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Abstract 

During the pandemic, perceived COVID-19-related discrimination aggravated children’s stress 

levels. The remaining question is to evaluate the individual variability in these effects and to 

identify vulnerable or resilient populations and why. Using the Adolescent Brain and Cognitive 

Development dataset (N = 1,116) and causal machine learning approach – Generalized 

Random Forest, we examined the average and individual treatment effects of perceived 

discrimination on stress levels immediately and six months later. Their variability and key factors 

were also assessed. We observed significant variability in the acute effects of perceived 

discrimination across children and pinpointed the frontotemporal cortical volume and white 

matter connectivity (streamline counts) as key factors of stress resilience and vulnerability. The 

variability of these neurostructural factors partially originated from the environmental and 

genetic attributes. The finding was replicated in held-out samples (N = 2,503). Our study has the 

potential for personalized prescriptive modeling to prevent children’s future psychopathology 

after the pandemic.  
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Introduction 

Despite the World Health Organization marking the end of COVID-19 as a global health 

emergency1, the mental health impacts stemming from the pandemic-induced social injustices 

are likely to persist2-5. Though exposure to moderate stress during developmental stages can 

enhance an individual's behavioral and neurobiological resilience6-8, excessive or chronic stress 

during these critical periods can lead to neuronal changes and result in long-term 

psychopathological condition9-11. Consequently, there is a concern that children who 

experienced COVID-19-related discrimination may face a higher risk of developing mental 

health disorders, contingent upon the intensity and duration of the distress caused. This concern 

warrants a thorough investigation to determine the acute and sustained stress impacts of such 

discrimination and identify which children are particularly susceptible or resilient to these 

stressors. The urgency for this research is highlighted by the unique stressors presented by the 

pandemic, such as school closures12 and quarantine measures13, alongside reports from 

children across various countries perceiving discrimination related to COVID-19, including 

racism and "COVID-shame"14-17. 

In our study, we utilize a comprehensive approach that integrates genetic, 

sociodemographic, and neuroanatomical data to explore both the acute and sustained effects of 

perceived COVID-19-related discrimination on stress levels, aiming to pinpoint factors 

associated with either vulnerability or resilience. Previous studies in animal models have 

highlighted the neurobiological mechanisms underlying stress vulnerability and resilience, 

underscoring the importance of genetic and environmental interactions in influencing 

neurostructural diversity18-22. However, human research in this area has often been limited by 

the absence of longitudinal, multimodal data and sophisticated analytical frameworks, typically 

focusing on the statistical significance of individual stress moderators. This traditional method 

has identified numerous predictors of stress response across different contexts, such as 
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socioeconomic status23, 24, social support25, 26, structural characteristics of the prefrontal cortex27-

29, and polygenic risk scores for psychiatric conditions30. Yet, accurately modeling an individual's 

stress response, considering the complex interplay of multiple factors, and identifying the main 

contributors to resilience or vulnerability remain challenging. This complexity has also led to 

inconsistent findings, such as the debated protective role of community support against social 

stressors in adolescents31-33 and the contested significance of amygdala morphology29, 34-36 and 

polygenic risk scores37. To address these challenges, our research aims to analyze the 

multivariate interactions among diverse factors, utilizing the extensive Adolescent Brain and 

Cognitive Development (ABCD) dataset, the largest longitudinal study of children in the United 

States38. 

To efficiently and rigorously handle this extensive dataset, we employed the Generalized 

Random Forest (GRF) method39, a cutting-edge causal machine learning technique. GRF 

excels in estimating both average and individual treatment effects of a treatment variable (in this 

case, perceived discrimination) on an outcome variable (stress levels) considering various 

covariates. By utilizing potential outcome frameworks40, GRF enables us to explore 

counterfactual scenarios (e.g., ‘if a child who did not perceive the discrimination experienced it, 

how much will that child’s treatment effect be?’ and vice versa), offering a more nuanced insight 

into the impacts of perceived discrimination than traditional statistical methods. This approach is 

particularly adept at assessing variability in treatment effects among individuals, as it uses the 

random forest's greedy algorithm to optimize tree splits, thereby highlighting complex 

interactions among covariates and identifying key factors related to stress vulnerability (higher 

effects) and resilience (lower effects). We expect that this quasi-experimental method, 

supported by a multimodal dataset, will not only contribute to our understanding of human stress 

responses during the pandemic but also help identify populations vulnerable to perceived 

COVID-19-related discrimination, laying the groundwork for personalized interventions.  
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This study addresses three main questions: First, we aim to estimate the acute and 

sustained average treatment effects of perceived COVID-19-related discrimination on children's 

stress levels. Second, we seek to explore individual differences in the acute and sustained 

treatment effects of perceived discrimination. Lastly, we intend to pinpoint the principal factors of 

resilience and vulnerability, focusing on individual treatment effects that demonstrate significant 

variability among children.  
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Results 

We examined the acute and sustained effects of perceived discrimination on 1,116 

children (Fig 1a and Table 1) using GRF. We aimed to assess how perceived COVID-19-

related discrimination (‘treatment’) influenced children’s stress levels, both immediately after the 

perception of discrimination (‘acute outcome’) and approximately six months later (‘sustained 

outcome’). To account for individual variability in these effects while considering the interactions 

among diverse modalities and controlling the confounders between the treatment and outcome 

variables as much as possible, we used a comprehensive set of 250 covariates derived from an 

extensive literature review (see ‘Methods’). These covariates encompassed multimodal data, 

including polygenic scores of psychiatric diseases, environmental, neuroanatomical, 

psychological, and socioeconomic information (Supplementary Table 1). All covariates were 

measured at least four months before the discrimination report (Fig 1b; see ‘Methods’). To 

mitigate any confounding influences due to site-specific variations in the covariates, outcomes, 

and treatment variables, we used the data acquisition site as a clustering variable of GRF 

following the ref41. 

To optimize the model performance of GRF (i.e., how precisely the model estimates 

average and individual treatment effects), we searched for the best combination of covariates 

via ‘backward stepwise tuning’ (Fig 1c; see ‘Methods’). This feature selection is important to 

enhance the model performance since the GRF model with a high ratio of covariates to sample 

size yields an underestimation of average and individual treatment effects42. The iterative 

approach of backward stepwise tuning produced 250 models each for acute and sustained 

effect analysis. To determine the ‘best model’ for each analysis, we applied two criteria: (1) 

passing the ‘calibration test’42 and (2) displaying the lowest ‘fit index’. Firstly, the models’ 

performance was evaluated through a calibration test, assessing the explanatory power of 

estimated average and individual treatment effects on the outcome variable (see equation (5) in 
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‘Methods’). The calibration test estimates the coefficient of average (′𝛽!"#′) and individual 

treatment effect (′𝛽$"#′) in the regression model to predict the outcome variable. A model that 

demonstrates significant coefficients for both measures is considered to have passed the 

calibration test, indicating precise estimation capabilities. Among the models that passed, those 

with the lowest fit index were selected as the 'best model' for their respective analyses, 

according to our established methodology (see equation (6) in ‘Methods’).   

 

Perceived COVID-19-related discrimination aggravates children’s stress levels 

immediately and over time 

We tested whether the perceived COVID-19-related discrimination has a significant and 

measurable impact on average stress levels among children. We estimated the acute and 

sustained average treatment effects using the GRF model (detailed in 'Methods' section 

equation (4)) and conducted a calibration test to gauge the accuracy of our average treatment 

effect estimates (𝛽!"#) 

Our findings indicate a consistent pattern across models, revealing both acute and 

sustained increases in stress levels as a result of perceived discrimination (Fig 2a and 2b). To 

synthesize these results, we performed meta-analyses for both the acute and the sustained 

models (see equation (7) in ‘Methods’). The combined data show substantial effect sizes with 

significant results (acute: average treatment effect = .536, 95% CI = [.524, .552], P < 2×10-16; 

sustained: average treatment effect = .386, 95% CI = [.368, 403], P < 2×10-16).  

All the models for acute and sustained effect analysis consistently displayed point 

estimates of 𝛽!"# close to the ideal standard of calibration test (i.e., 1), indicating a precise 

estimation of the average treatment effect (Fig 2c and 2d). Additionally, every model showed a 

significant 𝛽!"# value at PFDR < .05 (Supplementary Fig 1a).  

These results corroborate the detrimental influence of perceived COVID-19-related 

discrimination on children's stress levels, both short-term and persisting over a longer period. 
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The consistent estimation of the average treatment effect throughout the backward stepwise 

tuning process suggests that our method of model refinement successfully pinpointed the 

essential covariates for an accurate average treatment effect estimation. 

 

Acute effects of perceived discrimination displayed significant individual variability in 

children, but sustained effects did not. 

We examined whether individual treatment effects of perceived COVID-19-related 

discrimination exhibited variability among children. Firstly, we investigated which models 

showed a significant 𝛽$"# value in the calibration test because the significant 𝛽$"# value 

indicates not only a modest estimation of individual treatment effects but also the identification 

of heterogeneity in individual treatment effects42. Out of the models analyzed for acute effects, 

58 showed a significant 𝛽$"# value (PFDR < .05), suggesting detectable individual variability in the 

acute effects (Supplementary Fig 1b). In contrast, none of the sustained effect models reached 

significance threshold, which may point to either a lack of sufficient covariate information to 

capture heterogeneity or inherently homogenous sustained effects (Supplementary Fig 1b). 

Consequently, further evaluation focused solely on acute individual treatment effects. 

