 post-SGA 

measures of BMI, BG and lipid profiles. Exclusion criteria included (1) a known history of 

metabolic disorders (diabetes mellitus or dyslipidemia) before SGA prescriptions, and (2) did 

not have psychiatric follow-up as of March 2021. Written informed consent was obtained 

from all participants. 

Based on the existing cohort of 773 SCZ participants, we reviewed the computerized clinical 

records to retrieve all the available measures of BMI, BG and lipid profiles for each 

participant, from service entry to assessment endpoint. According to the territory-based 

guidelines, all participants who received SGA are recommended to have baseline (pre-SGA) 

measures for the following items, namely BMI, BG, fasting high- and low-density lipoproteins 

(LDL and HDL), triglycerides (TG), and total cholesterol (TC). These measurements were 

repeated annually until the cessation of SGA medications.  
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Moreover, we retrieved each participant’s full prescription records during the entire 

observation period. The dosage of SGA (mg), and use of antidepressants, antidiabetic drugs 

and lipid-lowering drugs were all recorded. 

2.2 Data cleaning and pre-processing 
We excluded six subjects with duplications and inconsistent clinical parameters, resulting in 

the final dataset of 767 participants with SCZ. A total of 192,152 prescription records were 

retrieved, among which 19,316 records were included in the final analysis as they were 

dated close to the metabolic measures (see Supplementary Table S2). The measures for BMI, 

as well as the fasting blood collection (i.e., BG, LDL, HDL, TG, TC), could be conducted at 

different time points. Therefore, we compiled three datasets, i.e., lipid profile (TC, HDL, LDL, 

TG), BG and BMI, which contained 4,051, 4,076, and 7,598 metabolic measures respectively. 

After removing those with missing values, the three datasets contained 4,050 measures for 

TC, 3,917 measures for HDL, 4,037 measures for LDL, 4,045 measures for TG, 4,076 

measures for BG, and 7,598 measures for BMI. 

Before entering the data into the hybrid LMM models, we removed those measures having 

>6 SD beyond the group mean as outliers. Specifically, we removed 2 measures of TC, HDL, 

BMI, and 11 measures for TG, and 27 measures for BG as outliers. No outlier was observed 

for LDL. Consequently, 4048 measures for TC, 3917 measures for HDL, 4035 measures for 

LDL, 4034 measures for TG, 4049 measures for BG, and 7596 measures for BMI were 

retained for analysis. We transformed these variables of interest using natural log 

transformation and conducted a QQ plot (see Supplementary Figure S1). 

2.3 Variable selection for modelling 
Regarding the data of prescription records, a few types of SGAs had only been prescribed to 

a small number of SCZ participants throughout the observation period. To build reliable 

models, we examined the effects of seven SGAs, i.e., clozapine, olanzapine, aripiprazole, 

amisulpride, paliperidone, risperidone, and quetiapine, which were prescribed in a sufficient 

number of patients (>30). Long-acting injectable and oral preparations were analysed in the 

same way, after dose conversion[36]. Given other psychotropic drugs can affect BMI, BG and 

lipid profiles, we accounted for the effects of concomitant prescriptions, including lithium, 

valproate, sertraline, and citalopram on anthropometric and metabolic measures. Besides, 

we accounted for the effects of metformin, simvastatin, and atorvastatin which were 

commenced during the observation period, similar to prior studies[37-40]. These 

concomitant prescriptions were used in >30 participants in our cohort. 

Age, gender, years of education and treatment duration were included as covariates. To 

address multicollinearity, we estimated the correlations between the variables of interest 

and covariates. As shown in Supplementary Figure S2, no significant correlation had been 

found, except for simvastatin and metformin. Given that these two drugs were included as 

covariates, and our study did not estimate the effect size of these two drugs, the 

multicollinearity as such would unlikely introduce bias to our findings.  

The authors assert that all procedures contributing to this work comply with the ethical 

standards of the relevant national and institutional committees on human experimentation 

and with the Helsinki Declaration of 1975, as revised in 2013. All procedures involving 

human subjects/patients were approved by the ethics committees of the New Territories 
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West Cluster (reference number: NTWC/CREC/823/10; NTWC/CREC/1293/14) and the 

Chinese University of Hong Kong and the New Territories East Cluster (reference number: 

2016.559). 