The 'best acute model' was selected from those that passed the calibration test, 

identified by 19 neurostructural covariates (Fig 2e), yielding a 𝛽!"# of .973 (95% CI = [.614, 

1.331], PFDR = 3×10-7) and a 𝛽$"# of 1.755 (95% CI = [1.007, 2.503], PFDR = 2×10-5). This model's 

robustness was confirmed through a sensitivity analysis using different random seed sets, 

consistently showing significant 𝛽!"# and 𝛽$"# (Supplementary Fig 2). Using this model, we 

estimated acute individual treatment effects for each subject, categorizing them into quintiles 

(Fig 2f; see ‘Methods’).  

We evaluated the individual variability of acute effects by estimating group-level average 

treatment effects and testing whether the average treatment effects of the other four groups 

were higher than the estimates of the first group (‘Q1’, with the lowest individual treatment 
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effects) following the ref42-44 – called ‘Sorted Group Average Treatment Effect (GATE)’ test. This 

test revealed a stark contrast in group-level average treatment effects, with the last three 

quintiles (Q3, Q4, Q5) showing significant acute effects, while the first two quintiles (Q1, Q2) did 

not (Fig 2g and Supplementary Table 2). The results demonstrated that except for Q2, all 

other groups had significantly higher acute average treatment effects compared to Q1 (Fig 2g 

and Supplementary Table 2). The consistency of this pattern was also confirmed in GATE 

tests with different group sizes (Supplementary Fig 3). These findings indicate that the 'best 

acute model' successfully captured significant individual variability in children's immediate stress 

response to perceived discrimination. 

  

Variability of the frontotemporal morphology is associated with individual differences in 

acute effects of perceived discrimination.  

To identify key factors related to individual differences in acute personalized effect of 

perceived discrimination, we conducted triangulated analyses of covariates from the ‘best acute 

model’ (Fig 3a; see ‘Methods’). The ‘best acute model’ incorporated 19 neurostructural 

covariates, including four gray matter volume features and 15 white matter streamline count 

variables in frontotemporal areas.  

Firstly, we tested statistical differences in each covariate between the most resilient (Q1) 

and vulnerable (Q5) groups (‘group comparison’). We identified 12 resilience factors (i.e., larger 

in Q1), three vulnerability factors (i.e., larger in Q5), and four non-significant factors. Next, we 

conducted multiple regression analysis to examine whether each covariate significantly explains 

the variance of acute individual treatment effects while other features are controlled (‘best linear 

projection’). This analysis singled out three of the resilience-associated covariates as significant 

predictors of acute effects (Supplementary Table 3). 

We then classified covariates in terms of two criteria: (1) the direction of the effects 

(‘type,’ resilience or vulnerability factors) and (2) the number of significant results in both 
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analyses (‘tier,’ two or one). For instance, the cortical volume of the right parahippocampal 

gyrus was assigned to the tier 2 resilience factor since it was greater in Q1 than in Q5 but did 

not show a significant negative coefficient in the best linear projection analysis. This analysis 

demonstrated three tier 1 resilience factors – the cortical volume of the left pars triangularis, the 

streamline counts between the left pars opercularis and pars orbitalis, and the streamline counts 

between the left parahippocampal gyrus and the left hippocampus. Also, nine tier 2 resilience 

factors, three tier 2 vulnerability factors, and four non-significant ones were identified (Fig 3b 

and Supplementary Table 3).  

To further probe the individual treatment effects and their dependency on the covariates, 

we conducted a partial dependence simulation. This was performed by holding the remaining 18 

variables at their median values, allowing us to examine each covariate's impact without 

assuming linearity or struggling with variable interactions present in group comparisons. This 

analysis demonstrated that resilience and vulnerability factors are associated with decreases 

and increases in acute responses, respectively, unlike non-significant factors (Fig 3c). 

Our comprehensive three-step covariate analysis confirms that the structural attributes 

of the frontotemporal regions are pivotal in the variability of individual acute stress reactions to 

perceived discrimination. 

 

Individual difference in acute effects of perceived discrimination is detected by the 

frontotemporal structure in the held-out dataset. 

We assessed the reproducibility of our findings with the held-out samples (N = 2,503; 

see ‘Methods’). The following two questions were tested: (1) Can individual differences in acute 

responses to perceived discrimination be elucidated by the identified 19 frontotemporal 

morphology covariates in the held-out samples? (2) Is there congruence between the tier and 

type classifications of each covariate in the held-out dataset compared to the original? 
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Firstly, we observed that subsets of frontotemporal variables selected in the original 

dataset successfully detected variability in acute stress response. Two models from 19 GRF 

models built in backward stepwise tuning passed the calibration test (i.e., showing significant 

𝛽!"# and 𝛽$"# at PFDR < .05) (Supplementary Fig 4a). Specifically, significant 𝛽$"# indicates that 

these models captured heterogeneity in acute individual treatment effects. To further assess the 

individual difference in acute effects further, we performed the GATE test as we did with the 

original dataset (Supplementary Fig 4b). Except for Q4, every group showed significantly 

larger average treatment effects than Q1 (Supplementary Fig 4c). Secondly, the 

correspondence of tiers and types among the neurostructural variables between the datasets 

was modestly aligned (tiers: Cramer’s V = .344; types: Cramer’s V = .415) (Supplementary Fig 

4d). Overall, the results from the reproducibility evaluation with the held-out dataset support the 

robustness and generalizability of our findings.  

 

Key neurostructural factors of individual variability in acute effects of perceived 

discrimination accommodate environmental and genetic attributes. 

Our findings revealed the relationship between the frontotemporal structures and acute 

stress responses to perceived COVID-19-related discrimination. Then, how was this variability 

of the brain structure shaped? We tested whether the frontotemporal morphometry included 

genetic and environmental influences. For this, we employed sparse generalized canonical 

correlation analysis (sgCCA) allowing simultaneously analyze and maximize correlations across 

multiple variable sets45. 

We applied sgCCA to the following three sets of variables: 19 neurostructural (selected 

in the ‘best acute model’), four polygenic risk scores (depression, posttraumatic stress disorder, 

schizophrenia, and body mass index) and nine environmental variables (parental monitoring, 

parents’ caregiving family conflicts, child’s prosocial behavior, school engagement, school 

disengagement, school environment, neighborhood safety, and traumatic episode). To derive 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.04.24303643doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.04.24303643
http://creativecommons.org/licenses/by-nc-nd/4.0/


Children’s stress vulnerability and resilience to perceived COVID-19-related discrimination 13 

 

directional interpretations from the sgCCA model, we chose nine environmental variables 

measured at the baseline timepoint among 28 environmental covariates in the main GRF 

analysis as potential sources of variability in the neurostructural structures. For a robust 

evaluation, we divided the dataset evenly into discovery and replication sets, maintaining equal 

proportions of resilience/vulnerability groups (Q1-Q5) through stratification. Using the discovery 

set, we explored the optimal sparsity hyperparameters and assessed the relationships among 

blocks with the replication set. Lastly, we tested whether the neurostructural canonical variate 

modeled in the sgCCA displays significant relationship with the acute individual effects 

estimated by the best acute model (Fig 4a; see ‘Methods’). 

The sgCCA results showed a significant relationship among three blocks in the 

discovery and replication sets (Ppermutation = .01) (Fig 4b). The canonical variate of the polygenic 

scores was positively correlated with the neurostructural variate (r = .109), whereas the 

environmental variate exhibited a negative influence (r = -.179). Polygenic and environmental 

variates were negatively correlated (r = -.153). Further, the neurostructural canonical variate 

derived from the sgCCA model showed a significant positive correlation with acute individual 

treatment effects (r = .097, P = .022), indicating its predictive relevance (Fig 4c). 

Significant loadings within each block were identified, indicating key variables (Fig 4d). 

In the neurostructural block, negative loadings were observed for white matter streamline counts 

between the left medial orbitofrontal gyrus and right pars opercularis, streamline counts 

between the left medial orbitofrontal gyrus and left pars triangularis, and streamline counts 

between the left pars triangularis and left superior frontal gyrus. Positive lodaings were shown in 

the streamline counts between the left rostral middle frontal gyrus and right orbitofrontal gyrus 

and streamline counts between the left pars orbitalis and left rostral middle frontal gyrus. In the 

polygenic scores block, positive loadings were found for schizophrenia and depression scores 

presented. In the environmental block, positive loadings were found for parents’ acceptance and 

school environment/engagement (see Supplementary Table 4). 
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The sgCCA findings suggest that the variability in frontotemporal structures is rooted in a 

complex interplay of genetic and environmental factors, and that these characteristics are 

predictive of acute stress responses to perceived discrimination associated with COVID-19. 
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Discussion 

We investigated the acute and sustained impacts of perceived COVID-19-related 

discrimination on children’s stress levels and identified the neuronal structure variables 

underlying children’s resilience or vulnerability to the stressor. We found that perceived 

discrimination elevates stress level both immediately (acute effect) and at six-month follow-up 

(sustained effect). While our model captured the variability in acute stress reactions, it noted no 

notable differences in sustained stress outcomes. In estimating the acute effect in each 

individual, 20% of children experienced acute responses twice that of population-level estimates 

(vulnerable group, Q5). Contrarily, 40% of children showed no significant stress responses to 

perceived discrimination (the first two resilient groups, Q1 and Q2). The frontotemporal 

morphological features emerged as critical indicators of acute stress responses, a finding 

corroborated by a larger held-out dataset. These neurostructural factors were significantly 

associated with environmental and genetic factors, suggesting that a gene-environment 

interplay shapes the neurobiological underpinnings of stress resilience and vulnerability.  

Our quasi-experimental approach to estimating acute average treatment effects supports 

that such stressor during the pandemic aggravates stress levels in children, aligning with the 

previous studies2, 16, 46. Also, at the individual level, we modeled all sample’s acute effects 

considering the complex interplay among diverse domains covariates and captured significant 

individual variability. The polarized pattern of children and adolescents’ immediate stress 

response to perceived discrimination has also been consistently observed in the existing 

literature31, 47-49. The main difference between our study and previous findings is that while they 

defined the variability factors (e.g., self-esteem48 or coping strategies31, 49) a priori and tested 

significance of differences in acute stress responses between groups, our approach leveraged 

data-driven sub-grouping based on causal estimates and explored the variability factors in a 

bottom-up way. This method provides a more nuanced identification of sub-groups, 
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encompassing the multifaceted interactions among variability sources that were challenging to 

handle with conventional approaches43, 50. Furthermore, our framework overcomes the selection 

bias (i.e., estimating and assessing the variability in the effects of perceived discrimination only 

with the samples reporting perceived discrimination) via counterfactual modeling with potential 

outcome frameworks. This approach enables us to obtain less biased estimates of the effects of 

perceived discrimination and extend the preventive identification of vulnerable populations to 

children not experiencing discrimination yet.   

While our models indicated a significant sustained average treatment effect on children’s 

stress levels, we observed no significant variability in this impact. This may be unexpected as 

stress resilience is known to vary among individuals over time51, 52. A potential reason for this 

could be the omission of post-discrimination covariates from our analysis. Since structural 

changes in the ventromedial prefrontal cortex53-55 and hippocampus56, 57 following traumatic 

events are linked to the modulation of stress responses, the absence of post-discrimination 

neural measurements in the ABCD dataset might prevent the detection of individual sustained 

response variations. To address this, future research should incorporate the forthcoming 

neuroanatomical dataset that spans from the instances of discrimination to the resulting stress 

levels. 

Our results are in line with prior studies that have identified structural features in the 

prefrontal region, particularly the medial prefrontal cortex, as key indicators of stress resilience. 

This region modulates stress responses through its connections with subcortical-limbic areas 

via the hypothalamic-pituitary-adrenal (HPA) axis58-60. Increased white matter myelination in this 

region, possibly reflected in the larger cortical volume, may facilitate the transmission efficiency 

in this emotion regulation and stress resilience6. Additionally, we have identified the morphology 

of the inferior frontal gyrus's gray and white matter as tier 1 resilience factors, crucial in 

differentiating between resilient and vulnerable populations61, 62. The role of hippocampal 

complex connectivity as a tier 1 protective factor is a relatively new finding. Functional activity in 
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these regions has been found to inversely correlate with perceived stress during cognitive 

tasks63. While further research is needed to explore the relationship between white matter 

structure and stress-related brain activations, our data allude that white matter hyperconnectivity 

within the hippocampal complex could be significant in stress response regulation. The 

consistency of these findings across different sample sets also underscores the broad 

applicability of the link between frontotemporal structures and acute stress responses. 

Furthermore, the variations in covariates’ types between the original and held-out datasets 

highlight the individual differences in how neural features are engaged during immediate stress 

processing, reported in the previous findings64, 65. 

Our sparse generalized canonical correlation analysis (sgCCA) indicates that brain 

structures adaptively respond to acute stress by integrating individual environmental factors and 

genetic predispositions toward psychiatric disorders. In our model, environmental and polygenic 

canonical variates displayed consistent characteristics as resilience and vulnerability factors, 

respectively. Parental acceptance66, 67 and school engagement68, 69 which support adaptive 

stress-coping strategies in children, exhibited significant positive loadings in our sgCCA model. 

Contrarily, polygenic risk scores of depression and schizophrenia, predicting one’s stress 

vulnerability at the behavioral level30, 70, were also selected and presented positive loadings in 

the polygenic block. These dual influences on the neurostructural variables are consistent with 

the epigenetic model of stress response variability observed in animal studies18-22. At the 

microstructural level within the brain, enriched environments are shown to increase ΔFosB 

expression, which in turn facilitates glutamate transmission from the prefrontal cortex to limbic 

regions and enhances hypothalamic-pituitary-adrenal (HPA) axis regulation, thereby boosting 

behavioral resilience71. Conversely, isolation in the postnatal developmental stage disrupts 

prefrontal myelination72 and dopaminergic projection73 through altered gene expression, leading 

to chronic maladaptive behaviors. In line with the literature, our results add that gene-
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environmental interactions would partly shape the frontotemporal circuit, the primary source of 

individual variability in acute stress responses.  

Notably, individual neurostructural variables showed distinct behaviors in univariate 

versus multivariate analyses within the same dataset. For example, streamline counts between 

the left medial orbitofrontal gyrus and both the right pars orbitalis and the left pars triangularis 

presented as distinct entities in group comparisons yet exhibited collective negative 

associations in the sgCCA model. This pattern hints that neurostructural variables with 

seemingly opposing roles in stress response might operate cohesively within a circuit at the 

multivariate level. This underscores the advantage of multivariate methods, such as the sgCCA, 

in capturing the interdependencies within neural networks that univariate analyses might miss74-

76. Univariate approaches often overlook the circuit-level projections of neuroendocrine systems 

that are integral to stress resilience and vulnerability18-22, a gap that multivariate approaches can 

address. Indeed, human neuroimaging studies have found multivariate methods to be more 

revealing of the connections between neuroanatomical networks and behavioral resilience 

compared to the conventional univariate approach77. Although the results of our threefold 

covariate analyses support the specific relationship between each neurostructural variable and 

acute effects even after when handling the covariance among the brain structures, our 

multivariate modeling also necessitates the circuit-wide interpretation of the frontotemporal 

network’s engagement in the variability of stress response to perceived discrimination.  

Our study's conclusions must be drawn with caution due to several limitations. Firstly, the 

potential violations of causal assumptions warrants consideration. The binary treatment variable 

for the frequency of perceived COVID-19-related discrimination might compromise the stable 

unit treatment value assumption (SUTVA), as there is inherent variability in the types, 

frequencies, and intensities of discrimination that children encounter. Hence, certain degrees of 

individual differences in acute effects might be related to the diverse nature of the perceived 

discrimination rather than its personalized effects per se. However, previous meta-analytic work 
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found no significant psychological effect differences attributable to types of discrimination78. 

Also, we did not observe any significant differences in the frequency of perceived discrimination 

across acquisition sites (Supplementary Fig 5). The absence of data on discrimination intensity 

within the ABCD dataset suggests a need for further investigation into how this intensity 

correlates with psychological outcomes. Secondly, our backward stepwise modeling might not 

fully account for non-neural covariates in the variability of acute stress responses. Including 

GRF, forest-based models assign importance based on covariate frequency in tree splitting, 

potentially sidelining categorical variables with fewer categories79, 80. Consequently, certain 

factors, such as gender or early-life trauma, might be systematically overlooked during model 

selection. Despite this, our incorporation of environmental variables into the sgCCA modeling 

revealed significant associations with frontotemporal factors, underscoring the role of 

environmental factors in stress resilience and vulnerability that may have been underappreciated 

in the primary GRF analysis. Lastly, the generalizability of our findings needs validation through 

an independent dataset. For example, Asians, who have reportedly faced frequent COVID-19-

related discrimination81-83, represent only 0.5% of our study sample. This racial imbalance within 

the ABCD dataset could limit the representativeness of our results. The absence of longitudinal, 

multimodal datasets collected before and after the pandemic across varied demographics 

prevents us from fully addressing this limitation, highlighting the need for future research with a 

more representative dataset. 

Notwithstanding these limitations, our study has significant implications for neuroscience 

and social science. Firstly, our multimodal approach allows us to identify key neuronal factors 

that mediate gene-brain-environment interactions, illustrating the complex interplay in human 

stress response variability. Secondly, our data-driven approach pinpoints essential factors to 

target individuals vulnerable to discrimination. Unlike traditional studies that focus on 

populations already experiencing discrimination, our quasi-experimental analysis identifies 

those potentially at risk before such experiences occur. This approach paves the way for a 
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personalized model of prescriptive analysis that could anticipate and mitigate the 

psychopathological impact of perceived discrimination, thereby enhancing the prioritization of 

mental health services. Most importantly, our research highlights the effects of discrimination on 

children during the COVID-19 pandemic, underscoring the urgent need for societal and 

healthcare preparedness in the post-pandemic landscape.   
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Methods 

Dataset 

Study population 

We used data from the Adolescent Brain Cognitive Development (ABCD) study release 

4.0 dataset (http://abcdstudy.org). Out of the 11,879 children in the ABCD dataset, our final 

sample comprised 1,116 individuals. Our initial pool included 4,198 participants who had ‘pre-

COVID’ covariates – encompassing demographic, psychological, environmental, polygenic, and 

neural variables measured prior to the pandemic – and 6,337 participants with complete ‘post-

COVID’ covariates, specifically socioeconomic variables gathered during the pandemic. We 

then formed a subset of 2,464 participants at the intersection of these two groups. After coding 

non-informative responses (e.g., “don’t know” or “prefer not to answer”) as missing values, we 

considered excluding participants with missing data exceeding 10% of the number of covariates. 

However, this step led to no exclusions. We further refined the sample by intersecting the 

remaining 2,464 participants with an additional 2,913 who provided complete information on 

both the treatment (i.e., perceived COVID-19-related discrimination) and two outcomes (i.e., the 

perceived stress levels immediately and about six months after the discrimination experience). 

From 1,117 samples from this intersection, we randomly excluded one sibling within the 

biological family to ensure independent sampling. Finally, we determined 1,116 children as the 

final population.  