2.4 Considering the “side effect latency period” 
We postulated that SGA-induced metabolic side effects would take time to emerge. In this 

study, the “side effect latency period” was defined as the time lapse between the initiation 

of SGA medication and observed changes in our variables of interest. We then tested the 

linear mixed models with different latency periods (2, 4, 7, 14, 21, 28, and 35 days) to 

determine the optimal model with the minimum Akaike Information Criterion (AIC). The AIC 

values were plotted against the latency period in Supplementary Table S1. The optimal 

latency period ranged from 7 to 35 days for TC and HDL measures. The AIC values for models 

with a 21-day latency period showed consistently close-to-minimal values and were chosen 

for all subsequent models in this study. 

2.5 The between-subject and within-subject estimate of SGAs on 
variables of interest 
We employed the hybrid LMM to investigate the association of “time-varying” variables with 

outcome variables, and to disentangle the within-subject estimate from the between-

subject estimate[22]. In hybrid LMM, the between-subject component used the expected 

value of the risk factor (i.e., mean) as the independent variable, while the within-subject 

(time-varying) component reflected the differences between the subject's risk factor levels 

(here the risk factor is SGA prescription [coded as 0/1] or the dosage of SGA) and their 

expected levels at different time points[30] (i.e., detrending of subject’s values). This 

approach addressed the issue of “confounding by indication/contra-indication”, and 

disentangled the between-subject estimate from the within-subject estimate (see Figure 1). 

It is noteworthy that LMM can accommodate imbalanced longitudinal data (i.e., irregular 

measurements and different follow-up durations for each person) and missing values. 

When disentangling the relationship between a time-varying variable (such as clozapine 

doses taken by a subject i – ����. ���	
���������,�  ) and the corresponding metabolic 

level measured at time t  – ����� , the hybrid LMM took two components into consideration, 

i.e.,  the between-subject variable (��_����. ���	
����) and the within-subject variable 

(��_����. ���	
���������,�). We incorporated the optimal latency period of 21 days into 

these variables, and used the dose taken 21 days before time t (i.e., 

����. ���	
���������,�), rather than dose taken at time t (i.e., ����. ���	
����� ), as 

the time-varying variable. In our study, the between-subject ��_����. ���	
����  and 

within-subject ��_����. ���	
���������,� variables were specified in the hybrid LMM as 

described below, following the methodology proposed by Curran and Bauer [22]: 

log ������� = � � �	
 ∙��_����. ���	
����  + ��
 ∙ ��_����. ���	
���������,�   

+ …. + (�� � ���) 

��  is a random effect and ���  is the time- and subject-specific residual. 

����. ���	
���������,�  was parsed into ��_����. ���	
���� and 

��_����. ���	
���������,�  , using the following linear regression model: 

����. ���	
���������,�  = ��� �  ��� · !"_�#$%!&�'�� � ���  
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In this formula, the covariate !"_�#$%!&�'��  represents the treatment duration at time t for 

the subject i, where the corresponding metabolic levels were measured at time t. If there is 

no medication before the first metabolic measurement at t=0 (i.e., !"_�#$%!&�'��= 0), 

����. ���	
���������,�  will be zero. Intercept ���  reflects the initial expected dose value 

of ����. ���	
���������,�  for subject i at t =0; while the time-specific varying residual ���  

is the difference between the ����. ���	
���������,� and the time-specific subject-mean 

value and it also represents the detrended value of  ����. ���	
���������,� for subject i. 

Therefore, the between-subject component ��_����. ���	
����   is equivalent to ��� , and 

the within-subject component ��_����. ���	
���������,�  is equivalent to ���  . 

2.6 Hybrid LMM analyses 
2.6.1 Model A 
In Model A, a random intercept hybrid LMM model was built to identify significant 

associations between metabolic side effects and SGA medications. The model was defined 

as follows: 

log�(��� ) "��
� �  #��

 *� � +��            & ) 1, … , /; ! ) 1, … , '�                            (1)         

Here (��  represents the metabolic measure of the i-th subject at time t, '�  denotes the 

number of measurements for the i-th subject, and  "�� is the covariate vector for fixed effects 

(�), encompassing gender, education, age, treatment duration (!"_�#$%!&�'��), between-

subject medications (bz.<drug>), and within-subject medications (wz.<drug>). #�� is the 

covariate vector for random effects (*�), set to 1 as Model A is a random intercept model. +��  

represents the error term. The subject ID serves as the grouping factor. The full formula of 

Model A expressed in lmer4 (R package) format is stated in Supplementary Text 1. 