 

Covariates 

Our study engaged a comprehensive set of covariates to investigate stress vulnerability 

and resilience among children in response to perceived COVID-19-related discrimination. We 

incorporated 314 covariates identified through an extensive literature review. These were 
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grouped based on their temporal relation to the pandemic breakout: 301 ‘pre-COVID’ and 13 

‘post-COVID’ covariates.  

The ‘pre-COVID’ set consisted of five domains: six demographic, nine psychological, 28 

environmental, four polygenic, and 254 neurostructural variables. Demographic variables 

contained sex, age, born overseas, race, the first caregiver’s income, and their final degree, 

measured at the baseline timepoint (09/2016 ~ 09/2017). Psychological measures covered 

several symptom scores related to mood disorder, baseline stress levels, and emotion 

regulation strategies, assessed at the 3-year-follow-up timepoint (02/2018 ~ 02/2020). 

Environmental variables captured familial interactions, prosocial behaviors, neighborhood 

safety, and children’s traumatic experiences, such as the loss of a loved one, reported at the 

baseline time point. The environment domain also included the perceived discrimination and 

racial identity, reported at the 2-year-follow-up (09/2017 ~ 11/2018) and 3-year-follow-up 

timepoints, respectively. Genetic predispositions to stress response were quantified through 

polygenic risk scores for traits associated with the stress responses – depressive symptoms, 

schizophrenia, post-traumatic stress disorder, and body mass index. These scores were 

calculated from the multi-ethnic ancestry reference panels. Detailed genotyping, computation, 

and validation procedures of the polygenic risk scores are demonstrated in Supplementary 

Note 1. Lastly, neuronal covariates encompassed 23 gray matter cortical volume variables and 

231 white matter streamline count variables. These variables were derived from 11 regions of 

interest (ROIs) - the superior frontal gyrus, caudal middle frontal gyrus, rostral middle frontal 

gyrus, pars opercularis, pars triangularis, pars orbitalis, medial orbitofrontal gyrus, lateral 

orbitofrontal gyrus, entorhinal cortex, parahippocampal gyrus, and hippocampus. Our selection 

was informed by a review paper that associated frontotemporal morphologies with stress 

resilience to traumatic experiences29, 36. We utilized bilateral cortical volumes from these regions 

and the whole-brain cortical volume. For a detailed demonstration of preprocessing and 

estimation of T1 and T2 images in the ABCD study, see the ref84. Additionally, we estimated 
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streamline counts for every possible bilateral ROI pair using diffusion-weighted imaging data. 

The methodologies for modeling tractographies and counting streamlines are detailed in 

Supplementary Note 2. All neuronal variables were determined based on neuroimaging data 

collected at the baseline time point.  

For the ‘post-COVID’ covariates, we utilized 13 COVID-19 Rapid Response Research 

Survey variables in the ABCD release 4.0 dataset. They reflect children’s reports about familial 

relationships and parents’ interviews about their economic situations and their child’s history of 

COVID-19 infection. Additionally, geocoded data included social distancing metrics (e.g., the 

average amount of time at home), county-level COVID-19 prevalence (e.g., the number of 

COVID-19 deaths), and labor statistics (e.g., the unemployment rate). All post-COVID variables 

were sampled at the ‘COVID 2’ (CV2) timepoint (06/2020 ~ 11/2020).  

From the initial covariate set, we removed those with over 10% missing values, including 

two variables about children’s racial identity and two features regarding family relationships 

during the pandemic. We imputed missing data for the remaining 310 covariates using the k-

nearest neighbors algorithm (k = 33; the odd number closest to the square root of the sample 

size), as implemented by the VIM package85. We further refined our covariate set by eliminating 

those with near-zero variance using the caret package’s ‘nearZeroVar’ function86. This 

preprocessing led to excluding 62 covariates, yielding a final set of 248. Categorical variables 

were then transformed into dummy variables, culminating in a dataset comprising 250 

covariates for our analysis. See Supplementary Table 1 for detailed information about the final 

set of covariates. 

 

Treatment 

Our treatment variable was defined as the self-reported frequency of experiencing 

racism or other types of COVID-19-related discrimination within the previous week (“Over the 

past week, I experienced racism or discrimination in relation to coronavirus”). The response was 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.04.24303643doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.04.24303643
http://creativecommons.org/licenses/by-nc-nd/4.0/


Children’s stress vulnerability and resilience to perceived COVID-19-related discrimination 24 

 

collected at the CV4 (CV4) timepoint (11/2020 ~ 02/2021). Children responded using a 5-point 

Likert scale, ranging from 0 (“Never”) to 4 (“Very Frequently”). To facilitate our Generalized 

Random Forest (GRF) analysis, we converted these responses into a binary format: 0 (“Never”) 

and 1 (“At least once”). This transformation was the only available setting because higher 

thresholds for binarization led to a dummy variable with near-zero variance, limiting our 

analytical options. Therefore, this initial cutoff was the most viable method for binary coding of 

the treatment variable in our dataset.  

 

Outcome 

From the 5-item COVID-Related Worry questionnaire in the ABCD study, we used a 

stress-related measurement as the outcome variable (“In the past 7 days, including today, how 

stressful have you found the uncertainty COVID-19 presents to be?”). Although the Perceived 

Stress Scale87 measured during the pandemic in ABCD was also available, we did not use this 

information because its broader time scale (i.e., measuring one’s stressful cognition in the past 

month rather than week) may disturb the estimation of the effects of perceived discrimination to 

the stress levels. Responses reported at the CV4 and CV7 (05/2021 ~ 07/2021) time points 

permitted us to estimate children’s immediate stress response (acute effect) and about six 

months later response (sustained effect) to the perceived discrimination. Both metrics were 

composed of a 5-point Likert scale (i.e., from 1 = “Very Slightly” to 5 = “Extremely”). All 

variables, including covariates, treatment, and outcome variables, were standardized with the 

‘preProcess’ function in the caret package86, except for dummy variables of categorical 

features.  

 

Generalized Random Forest analysis 

Overview of Generalized Random Forest 
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Generalized Random Forest (GRF) is adept at estimating both the average and 

individual treatment effect for a given treatment, outcome, and covariates39. It is designed to 

encapsulate the heterogeneity in individual treatment effects, thereby facilitating an in-depth 

evaluation of disparities in individual treatment effects and the identification of key factors. 

During tree construction, GRF randomly selects samples and covariates as the ordinary random 

forest does. Since we used data acquisition site as a clustering feature, it extracts the same 

number of samples from every cluster in this step. This technique intends to give the equal 

weight to every cluster and achieve more generalizable prediction to the unseen data42. Inspired 

by the greedy algorithm of the random forest, it optimizes node splits to accentuate differences 

in treatment effects between the resulted nodes. Treatment effect of the node 𝐿, 𝜏%, is estimated 

with the following residual-on-residual regression: 

𝜏% ≔ 𝑙𝑚[(𝑌& −𝑚, &) ∼ (𝑊& − 𝑒̂&)], 𝑖 ∈ 𝐿 (1) 

where 𝑖 represents a sample index, 𝑌 is the outcome variable, 𝑚, & is the expected outcome 

given the covariate, 𝑊 is the treatment variable, 𝑒̂& is the predicted treatment given the covariate 

(i.e., propensity score). To procure out-of-sample predictions for 𝑚 and 𝑒 of the sample 𝑖, GRF 

establishes ‘regression forest’ separately before fitting the main causal forest model.  

GRF posits that samples within the same terminal node share a homogeneous treatment 

effect in the equation (1) (i.e., 𝜏% is a constant), but its overarching aim is to discern ‘individual’ 

treatment effect patterns. This is achieved by calculating a ‘forest weight’ for each sample, 

reflecting the frequency with which the other sample 𝑞 co-occur in the same terminal node 

throughout the forest. Using the similar but weighted formats of the equation (1) by the forest 

weight, GRF estimates individual treatment effect of the target sample 𝑝, 𝜏', as follows: 

𝜏' ≔ 𝑙𝑚9:𝑌( −𝑚,(;~:𝑊( − 𝑒̂(;,	weights	 = 𝜔'(𝑞)G (2) 

where ω'(𝑞) denotes the forest weight vector of the target sample 𝑝. To prevent double-dipping 

calculation of 𝜏', GRF employs a unique algorithm called ‘honesty tree’39, 42, 88, 89, ensuring that 
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only trees not using the sample 𝑝 during tree construction engage in the calculation of 𝜔'(𝑞). 

This approach secures a rigorous computation of each sample’s individual treatment effect 

without any explicit data splitting.  

Estimated individual treatment effects are instrumental in computing both the point 

estimate and standard error of the average treatment effect. GRF incorporates the Augmented 

Inverse Probability Weighting (AIPW) method, yielding doubly robust treatment effect estimates 

that is consistent even when either the outcome prediction model or the treatment model (i.e., 𝑚 

or 𝑒) is inaccurately specified. By adding a debiasing term to the estimated individual treatment 

effect, 𝜏, GRF computes AIPW estimates of individual treatment effect, 𝜏!$)*, with the following 

equation: 

𝜏'!$)* = 𝜏' +
𝑊' − 𝑒̂'
𝑒̂'91 − 𝑒̂'G

:𝑌' −𝑚,'; (3) 

where 𝑝 indicated a sample index. With data acquisition site specified as a clustering variable, 

the average treatment effect, 𝐴𝑇𝐸, is derived from cluster-level descriptive statistics of 𝜏!$)* as 

follows:  

𝐴𝑇𝐸+ =
1
𝑛+
Pτ,!$)*

,∈+

, 𝐴𝑇𝐸 =
1
𝐶P

𝐴𝑇𝐸&

.

&/0

, σ1 =
1

𝐶(𝐶 − 1)P
(𝐴𝑇𝐸& − 𝐴𝑇𝐸)1

.

&/0

(4) 

where 𝑗 is a sample, 𝐽 is a cluster, 𝑛+ is the number of samples in the cluster 𝐽, and 𝐶 is the total 

number of clusters, and σ1 is standard error of average treatment effect. Since GRF’s estimates 

follow Gaussian distribution in consistent and asymptotic manner39, 89, the point estimate and 

standard error of ATE also provides confidence interval for statistical testing.  

 

Implementation of Generalized Random Forest 

Model fitting and backward stepwise tuning 

In this study, we constructed models to analyze both the acute and sustained effects of 

perceived discrimination on children’s stress levels, using outcome variables from timepoints 
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CV4 and CV7, respectively. Given the substantial number of covariates relative to our sample 

size, we prioritized optimizing the models to ensure robust estimation of average and individual 

treatment effects since high dimensionality can lead to underpowered estimation42. Our model 

fitting commenced with the construction of GRF models incorporating all covariates under five 

different random seeds. Each model was built with 5,000 trees, and all adjustable 

hyperparameters (e.g., the minimum terminal node size) were fine-tuned using the 

‘tune.parameters’ argument within the ‘causal_forest’ function. To mitigate potential 

site effects from the data collection sites, we used the ABCD study’s data acquisition sites as a 

clustering variable following the ref41. Subsequently, we aggregated the models from the five 

seeds into a ‘big forest’ model using the ‘merge_forest’ function. This aggregation aimed to 

enhance the robustness of our findings, ensuring that they were not overfitted to specific seeds. 

We then assessed the variable importance for each covariate through the 

‘variable_importance’ function. The variable with the lowest importance was excluded, 

and these procedures were repeated until only one covariate was left. This iterative process 

resulted in 250 models for acute and sustained effects, respectively.  

To determine the optimal model, we utilized a calibration test, which evaluated each 

model’s ability to accurately estimate average (𝛽!"#) and individual treatment effects (𝛽$"#). This 

test quantified these metrics with the following equation:  

(𝛽!"# , 𝛽$"#) ≔ 𝑙𝑚 W(𝑌& −𝑚, &) ∼ X(𝑊 − 𝑒̂& 	) ⋅ 𝔼(𝜏&) + (𝑊 − 𝑒̂&):𝜏& − 𝔼(𝜏&);[\ (5) 

If 𝛽!"# and 𝛽$"# are close to 1, it means that average and individual treatment effect is well 

estimated even without the AIPW debiasing term42. A model passes this calibration test if it 

demonstrated significant 𝛽!"# and 𝛽$"# values (PFDR < .05), as calculated by the 

‘test_calibration’ function. From the models meeting this standard, the ‘best model’ was 

identified as the one with the lowest fit index, which reflects the sum of deviations of both 

calibration metrics from the ideal value of 1 as follows: 
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fit	index	 = |1 − 𝛽!"#| + |1 − 𝛽$"#| (6) 

In the selection process, we adhered to the overlap assumption by excluding any model where 

predicted propensity scores were outside the .05 to .95 range.  

 

Estimation and aggregation of average treatment effect 

We proceeded to estimate average treatment effect for each model. Using the 

‘average_treatment_effect’ function, we calculated the point estimate of average 

treatment effect and its standard error per model. To synthesize these individual model 

estimates into a comprehensive assessment of average treatment effect, we employed a meta-

analytic approach. Each model’s weight was computed as the inversed variance of average 

treatment effect estimates. Based on these weights, we combined the point estimates and 

standard errors from the 250 individual models using the following equation: 

𝐴𝑇𝐸aggregated =
∑ (𝛼& ⋅ 𝐴𝑇𝐸&)189
&/0
∑ 𝛼&189
&/0

, 𝜎aggregated1 = g
1

∑ 𝛼&189
&/0

(7) 

where 𝑖 represents the model index and α signifies the weight assigned to each model’s 

estimate. The significance of the aggregated average treatment effect was then determined by 

verifying whether its 95% confidence interval excluded zero. Meta-analyses were performed for 

the 250 acute and 250 sustained models, respectively.  

 

Evaluation of individual variability in stress responses 

We evaluated the existence of individual differences in acute and sustained effects of 

the perceived discrimination through twofold analyses. Firstly, we checked whether any of the 

250 models each for acute or sustained effect analysis exhibited significant 𝛽$"#. This approach 

provides initial evidence of heterogeneity in individual treatment effects42. However, it should be 

noted that non-significant 𝛽$"# does not guarantee the absence of individual variations because 
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non-significant 𝛽$"# would be also a signal of suboptimum. In other words, statistical testing of 

𝛽$"# is a joint test of existence of heterogeneity and model optimization to detect heterogeneity. 

While 51 models for acute effects passed this examination, none of models for sustained effects 

did. Therefore, only with the best acute model, we performed the next analysis, called sorted 

group average treatment effect (GATE) test.  

In the GATE test, we grouped samples based on quintiles of acute individual treatment 

effects calculated in the equation (2), using the ‘predict’ function. Then, we estimated 

group-level average treatment effects for each group through 

‘average_treatment_effect’ function. We conducted one-tailed t-test (PFDR < .05) to 

examine whether the any group’s average treatment effect was significantly higher than the 

estimates of the most resilient group (Q1). We followed the prior studies that assessed 

heterogeneity of the treatment effects based on GRF in the observational settings (e.g., ref43, 44). 

 

Identification of key vulnerability and resilience factors 

We identified the covariates mainly engaging in acute stress vulnerability (high individual 

treatment effects) and resilience (low individual treatment effects) with the best acute model via 

triangulated analyses. Initially, we performed a group comparison test as a univariate analysis. 

This test examined statistical differences in 19 covariates incorporated in the acute best model 

between the most resilient (Q1) and the most vulnerable (Q5) groups. Statistical significance 

was assessed through a two-tailed t-test (PFDR < .05). Next, we employed the best linear 

projection. This multiple linear regression analysis regressed acute individual treatment effects 

against 19 covariates. Using the ‘best_linear_projection’ function, we estimated the 

coefficients for each covariate within this model and evaluated their statistical significance (P 

< .05). 

Based on the outcomes of both analyses, we categorized the covariates according to 

their type and tier. In terms of types, covariates were classified as either ‘resilience’ factors 
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(significantly higher in Q1 than Q5 in the group comparison or displaying a significant negative 

coefficient in the best linear projection) or ‘vulnerability’ factors (significantly higher in Q5 than 

Q1 in the group comparison or showing significant positive coefficient in the best linear 

projection). Additionally, we assigned tiers to the covariates, with ‘tier 1’ representing significant 

results in both analyses, ‘tier 2’ indicating significant results in either the group comparison or 

the best linear projection, and ‘non-significant factor’ comprising non-significant results in both 

analyses. 

Lastly, we conducted a partial dependence simulation to confirm the relationship 

between acute effects and individual covariates without assuming linearity of best linear 

projection while handling interactions among variables challenging to reflect in group 

comparison analysis. For each covariate, we generated 100 synthetic samples possessing all 

percentile values of the given variable while fixing the remaining 18 variables at their median 

values. Inputting these samples into the best acute model, we investigated the pattern of 

simulated acute individual treatment effects as the percentile value of the target covariate 

varies. All GRF analyses were implemented by the grf package90 (version 2.3.0) in the R 

studio (version 2023.03.1+446). 

 

Reproducibility assessment with the held-out dataset 

The held-out samples 

Among 11,879 samples in the ABCD dataset, we extracted 3,895 samples with 

demographic information and selected 19 neurostructural variables in the main analysis, 

treatment, and outcome variables. Afterward, we removed 1,116 samples used in the main GRF 

analysis, resulting in 2,779 samples. We randomly excluded one sibling within the identical 

biological family. Consequently, 2,503 children were determined as the final held-out dataset. 

As in the main analysis, we imputed the missing values in the covariates with the k-nearest 
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neighborhood approach and standardized the continuous variables. The treatment variable was 

binarized in the same way with the original dataset.  

 

Replicating a detection of individual variability in acute stress response 

The first aim of the reproducibility assessment was to examine whether we could detect 

individual variability in acute effects of perceived discrimination with the selected 19 covariates. 

For this, we constructed GRF models with 19 covariates of the held-out dataset with the 

backward stepwise tuning approach. Firstly, we examined whether any resulting models passed 

the calibration test (i.e., showing significant 𝛽!"# and 𝛽$"#) and chose the best acute model in 

terms of fit index (see equation (6)). Secondly, with the best model, we conducted a quintile-

based GATE test. An identical approach was applied in the calibration and GATE tests with the 

main GRF analyses. 

 

Replicating tiers and types of the frontotemporal factors  

The second purpose of the reproducibility assessment was to investigate whether the 

selected 19 covariates displayed similar tiers and types in the held-out dataset with the original 

ones. We again characterized each covariate’s tiers and types through group comparison and 

best linear projection. We calculated Cramer's V between results from two datasets, each for 

tier and type, to test their association between datasets. Due to the limited number of 

covariates, we evaluated the relationship between the two datasets only regarding the effect 

size of Cramer’s V, not its statistical significance.  

 

Sparse Generalized Canonical Correlation Analysis 

We employed Sparse Generalized Canonical Correlation Analysis (sgCCA) to examine 

the multivariate relationship among each child’s neurostructural, environmental, and polygenic 

attributes. sgCCA is a dimension reduction technique that aims to maximize correlation 
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coefficients among variable sets. The neurostructural set comprised 19 neural covariates, 

included in the best acute model. Concurrently, the environmental and polygenic sets consisted 

of variables measured at the same baseline time point, potentially interacting with the neural 

variables. The environmental set comprised nine variables, while the polygenic set comprised 

four. 