2.6.2 Model B 
Hybrid LMM Model B, a random intercept model, maintained the structure of Equation (1), 

with the same covariate vectors "��  for fixed effects (�) and setting #��  to 1, similar to Model 

A. However, to estimate SGA-induced metabolic side effects per mg of antipsychotic drugs, 

the between- and with-subject medications were changed from binary variables (bz.<drug> 

and wz.<drug>) to continuous variables representing the dosages of the drugs 

(bz_dose.<drug> and wz_dose.<drug>). The full formula of Model B expressed in lmer4 (R 

package) format is stated in Supplementary Text 2.  

3. Results 
Among our sample of 767 participants with SCZ, 46.7% (n = 358) were male, with a mean of 

29.47 (SD = 9.17) years old. Participants’ mean education was 11.67 years (SD 2.90 years) 

and their mean onset age was 26.52 (SD 9.39). On average, participants received 5.5 (SD = 

3.3) measures for lipid profiles (TC, HDL, LDL and TG), 5.5 (SD = 3.7) measures for BG, and 

10.0 (SD = 9.0) measures for BMI. The mean number of prescription records for the entire 

sample was 180.7 per participant (SD = 72.9). Around 68% of our participants were drug-

naïve at the time of baseline (pre-SGA) measures for the variables of interest. Among the 

SGA prescription records, olanzapine and aripiprazole were the most commonly prescribed 

SGAs in our cohort. The mean number of prescriptions for each SGA in our cohort is shown 

in Supplementary Table S2. To ensure the reliability of results, we scrutinized the 

homoscedasticity and normality assumptions for Model A and Model B (see Supplementary 
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Text 3). The effect sizes presented below reflect the effects of specific SGAs, after controlling 

for other covariates, including other types of SGAs. 

3.1 Metabolic side effects after SGA medications 
Model A explored the associations between metabolic levels and SGA medications. Tables 1a 

and 1b highlight the estimated significance between-subject and within-subject associations 

(p < 0.05), whereas Table 2 lists the within-subject effect estimates. 

3.1.1 Between-subject estimate 
As expected, most associations between metabolic levels and between-subject SGA 

treatment effect did not reach statistical significance (see Table 1a), owing to confounding by 

indication/contraindication or other factors. However, several significant associations were 

found. Specifically, olanzapine was associated with an increase of 4.7% (95% CI: 4.5%,4.8%) 

in TC and an increase of 6.1% (95%CI: 5.8%, 6.5%) in LDL; quetiapine was associated with a 

decrease of 8.3% (95% CI: -8.9%, -7.7%) in HDL ; and risperidone was associated with an 

increase of 20.2% (95% CI: 17.3%, 23.1%) in TG. 

Regarding the effects of demographics and duration of treatment (see Supplementary Table 

S3), our results showed that younger age was associated with better lipid profiles and BMI, 

and female SCZ participants showed better lipid profiles. A higher education level was 

associated with higher HDL and lower BG; but longer treatment duration was strongly 

associated with lower HDL and higher TG, BG, and BMI, but unexpectedly lower TC and LDL. 

3.1.2 Within-subject estimate 
Most associations between metabolic levels and within-subject SGA treatment effects were 

significant (see Table 1b). Specifically, clozapine and olanzapine were strongly associated 

with worsened lipid profiles, BG and BMI, except the association between olanzapine and 

changes in BG failed to reach statistical significance. Aripiprazole was strongly associated 

with a reduction in TC of 3.8% (95% CI: -3.9%, -3.7%), a reduction in LDL of 4.1% (95%CI: -

4.2%, -4.0%), and a reduction in TG of 6.8% (95% CI: -7.2%, -6.5%), but an increase in BMI of 

1.9% (95% CI: 1.8%, 1.9%). Amisulpride were associated with an increase in TC of 3.7% (95% 

CI: 3.6%, 3.8%), an increase in LDL of 4.8% (95% CI: 4.6%, 4.9%), an increase in TG of 10.0% 

(95% CI: 9.4%, 10.6%) and an increase in BMI of 2.7% (95% CI: 2.6%, 2.7%). Quetiapine was 

associated with an increase in TC of 3.0% (95% CI: 2.9%, 3.1%), an increase in TG of 11.9% 

(95% CI: 11.0%, 12.8%), and an increase in BMI of 3.1% (95% CI: 3.0%, 3.1%), but the 

association between quetiapine and changes in LDL failed to reach statistical significance. 