To mitigate the potential confounding effects of demographic characteristics on 

neurostructural and environmental features, we regressed out the variance explained by factors 

such as sex, born overseas, race, age, acquisition site, parental income, and final degree for 

these variables. Polygenic scores were not subjected to this regression since demographic 

characteristics were not expected to influence genetic backgrounds. Subsequently, all 

residualized variables were standardized before the primary sgCCA model fitting. 

We split the dataset into ‘discovery’ (N = 560) and ‘replication’ (N = 556) sets. We 

stratified both datasets regarding the quintile-based groups used in the GATE test so that each 

set includes the identical proportion of five groups as much as possible. With the discovery set, 

we explored the optimal sparsity hyperparameters through 1,000 times of permutation tests. In 

the permutation test, the squared sum of correlation coefficients among three blocks, 𝑡, was 

calculated for every sgCCA model. Given the null distribution of 𝑡 obtained in the permutation 

test, the P-value of the original model, 𝑃permutation, was defined as follows: 

𝑃permutation =
𝑁@∗B@
𝑁@∗

(8) 

where 𝑡∗ and 𝑡 are the squared sum of correlation coefficients from the permuted and 

original models, respectively, and 𝑁 denotes the number of models. We chose the 

hyperparameter set that produced the lowest P-value in this test using the  

‘rgcca_permutation’ function. 

Using the best parameters selected in the discovery set, we fitted the sgCCA model 

again with the replication set. Firstly, we tested the statistical significance of the constructed 
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model using the equation (8) through a 1,000 times permutation test. Secondly, we estimated 

the individual variable’s loading in each block and examined their statistical significance at PFDR 

< .05. To obtain the confidence interval of each loading, we performed 1,000 times 

bootstrapping through the ‘rgcca_bootstrap’ function. All sgCCA modelings were 

conducted using the rgcca package91 (version 3.0.1) in the R studio (version 2023.03.1+446). 
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Table 1. Stress levels and demographic characteristics of the samples  

Variables Overall 
Perceiving COVID-19-related discrimination? 

Yes No 
N 1,116 86 1,030 

Baseline and Pandemic stress levels    

Pandemic-related stress levels at the CV4 timepoint  
(11/2020~02/2021), mean (SD) 2.125 (1.1) 2.663 (1.1) 2.080 (1.1) 

Pandemic-related stress levels at the CV7 timepoint  
(05/2021~07/2021), mean (SD) 1.718 (0.9) 2.070 (1.1) 1.688 (0.9) 

Child Behavior Check List Stress2007 scale t-score 
(02/2018~02/2020), mean (SD) 52.818 (5.4) 52.919 (5.3) 52.810 (5.4) 

Baseline sociodemographic characteristics    
Age month, mean (SD) 119.256 (7.4) 119.930 (7.3) 119.200 (7.4) 
Sex, n (%)    

Male 556 (49.8%) 37 (43.0%) 519 (50.4%) 
Female 560 (50.2%) 49 (57.0%) 511 (49.6%) 

Race, n (%)    
White 787 (70.5%) 46 (53.5%) 741 (71.9%) 
Black 72 (6.5%) 9 (10.5%) 63 (6.1%) 
Hispanic 144 (12.9%) 13 (15.1%) 131 (12.7%) 

Asians 6 (0.5%) 1 (1.2%) 5 (0.5%) 
Others 107 (9.6%) 17 (19.8%) 90 (8.7%) 

Foreign born, n (%)    
Yes 334 (29.9%) 23 (26.7%) 311 (30.2%) 
No 782 (70.1%) 63 (73.3%) 719 (69.8%) 

Parental income, n (%)    
~ $5,000 13 (1.2%) 2 (2.3%) 11 (1.1%) 
$5,000 ~ $11,999 18 (1.6%) 1 (1.2%) 17 (1.7%) 
$12,000 ~ $15,999 13 (1.2%) 1 (1.2%) 12 (1.2%) 
$16,000 ~ $24,999 30 (2.7%) 4 (4.7%) 26 (2.5%) 
$25,000 ~ $34,999 34 (3.0%) 5 (5.8%) 29 (2.8%) 
$35,000 ~ $49,999 62 (5.6%) 8 (9.3%) 54 (5.2%) 
$50,000 ~ $74,999 141 (12.6%) 13 (15.1%) 128 (12.4%) 
$75,000 ~ $99,999 245 (22.0%) 20 (23.3%) 225 (21.8%) 
$100,000 ~ $199,999 414 (37.1%) 24 (27.9%) 390 (37.9%) 
$200,000 ~ 146 (13.1%) 8 (9.3%) 138 (13.4%) 

Pandemic sociodemographic characteristics    
Wage loss since the pandemic, n (%)    

Yes 511 (45.8%) 48 (55.8%) 463 (45.0%) 
No 605 (54.2%) 38 (44.2%) 567 (55.0%) 

County-level cumulative COVID-19 cases, 
K, mean (SD) 

10529.580 
(20273.8) 

23807.350 
(23689.0) 

10339.400 
(19963.8) 

County-level cumulative COVID-19 deaths, 
K, mean (SD) 

489.910 
(869.9) 

557.6  
(916.7) 

484.3 
(866.1) 

County-level unemployment rate,  
%, mean (SD) 10.362 (3.6) 10.392 (4.1) 10.360 (3.6) 
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Fig 1. Schematic frameworks for samplings, data collection, and GRF model fitting. a, The 

sampling procedures. b, The measurement time points of each variable domain used in the GRF 

analysis. ‘CV’ is the abbreviation of data acquisition time point during the COVID-19 pandemic. The 

perceived discrimination reported at CV4 (11/2020 ~ 02/2021) timepoint was used as a treatment 
variable. To estimate acute and sustained treatment effects, we defined the perceived stress ratings 

measured at CV4 and CV7 (05/2021 ~ 07/2021) time points as acute and sustained outcome variables, 

respectively. Covariates include 250 variables collected at the baseline (09/2016 ~ 09/2017), 2-year 

follow-up (09/2017 ~ 11/2018), 3-year follow-up (02/2018 ~ 02/2020), and CV2 (06/2020 ~ 11/2020) 

timepoint. (C) The overall procedures of GRF fitting and optimization via backward stepwise tuning.  
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Fig 2. Estimated average treatment effects and assessment of model fit and individual variability.  
a, Estimated acute average treatment effects across models. Error bars show a 95% confidence interval 

o of estimates. The red bar plot indicates aggregated estimates and confidence intervals across models. 

From 250 models, only 13 models are visualized here for legibility. b, Estimated sustained average 

treatment effects across models. c, Model fit of models for acute effect analysis. The horizontal dashed 
line indicates the gold standard of the calibration test (i.e., 1). A vertical dashed line means the number of 

covariates in the best model. Gray points in the bottom right indicate the model showing significant 𝛽!"# 

and 𝛽$"#. d, Model fit of models for sustained effect analysis. e, The order of excluded covariates during 

backward stepwise tuning of models for acute effect analysis. f, Distribution of acute individual treatment 

effects estimated by the best acute model. g, Results of quintile-based evaluation of individual variability 
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in acute effects. The error bar denotes a 95% confidence interval of the group-level average treatment 

effect. Cross symbols above each error bar show the significance of group-level average treatment 

effects (☨P < .05; ☨☨P < .01; ☨☨☨P < .001). Asterisks above the bar plot indicate the significance of 

differences in group-level average treatment effects (*PFDR < .05; **PFDR < .01; ***PFDR < .001). 
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Fig 3. Framework and results of covariate analyses. a, The overall procedures of the triangulated 
covariate analyses. b, The tier and types of the selected 19 covariates in the best acute model. The 
colored region denotes the cortical volume variable, and an edge between two nodes depicts the 

streamline count variable. The bolded name of covariates indicates the tier 1 factor. c, Results of partial 

dependence simulation. 0 and 1 in the x-axis mean each covariate’s minimum and maximum value, 

respectively. The y-axis shows the acute treatment effect given each covariate, simulated by the best 

acute model. Among 12 resilience factors, we only visualized the results of tier 1 factors for legibility. 

Abbreviation: CMFG: caudal middle frontal gyrus, EG: entorhinal gyrus, HI: hippocampus, LOFG: lateral 
orbitofrontal gyrus, MOFG: medial orbitofrontal gyrus, PHIG: parahippocampal gyrus, POP: pars 

opercularis, POR: pars orbitalis, PTR: pars triangularis, RMFG: rostral middle frontal gyrus, SFG: superior 

frontal gyrus. SC: streamline counts. VOL: cortical volume.   
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Fig 4. Framework and results of sgCCA modeling with key frontotemporal factors and 
environmental/polygenic covariates. a, Model tested by sgCCA modeling and overall framework. b, 
The significance of the multivariate relationship among blocks in the discovery and replication sets. 

Statistical significance was assessed via a 1,000 times permutation test. Each histogram shows the null 

distribution obtained from the permuted sgCCA models. c, Multivariate relationship among blocks. R 

means the Pearson correlation coefficient between canonical variates. The Pearson correlation test 

separately tested the association between the neurostructural block and acute effects. d, Loadings of 
covariates in each block. Each bar denotes the standardized loading. Dark gray color bars exhibited 

significant loadings. The error bar shows the confidence interval of loadings obtained from the 1,000 

times bootstrapping.  
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Supplementary Table 1. Initially selected covariates (The neuroanatomical variables were not 
displayed for the legibility) 

Variable Measurement Time Response In GRF 
analysis? 

In sgCCA 
modeling? 