Paliperidone was associated with worsened TC (4.5%; 95% CI: 4.3%, 4.6%), HDL (-4.5%; 95% 

CI: -4.7%, -4.3%), LDL (8.9%; 95% CI: 8.3%, 9.4%) and BMI (3.3%; 95% CI: 3.3%, 3.4%). To 

further evaluate the impact of SGA medications on each metabolic parameter, the SGAs 

were ranked by their effect estimates in Table 1c. 

 

3.2 Metabolic side effects at minimal effective dose of SGA medications. 
Model B estimated the dose-dependent within-subject estimate of SGAs on metabolic side 

effects. The within-subject percentage change in metabolic levels after taking one unit (mg) 

of the corresponding SGA per day is listed in Table 3, whereas the other effect estimates are 

listed in Supplementary Table S4. To enhance utility, we estimated the percentage changes 

of metabolic levels for each SGA, at the respective minimum effective dose (MED) used to 
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manage SCZ patients (see Table 4a), based on linear dose-dependent relationship 

assumptions[41]. The MED was based on the Maudsley prescribing guidelines in 

psychiatry[42]. The SGAs were ranked from highest to lowest risk associated with metabolic 

side effects (without concerning the percentage changes). Among all the seven SGAs we 

studied, olanzapine showed the largest number of significant associations with metabolic 

side effects, while risperidone showed no significant associations. Aripiprazole showed a 

protective effect and was significantly associated with improving TC (-0.1740%/mg; 95%CI: -

0.1742%/mg, -0.1738%/mg) and TG (-0.4000%/mg; 95% CI: -0.4012%/mg, -0.3988%/mg). To 

further evaluate the impact of SGAs on each metabolic parameter, the SGAs were ranked by 

their percentage changes in metabolic levels after taking MED in Table 4b. 

 

4. Discussion 
Our study employed the hybrid LMM to account for the within- and the between-subject 

estimate of metabolic side effects of SGAs. However, many previous studies on SGA side 

effects did not distinguish between-subject averages from within-subject changes[9, 10] and 

thus might have reported inaccurate effect estimates, or inconsistent findings[7, 8, 43]. Our 

advanced statistical approach addressed this shortcoming of these previous studies and 

provided robust results regarding the long-term effects of SGAs on anthropometric and 

metabolic parameters in SCZ patients. 

Although other observational studies have reported metabolic side effects of SGAs[44], our 

study was one of the most comprehensive and rigorous studies on the topic. Here we have 

studied a total of seven SGAs and covered six metabolic measures, enabling a 

comprehensive and systematic assessment of metabolic disturbances across almost all 

commonly used SGAs. Besides, as reported in the latest review[44], only few real-world 

studies have been conducted to investigate the effects of SGAs on weight gain or BMI 

changes, and very few reported quantitative changes in glucose or lipid levels (although 

there were a few studies on dyslipidaemia as a binary outcome). Very few real-world studies 

had included aripiprazole, and to our knowledge none included paliperidone. Furthermore, 

as we and other researchers have highlighted[44], confounding by indication is difficult to 

address in observational studies. To our knowledge, this is the first study to employ the 

within-subject approach to tackle this issue, which can account for unmeasured/unknown 

confounding factors that are time-invariant. Another strength is that we considered 

longitudinal changes of metabolic parameters using LMM, instead of only considering 

outcomes at the end of follow-up. The regular monitoring of metabolic profiles in our 

naturalistic cohort also reduced bias. 

Our main findings are as follows. Regarding the within-subject estimate with SGAs as binary 

predictors (Model A), our findings suggested that most SGAs significantly altered metabolic 

profiles, aligning with a recent systematic review [8]. Specifically, risperidone did not show 

statistically significant metabolic side effects, consistent with another systematic review 

(except for BMI)[7]. Quetiapine had relatively modest metabolic side effects. Aripiprazole 

was associated with increased BMI but reduced TC, LDL, and TG. Clozapine, olanzapine and 

amisulpride worsened lipid profiles and BMI. Among the lipid measures, HDL was the least 

affected. In general, our findings concurred with earlier studies[7-10, 16, 43], after 
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accounting for glucose- and lipid-lowering medications. Nevertheless, the results and effect 

sizes reported in this study may more accurately reflected the metabolic changes in SCZ 

patients over a longer duration (median ~6.2 years), and the within-subject estimate may be 

closer to the true causal effect. 

Of note, we observed that aripiprazole was associated with reduced TC, LDL and TG. 

Previous meta-analyses of RCTs mostly reported non-significant effects of aripiprazole on 

lipid profiles[7, 44]. However, several studies reported that when other SGAs were switched 

to aripiprazole or when aripiprazole was additional prescribed, patients were found to have 

improved lipid profiles [45-54]. These studies were in general limited by relatively modest 

sample sizes and short follow-up periods (longest = 52 weeks, others <=24 weeks), and none 

of the previous studies recruited a Chinese sample. Our findings may be considered as 

broadly consistent with these studies [45-54] which showed beneficial effects of aripiprazole 

in pragmatic settings. It should be noted that in our analysis of real-world SGA use, patients 

may be prescribed other SGAs with higher metabolic side effects before the use of 

aripiprazole, or have concomitant use of more than one SGA. The improved lipid profiles 

might happen in the context of an “already developed” hyperlipidemia after the use other 

SGAs.  

In addition, we observed that paliperidone was associated with worsened metabolic profiles. 

Interestingly, we observed more significant metabolic side effects from paliperidone than 

from risperidone in this study. The novel finding requires further replication because the 

number of patients on paliperidone in our sample was relatively small. 

Model B examined the dose-dependent effects of SGAs on metabolic parameters. At MED, 

olanzapine was associated with relatively wide-ranging side effects, i.e., worsening of 5 out 

of 6 metabolic parameters. It was followed by clozapine which was associated with 4 out of 

6 metabolic parameters. On the other hand, clozapine induced the greatest percentage 

changes in HDL, LDL, TG, and BG; amisulpride had the largest effects on TC and BMI. 

Aripiprazole showed protective associations with TC and TG. These findings generally 

concurred with prior research[7, 8, 10, 16, 43], and may further inform clinicians about the 

SGA metabolic side effects at MED.  

Across Model A (SGAs as binary predictor) and Model B (dosages as predictor; percentage 

change of metabolic parameters at MED being presented), we observed some subtle 

differences regarding the metabolic effects. When comparing the total number of significant 

associations between SGA and metabolic effects, clozapine ranked highest in Model A (see 

Table 1b), while olanzapine ranked first in Model B (see Table 4a). After dose adjustment at 

MED and comparing the percentage changes of metabolic levels after SGA medications, 

clozapine still ranked at the top (see Table 4b), but amisulpride and olanzapine had swapped 

positions (see Table 1c and Table 4b). Amisulpride may appear to have more severe 

metabolic side effects when compared with other SGA medications at MED, or when 

compared at higher dosages. 

Our findings have important clinical implications. Given our more robust estimates of the 

SGA side effects in BMI and metabolic profiles in SCZ patients, clinicians and patients can be 

better informed for decision-making and side effect monitoring. They may also be better 

informed regarding the extent of metabolic abnormalities over a longer timeframe. To our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2024. ; https://doi.org/10.1101/2024.03.04.24303695doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.04.24303695
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

knowledge, this is also the first real-world study on the effects of SGA dosage on metabolic 

parameters, which may provide a preliminary guide for clinicians. For example, the SGA 

doses for treating acute psychotic episodes and those for maintenance can differ. It may be 

useful to further study the optimal approach to adjust dosages considering the patient’s 

metabolic side effects to previous antipsychotic treatment. Our work provided novel data 

regarding the SGA side effects at MED and may help facilitate a more nuanced prescribing 

practice. Lastly, our finding that aripiprazole is associated with improved lipid profiles may 

also be of clinical interest. 