Pre-COVID: demographic information 
Age - Baseline Parent O X 
Born overseas - Baseline Parent O X 
Race - Baseline Parent O X 
Sex - Baseline Parent O X 
Parental income - Baseline Parent O X 
Parental final degree - Baseline Parent O X 

Pre-COVID: psychological features 

Internalizing problem syndrome score Child Behavior Checklist – 
‘CBCL’1 3-year-follow Parent O X 

Externalizing problem syndrome score CBCL1 3-year-follow Parent O X 
Total problem syndrome score CBCL1 3-year-follow Parent O X 
Depressive disorder symptom score CBCL1 3-year-follow Parent O X 
Anxiety disorder symptom score CBCL1 3-year-follow Parent O X 
Stress score CBCL1 3-year-follow Parent O X 
Emotion regulation strategy: not  

showing 
Emotion Regulation 

Questionnaire – ‘ERQ’2 3-year-follow Child O X 

Emotion regulation strategy: change  
the way ERQ2 3-year-follow Child O X 

Emotion regulation strategy: change  
the object 

ERQ2 3-year-follow Child O X 

Pre-COVID: environmental features 
Parental monitoring score ref3, 4 Baseline Child O O 
Family conflict score Family Environment Scale5 Baseline Child O O 

Prosocial behavior score Strengths and Difficulties 
Questionnaire6 Baseline Child O O 

Parental acceptance score Child Report of Behavior 
Inventory7, 8 Baseline Child O O 

Neighborhood safety rating ref9, 10 Baseline Parent O O 

Traumatic event: car accident 
Kiddie Schedule for Affective 
Disorders and Schizophrenia 

– ‘KSADS’11 
Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: another accident KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: caught in a fire KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: caught in a natural 
disaster KSADS11 Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: terrorism KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: mass destruction KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: witnessing a 
shot/stabbing 

KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: shot/stabbed/beaten 
by a non-family member KSADS11 Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: shot/stabbed/beaten 
by a family member KSADS11 Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: having bruises by 
a family member 

KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: threatened to kill you 
by a non-family member KSADS11 Baseline Parent 

X 
(Near zero 
variance) 
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Traumatic event: threatened to kill you 
by a family member KSADS11 Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: witnessing the  
grown-ups in the home push, shove  
or hit one another 

KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: sexually harassed by 
a family member KSADS11 Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: sexually harassed by 
a non-family member KSADS11 Baseline Parent 

X 
(Near zero 
variance) 

X 

Traumatic event: sexually harassed by 
a peer 

KSADS11 Baseline Parent 
X 

(Near zero 
variance) 

X 

Traumatic event: learned about the 
sudden death of a loved one KSADS11 Baseline Parent O O 

Discrimination: not feel accepted by 
other Americans 

Measure of Perceived 
Discrimination12 

2-year-follow Child 
X 

(Near zero 
variance) 

X 

Racial identity: important to develop the 
practices of my heritage culture 

Vancouver Index of 
Acculturation – ‘VIA’13 3-year-follow Child 

X 
(too many 

NAs) 
X 

Racial identity: important to develop 
American mainstream cultural 
practices 

VIA13 3-year-follow Child 
X 

(too many 
NAs) 

X 

Pre-COVID: multiple ancestries-based polygenic scores 
Depression Supplementary Note 1 Baseline Child O O 
Posttraumatic stress disorder Supplementary Note 1 Baseline Child O O 
Schizophrenia Supplementary Note 1 Baseline Child O O 
Body mass index Supplementary Note 1 Baseline Child O O 

Post-COVID: environmental & socioeconomic features 

Participation in the family activities 
ABCD COVID Rapid 

Response Research Survey – 
‘RRR’ 

CV2 Child 
X 

(Near zero 
variance) 

X 

Relationships with the family COVID RRR CV2 Child 
X 

(Near zero 
variance) 

X 

Perceived economic difficulties during 
the pandemic COVID RRR CV2 Parent O X 

Wage loss during the pandemic COVID RRR CV2 Parent O X 

Child’s history of COVID-19 diagnosis COVID RRR CV2 Parent 
X 

(Near zero 
variance) 

X 

County-level cumulative COVID-19 
cases COVID RRR CV2 Geocoded O X 

County-level cumulative COVID-19 
deaths COVID RRR CV2 Geocoded O X 

County-level unemployment rate COVID RRR CV2 Geocoded O X 
Median distance traveled from home 

during the pandemic COVID RRR CV2 Geocoded O X 

The average time at home during the 
 pandemic COVID RRR CV2 Geocoded O X 

The number of electronic devices at  
home COVID RRR CV2 Geocoded O X 

Full-time working behavior COVID RRR CV2 Geocoded O X 
Part-time working behavior COVID RRR CV2 Geocoded O X 
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Supplementary Table 2. The results of GATE test as an assessment of individual variability in 
acute individual treatment effects 

Group 
Group level average treatment effect Differences with Q1 

Estimates SE 95% CI Pa Estimates SE 95% CI PFDR
b 

Q1 -.102 .246 [-.584, .381] .666 - - - - 

Q2 .268 .283 [-.394, .929] .337 .369 .375 
[-.366, 

1.104] 
.162 

Q3 .778 .192 [.402, 1.154] < .001*** .880 .312 [.268, 1.491] .005** 

Q4 .560 .221 [.126, .994] .011* .661 .331 [.013, 1.310] .030* 

Q5 1.204 .181 [.850, 1.558] < .001*** 1.306 .305 [.707, 1.904] < .001*** 

 
a *P < .05; **P < .01; ***P < .001. 
b *PFDR < .05; **PFDR < .01; ***PFDR < .001.  
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Supplementary Table 3. The tiers and types of individual covariates selected in the best acute 
model based on the results of group comparison and best linear projection 

Covariate 

Group comparison Best linear projection 

Type Tier 
Q1a 

Mean (SD) 
Q5a 

Mean (SD) t PFDR
b 𝛽 SE Pc 

VOL L PTR .225 (1.2) -.211 (.8) 4.403 < .001*** -.325 .107 .003** Resilience 1 

SC L POP-L POR .281 (1.4) -.204 (.8) 4.483 < .001*** -.311 .135 .022* Resilience 1 

SC L PHIG-L HI .296 (1.5) -.104 (.8) 3.622 < .001*** -.357 .132 .007** Resilience 1 

VOL L PHIG .101 (.9) -.185 (1.2) 2.820 .007** .044 .113 .697 Resilience 2 

VOL R PHIG .176 (.9) -.312 (1.2) 4.844 < .001*** -.193 .135 .155 Resilience 2 

SC L CMFG-R POP .400 (1.4) -.185 (.8) 5.315 < .001*** -.183 .217 .400 Resilience 2 

SC L MOFG-R POR .316 (1.5) -.301 (.6) 5.792 < .001*** -.183 .245 .456 Resilience 2 

SC L MOFG-R RMFG .156 (1.0) -.314 (.9) 5.282 < .001*** -.167 .123 .177 Resilience 2 

SC L POR-L PTR .042 (1.1) -.209 (.9) 2.608 .012* .194 .156 .214 Resilience 2 

SC L POR-L RMFG .255 (1.1) -.436 (.9) 7.043 < .001*** -.274 .162 .092 Resilience 2 

SC L RMFG-R LOFG .172 (1.3) -.220 (.9) 3.694 < .001*** -.252 .239 .292 Resilience 2 

SC R POR-R RMFG .391 (1.2) -.505 (.8) 9.059 < .001*** .036 .166 .827 Resilience 2 

SC L MOFG-L PTR -.180 (.9) .320 (1.2) -5.026 < .001*** .189 .249 .447 Vulnerability 2 

SC L PTR-L SFG -.307 (1.0) .250 (1.0) -5.711 < .001*** .070 .108 .517 Vulnerability 2 

SC R MOFG-R PTR -.292 (.6) .560 (1.6) -7.383 < .001*** .179 .121 .140 Vulnerability 2 

VOL R HI .053 (1.1) -.09 (.9) 1.514 .155 .252 .162 .120 n.s. n.s. 

SC L CMFG-R SFG .051 (1.0) -.004 (1.1) .555 .579 .089 .148 .549 n.s. n.s. 

SC L POP-L RMFG -.067 (1.1) .035 (.9) -1.046 .313 .025 .138 .859 n.s. n.s. 

SC R EG-R PHIG .100 (1.0) -.010 (1.0) 1.168 .272 .027 .160 .865 n.s. n.s. 
 

a All values were standardized. 
b *PFDR < .05; **PFDR < .01; ***PFDR < .001. 
c *P < .05; **P < .01; ***P < .001.  
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Supplementary Table 4. The loadings of individual variables in the sgCCA model obtained from 
1,000 times bootstrapping 

Covariate Estimate Mean SD range PFDRa 

Neurostructural block 

SC: L MOFG-R POR -.731 -.684 .189 [-.849, -.470] .005** 

SC: L MOFG-L PTR -.714 -.661 .190 [-.806, -.355] .006** 

SC: L PTR-L SFG -.368 -.342 .180 [-.605, .032] .040* 

SC: L CMFG-R POP -.176 -.161 .193 [-.501, .207] .251 

SC: L POP-L RMFG .130 .116 .213 [-.279, .489] .362 

SC: L RMFG-R LOFG .302 .288 .159 [.002, .543] .034* 

SC: L POR-L RMFG .488 .445 .186 [.073, .663] .026* 

Polygenic block 

Depression PGS .610 .591 .344 [.123, .873] .014* 

Schizophrenia PGS .858 .838 .685 [.584, .996] .003** 

Environmental block 

School environment .770 .756 .203 [.590, .903] < .001*** 

School engagement .714 .713 .160 [.527, .834] .003** 

Parents’ acceptance .768 .765 .155 [.611, .865] < .001*** 

 

a *PFDR < .05; **PFDR < .01; ***PFDR < .001. 
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Supplementary Fig 1. Statistical significance of calibration coefficients 𝜷𝑨𝑻𝑬 and 𝜷𝑰𝑻𝑬 across GRF 
models 

 
a, PFDR of 𝛽%&' across GRF models for acute and sustained effect analysis. The dotted horizontal line 

denotes the criteria of statistical significance (PFDR < .05). b, PFDR of 𝛽(&' across models for acute and 

sustained effect analysis.   
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Supplementary Fig 2. Replicating results of the best acute model in calibration test under 
independent random seeds 