4.1 Limitations 
Our study has several limitations. First, we only focused on seven SGAs, yet some other SGAs 

were not covered. Second, lifestyle factors such as smoking and drinking, exercise, and diet 

were not measured and might have confounded our findings. Although the within-subject 

estimates are less susceptible to these confounders, residual confounding cannot be entirely 

ruled out in this observational study. Third, while our sample size provided over 19,316 

observations due to the longitudinal design with multiple measurements, a larger sample 

size and longer follow-ups could strengthen the statistic power and precision of our findings. 

Additionally, the optimal response latency for metabolic changes induced by each SGA may 

differ, but we only chose the 21-day delay as the latency period for all SGAs, as informed by 

our modelling approach using AIC. Furthermore, our analysis of dosage effects assumed a 

linear relationship between dosage and metabolic parameters, which may be oversimplified. 

Further studies with larger samples and more advanced statistical methods are needed to 

explore potential non-linear dosage effects and confirm our findings. 

4.2 Conclusion 
Using a naturalistic longitudinal cohort design and sophisticated modelling to estimate 

within-subject effects, this study provides more robust estimates of the anthropometric and 

metabolic side effects of seven SGAs in Chinese SCZ patients. Clozapine and olanzapine were 

in general associated with the largest metabolic side effects. Aripiprazole was associated 

with protective effects against dyslipidemia. Our work may better inform both clinicians and 

patients of the heterogeneous metabolic risk profiles among SGAs. Consideration of these 

differing risk potentials can support optimal treatment decisions for individual patients. 
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TC HDL LDL TG BG BMI
Clozapine

Olanzapine * *
Aripiprazole
Amisulpride
Quetiapine *
Risperidone *
Paliperidone

TC HDL LDL TG BG BMI
Clozapine * * * * * *

Olanzapine * * * * *
Aripiprazole ^ ^ ^ *
Amisulpride * * * *
Quetiapine * * *
Risperidone
Paliperidone * * * *

(1) Significant metabolic side effects and protective effects with p < 0.05 are indicated by an asterisk(*) and caret (^), respectively.
(2) SGAs are ranked by the total number of significant associations.

TC HDL LDL TG BG BMI
High risk Olanzapine* Clozapine* Olanzapine* Olanzapine* Clozapine* Clozapine*

Paliperidone* Olanzapine* Paliperidone* Clozapine* Amisulpride Olanzapine*
Clozapine* Paliperidone* Clozapine* Quetiapine* Olanzapine Paliperidone*

Amisulpride* Quetiapine Amisulpride* Amisulpride* Paliperidone Quetiapine*
Quetiapine* Amisulpride Quetiapine Paliperidone Risperidone^ Amisulpride*
Risperidone^ Risperidone Risperidone^ Risperidone Aripiprazole^ Aripiprazole*

Low risk Aripiprazole*^ Aripiprazole Aripiprazole*^ Aripiprazole*^ Quetiapine^ Risperidone
Remarks:
(1) Bold with an asterisk "*": Significant association with p < 0.05.
(2) Marked with caret "^": Elicited protective effect after SGA medications.
(3) Without bold: Non-significant association.
(4) SGA medication is treated as a binary predictor in all models listed above. 

Prescription

SGA

Table 1a Between-subject associations between metabolic levels (or BMI) and SGAs with concomitant medications in 
Model A

Table 1b Within-subject associations between metabolic levels (or BMI) and SGAs with concomitant medications in 
Model A

Within-subject associations between metabolic levels and SGA medication

Between-subject associations between metabolic levels and SGA medication

SGA

Prescription

Remark: Significant metabolic side effects and protective effects with p < 0.05 are indicated by an asterisk(*) and caret 
(^), respectively.

Table 1c Severity of within-subject SGA-induced metabolic (or BMI) changes ranked by within-subject 
effect estimates listed in Table 2.

Ranked by risk
SGA-induced metabolic side effects (within-subject)

Remarks: 
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Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p

wz.CLOZAPINE 4.27 (0.06) 3.049 0.002 -7.9 (0.12) 5.308 <0.001 8.53 (0.18) 3.918 <0.001 21.39 (0.87) 4.768 <0.001 8.6 (0.11) 6.466 <0.001 5.9 (0.04) 9.110 <0.001

wz.OLANZAPINE 6.92 (0.07) 6.873 <0.001 -5.24 (0.06) 4.884 <0.001 9.09 (0.14) 5.847 <0.001 25.11 (0.72) 7.764 <0.001 0.85 (0.008) 0.912 0.362 5.06 (0.02) 12.673 <0.001

wz.ARIPIPRAZOLE -3.81 (0.04) 4.166 <0.001 -0.01 (0.0001) 0.010 0.992 -4.11 (0.06) 2.916 0.004 -6.84 (0.19) 2.560 0.01 -1.31 (0.01) 1.498 0.134 1.86 (0.007) 4.890 <0.001

wz.AMISULPRIDE 3.72 (0.04) 3.517 <0.001 -1.69 (0.02) 1.450 0.147 4.76 (0.08) 2.917 0.004 9.99 (0.31) 3.090 0.002 1.03 (0.01) 1.037 0.3 2.65 (0.01) 6.110 <0.001

wz.QUETIAPINE 3.01 (0.04) 2.295 0.022 -2.03 (0.03) 1.405 0.16 2.82 (0.06) 1.400 0.161 11.94 (0.46) 2.943 0.003 -2.36 (0.03) 1.920 0.055 3.07 (0.02) 5.245 <0.001

wz.RISPERIDONE -0.84 (0.01) 0.597 0.551 -0.1 (0.002) 0.062 0.951 -1.18 (0.03) 0.547 0.585 2.11 (0.09) 0.500 0.617 -0.67 (0.009) 0.510 0.61 0.4 (0.002) 0.800 0.424

wz.PALIPERIDONE 4.47 (0.09) 2.114 0.035 -4.48 (0.1) 1.960 0.05 8.87 (0.28) 2.699 0.007 9.89 (0.61) 1.538 0.124 0.81 (0.02) 0.407 0.684 3.31 (0.03) 3.875 <0.001

(1) The unit of effect estimates is the percentage changes in metabolic level (or BMI) after medication.
(2) SGA medication is treated as a binary predictor.

Table 2 Result of Model A - Within-subject effect estimates of SGAs with concomitant medications on the metabolic (or BMI) changes (n = 767). 

Remark: 

TC HDL LDL TG BG BMI

Predictors
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Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p Estimates (SE) t-value p

wz_dose.CLOZAPINE 0.008 (0) 1.620 0.105 -0.01 (0) 2.363 0.024 0.02 (0) 2.363 0.018 0.03 (0) 2.078 0.038 0.01 (0) 3.220 0.001 0 (0) 0.122 0.903

wz_dose.OLANZAPINE 0.285 (0.0002) 4.366 <0.001 -0.18 (0.0001) 4.196 0.013 0.42 (0.0004) 4.196 <0.001 0.8 (0.002) 4.161 <0.001 0.02 (0) 0.398 0.691 0.18 (0) 6.753 <0.001

wz_dose.ARIPIPRAZOLE -0.174 (0.0001) 3.464 0.001 0.03 (0) 1.859 0.566 -0.14 (0.0001) 1.859 0.063 -0.4 (0.0006) 2.684 0.007 -0.02 (0) 0.518 0.604 0.04 (0) 1.925 0.054

wz_dose.AMISULPRIDE 0.006 (0) 2.662 0.008 0 (0) 1.724 0.82 0.01 (0) 1.724 0.085 0.02 (0) 2.897 0.004 0 (0) 0.029 0.977 0 (0) 4.395 <0.001

wz_dose.QUETIAPINE 0.002 (0) 0.483 0.629 0 (0) 0.251 0.68 0 (0) 0.251 0.802 0 (0) 0.246 0.806 -0.01 (0) 1.445 0.148 0.01 (0) 2.868 0.004

wz_dose.RISPERIDONE -0.495 (0.003) 0.946 0.344 0.03 (0.0002) 0.743 0.957 -0.59 (0.0047) 0.743 0.458 -0.15 (0.0023) 0.096 0.923 -0.77 (0.004) 1.570 0.116 -0.07 (0.0001) 0.382 0.702

wz_dose.PALIPERIDONE 0.636 (0.002) 2.483 0.013 -0.14 (0.0004) 2.639 0.626 1.03 (0.004) 2.639 0.008 0.9 (0.0068) 1.196 0.232 0.37 (0.0009) 1.579 0.114 0.35 (0.0004) 3.034 0.002

Remark: The unit of effect estimates is the percentage change in metabolic level (or BMI) after taking one mg of drug per day.