 

We examined whether the combination of 19 covariates chosen by the best acute model could pass the 

calibration test in the other random seed sets. This replication analysis aimed to test the possibility of 

overfitting the specific seed settings in the best acute model, although we aimed to prevent it via the seed 

ensemble approach. As we did in the main analysis, we generated four independent seed sets (i.e., 

seeds set A, B, C, and D), each consisting of five random seeds. We constructed the ‘big forest’ model 

with 19 covariates in each seed set and evaluated its model fit through a calibration test. Specifically, the 

significance of two model fit metrics (i.e., 𝛽%&' and 𝛽(&') from the calibration test was assessed. The error 

bar denotes the 95% confidence interval. The dotted line indicates the null hypothesis of statistical 

testing, and the red solid line means the ideal value in the calibration test. Selected 19 covariates in the 
main GRF analysis produced the model with a modest performance to estimate average and individual 

treatment effects in all seed settings. *P < .05; **P < .01; ***P < .001.  
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Supplementary Fig 3. The results of the GATE test with the smaller and larger number of groups 

 

We tested the variability of the acute treatment effects through the GATE test with a smaller and larger 

number of groups than quintile-based groupings. This analysis examined whether the observed polarized 

pattern in acute effects relies on the number of groups, the main parameter in the GATE test. The left and 

right panels denote the results of GATE tests based on two and ten groups, respectively. Relatively long 

confidence intervals and non-monotonic estimates of group-level average treatment effects in the decile-
based GATE test may reflect the small sample size in each group (about 100 samples). Nevertheless, 

both results present the heterogeneous acute effects across groups, indicating the individual differences 

in acute stress response to perceived discrimination. The bolded statistics denote the statistically 

significant differences between groups. *PFDR < .05; **PFDR < .01; ***PFDR < .001.   
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Supplementary Fig 4. Reproducibility tests with the held-out dataset (N = 2,503) 

 

a, The model fit evaluation through calibration test with the held-out samples. We conducted backward 

stepwise tuning for GRF models with the 19 key neurostructural factors identified in the main analysis. 

From the resulting 19 models, we observed that the last two models accurately estimated both average 

and individual treatment effects of acute effects. b, The distribution of acute individual treatment effects 

estimated by the best model in the held-out samples. c, Results of GATE test to assess individual 

variability in acute individual treatment effects. The error bar denotes a 95% confidence interval of the 

group-level average treatment effect. Cross symbols above each error bar show the significance of 

group-level average treatment effects (☨P < .05; ☨☨P < .01; ☨☨☨P < .001). Asterisks above the bar plot 

indicate the significance of differences in group-level average treatment effects (*PFDR < .05; **PFDR < .01; 

***PFDR < .001). d, The tiers and types of each neurostructural covariate in the original and held-out 
dataset. 
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Supplementary Fig 5. Perceived COVID-19-related discrimination across data collection sites 

 

We performed a chi-squared test to examine the statistical differences in the frequency of perceiving 

discrimination across data collection sites. No significant difference in the frequency was detected in our 

dataset (χ) = 90.158, P = .253).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2024. ; https://doi.org/10.1101/2024.03.04.24303643doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.04.24303643
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials                                               12 

 

Supplementary Note 1. Genotyping, computation, and validation of multiple ancestries-based 

polygenic scores 

The ABCD study genotyped participants’ saliva samples using Rutgers University Cell and DNA 

Repository, including 733,293 single nucleotide polymorphisms (SNPs). These SNPs were filtered 

through standard PLINK criteria as follows: genotype call rate < 95% removed, sample call rate < 95% 

removed, and minor allele frequency < 1% removed. Afterward, we imputed genotypes with Eagle v2.414 

and the Michigan Imputation Sever15. For robust quality control, we again removed SNPs with the 

following conditions: INFO score < 0.4 removed, genotype call rate < 95% removed, Hardy-Weinberg 

Equilibrium p-value < 1×10-20 removed, sample missingness > 5% removed, minor allele frequency < 

0.5% removed, and extreme heterozygosity (i.e., over three standard deviations of the population mean). 

As a result, a total of 11,221,810 SNPs variants remained. 

Considering that the ABCD study dataset includes samples with diverse ethnic backgrounds, we 

relaxed possible population bias from genetic relatedness and ancestry mixture. To identify genetically 

unrelated individuals, we estimated kinship coefficients and principal components of ancestral information 

using PC-Air16 and PC-Relate17. We labeled a sample as ‘unrelated individuals’ if he or she satisfied the 

following criteria: kinship coefficients > 0.022 and over six standard deviations of the population mean in 

the principal component space. Consequently, final genotyped samples of 8,620 unrelated children were 

included in the main analysis, and an independent set of 1,579 individuals was used for validating 

polygenic scores. 

We calculated children’s polygenic scores for four distinct traits associated with stress 

vulnerability with GWAS summary statistics based on discovery samples from multiple ancestries: post-

traumatic stress disorder18 (PTSD), schizophrenia19, 20 (SCZ), depression21, 22 (DEP), and body mass 

index23, 24 (BMI). With these GWAS summary statistics as input, we used PRS-CSx25, a high-dimensional 

Bayesian regression approach utilizing shrinkage prior to estimating the posterior effect sizes of SNPs on 

the complex traits. This approach is more specialized in incorporating multiethnic populations and showed 

higher predictive power in simulation and empirical data analysis than the other algorithms25.  

In the held-out set of 1,579 unrelated children, validation for hyperparameter optimization was 

conducted. These unrelated samples consist of 88 of African ancestry, 25 of East Asian ancestry, 1,365 
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of European ancestry, 88 of American ancestry, and 55 not specified. We manually explored the global 

shrinkage parameter that maximizes the explanatory power of the regression model and effect sizes of 

polygenic scores on the target phenotype. Following the recommendation of the ref.25, we conducted a 

grid search to optimize a shrinkage parameter by testing 1×10-6, 1×10-4, 1×10-2, and 1 within the 

validation set. We built single ancestry-based polygenic scores and multiple ancestries-based polygenic 

scores for each trait. For example, if GWAS from two populations were available, three polygenic scores 

could be generated, two from each population and one by incorporating both populations. Each model 

regressed the related phenotype from the ABCD study on the polygenic score(s), sex, top 10 principal 

components of genotype data, and genetic ancestry identified by ADMIXTURE algorithm26. This 

regression-based validation was conducted only with polygenic scores of PTSD, DEP, and BMI that had 

corresponding measures in the ABCD study dataset. In this model, we defined multiethnic polygenic 

scores as a linear combination of two polygenic predictors (i.e., European-based and ancestry-specific 

polygenic scores). Finally, we chose the best shrinkage parameters (either multiple ancestries-based 

polygenic scores or combinations of single ancestry-based polygenic scores) for each trait based on the 

R-squared of the regression model and the effect sizes (beta coefficient) of polygenic scores. The other 

polygenic scores, ALCDEP and SCZ, were automatically validated by PRS-CS-auto25, in which the 

optimal shrinkage parameter was chosen through a fully Bayesian approach. All polygenic scores were 

adjusted for sex, age, study site, and genetic ancestry.  
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Supplementary Note 2. Estimating streamline counts from diffusion-weighted imaging data 

We used diffusion-weighted imaging (DWI) data measured at the baseline timepoint in the ABCD 

study dataset. DWI data were preprocessed by the ABCD Data Analysis and Informatics Center following 

the ABCD-specific protocols27. In brief, Eddy current distortion correction was performed to predict the 

overall pattern of artifact distortions28. Corrected images were registered to images synthesized from 

tensor fit[29] and adjusted with diffusion gradients27, 30 to minimize noises from head motions. Then, 

diffusion tensors were estimated to identify and remove slices distorted by abrupt head motion31. Using 

the ‘TOPUP’ function in FSL32, 33, B0 distortions were corrected via the reversing gradient method. After 

gradient nonlinearity distortion correction34, images of b=0 were registered T1w-images based on their 

mutual information35. Finally, corrected images were resampled into a standard orientation with 1.7mm 

isotropic resolution.   

To estimate streamline counts among ROIs – potential neural sources of stress resilience and 

vulnerability, we first estimated each child’s structural connectome. We applied ‘MRtrix336’to generate 

individual probabilistic tractography. Then, we estimated streamline counts from the resulted tractograms 

following the ref37-40. We estimated the noise maps and computed the objective threshold on the 

eigenvalues to conduct principal component analysis (PCA) for the noise level-based denoising41. We 

also performed bias correction using ANTs’ N4 algorithm42. Afterward, we obtained probabilistic 

tractography by second-order integration over fiber orientation distributions with random seeds across the 

brain and streamline counts of 20 million43. These initial tractograms were filtered out preliminary 

tractograms with spherical-deconvolution filtering with 2:1 ratio. By doing so, we extracted 10 million 

streamline counts and 84×84 whole-brain connectome matrix with T1-based parcellation and 

segmentation. We performed these procedures with the supercomputers at Argonne Leadership 

Computing Facility Theta and Texas Advanced Computing Center Stampede2.  
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