Table 3 Result of Model B - Dose-dependent within-subject effect estimates of SGAs with concomitant medications on the metabolic (or BMI) changes (n = 767). 

Predictors

TC HDL LDL TG BG BMI
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TC HDL LDL TG BG BMI
Olanzapine 7.5 2.15 -1.35 3.18 6.16 0.18 1.37
Clozapine 300 2.49 -3.74 5.61 9.71 4.32 -0.06

Amisulpride 400 2.55 -0.24 2.51 8.41 -0.04 1.82
Paliperidone 3 1.92 -0.42 3.04 2.73 1.12 1.04
Quetiapine 300 0.69 -0.66 0.54 1.03 -1.93 1.54
Risperidone 4 -1.97 0.13 -2.34 -0.59 -3.03 -0.27
Aripiprazole 10 -1.73 0.32 -1.43 -3.92 -0.24 0.41

(1) The Minimal Effective Dose (MED) per day is adapted from The Maudsley Prescribing Guidelines in Psychiatry[39].
(2) Bold: Significant association with p < 0.05.
(3) SGAs are ranked by the total number of significant associations.

TC HDL LDL TG BG BMI
High risk Amisulpride* Clozapine* Clozapine* Clozapine* Clozapine* Amisulpride*

Clozapine Olanzapine* Olanzapine* Amisulpride* Paliperidone Quetiapine*
Olanzapine* Quetiapine Paliperidone* Olanzapine* Olanzapine Olanzapine*

Paliperidone* Paliperidone Amisulpride Paliperidone Amisulpride^ Paliperidone*
Quetiapine Amisulpride Quetiapine Quetiapine Aripiprazole^ Aripiprazole*

Aripiprazole*^ Risperidone^ Aripiprazole^ Risperidone^ Quetiapine^ Clozapine^
Low risk Risperidone^ Aripiprazole^ Risperidone^ Aripiprazole*^ Risperidone^ Risperidone^

Remarks:
(1) Bold with an asterisk "*": Significant association with p < 0.05.
(2) Marked with caret "^": Elicited protective effect after SGA medications.
(3) Without bold: Non-significant association.

Minimal Effective 
Dose (MED) per day 

Percentage change (within-subject) of metabolic level after taking one unit (i.e. one MED) of dose increment
SGA

Remarks:

Table 4b Severity of within-subject SGA-induced metabolic (or BMI) changes after taking a minimal effective dose (MED) of 
SGAs, ranked by percentage changes of metabolic level listed in Table 4a.

Ranked by risk
SGA-induced metabolic side effects (within-subject)

Table 4a Percentage changes of the metabolic level after taking a minimal effective dose (MED) of SGAs, estimated from the effect estimates listed 
in Table 3 and assuming a linear relationship between doses and SGA-induced metabolic changes.
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T0 T1 T2 Mean T0 T1 T2 T0 T1 T2 Mean 
A 0 250 250 167 -167 83 83 5.7 5.3 4.8 5.3
B 0 250 500 250 -250 0 250 6 5.8 5.5 5.8
C 0 500 500 333 -333 167 167 6.2 5.7 5.1 5.7
X 0 500 1000 500 -500 0 500 7.1 6.5 5.4 6.3
Y 0 1000 1500 833 -833 167 667 8.3 7.5 6.1 7.3
Z 0 1000 1000 667 -667 333 333 7.5 6.9 5.9 6.8

Fig. 1 A hypothetical example to illustrate the concept of the between-subject and the within-subject estimates.

Paitent 
ID

Dosage (mg) Detrended dosage (mg) Blood glucose (mmol/L) Fig. 1. Blood glucose levels were measured at times T0, T1, and T2. Patients A, B and C with 
prediabetes were prescribed lower dosages of diabetes drugs at time T1 and T2, 
respectively; while patients X, Y and Z with diabetes were prescribed higher dosages of 
diabetes drugs at time T1 and T2, respectively. The between-subject estimates (left) 
misinterpret that higher dosages of diabetes drugs are associated with higher blood glucose 
levels (i.e., confounding by indication). This confounding is minimized in the within-subject 
estimates (right) which correctly indicate a higher dosage of diabetes drugs is associated 
with lower blood glucose levels.
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