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One Sentence Summary: RNA-sequencing of nasopharyngeal samples enables pathogen-
detection and host-response profiling in pediatric acute sinusitis. 
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Abstract:  
Acute sinusitis (AS) is the fifth leading cause of antibiotic prescriptions in children. Distinguishing 
bacterial AS from common viral upper respiratory infections in children is crucial to prevent 
unnecessary antibiotic use but is challenging with current diagnostic methods. Despite its speed 
and cost, untargeted RNA sequencing of clinical samples from children with suspected AS has the 
potential to overcome several limitations of other methods. However, the utility of sequencing-
based approaches in analysis of AS has not been fully explored. Here, we performed RNA-seq of 
nasopharyngeal samples from 221 children with clinically diagnosed AS to characterize their 
pathogen and host-response profiles. Results from RNA-seq were compared with those obtained 
using culture for three common bacterial pathogens and qRT-PCR for 12 respiratory viruses. 
Metatranscriptomic pathogen detection showed high concordance with culture or qRT-PCR, 
showing 87%/81% sensitivity (sens) / specificity (spec) for detecting bacteria, and 86%/92% 
(sens/spec) for viruses, respectively. We also detected an additional 22 pathogens not tested for in 
the clinical panel, and identified plausible pathogens in 11/19 (58%) of cases where no organism 
was detected by culture or qRT-PCR. We assembled genomes of 205 viruses across the samples 
including novel strains of coronaviruses, respiratory syncytial virus (RSV), and enterovirus D68. 
By analyzing host gene expression, we identified host-response signatures that distinguished 
bacterial and viral infections and correlated with pathogen abundance. Ultimately, our study 
demonstrates the potential of untargeted metatranscriptomics for in depth analysis of the etiology 
of AS, comprehensive host-response profiling, and using these together to work towards optimized 
patient care.  
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INTRODUCTION 
Acute sinusitis is a bacterial superinfection that occurs usually in children with inflamed 

mucosa secondary to an upper respiratory tract viral infection (URTI) (1, 2). It is one of the most 
common diagnoses in pediatric primary care settings in the U.S. with 5 million antibiotic 
prescriptions written annually (3). However, because symptoms of acute sinusitis and an 
uncomplicated URTI overlap considerably, some children diagnosed and treated for acute sinusitis 
do not have a bacterial infection (2, 3). The diagnosis is especially challenging because the 
symptoms may be less specific in young children (2). Overtreatment of infections such as sinusitis 
is thought to be a major contributor to the rise in antimicrobial resistance (AMR), which remains 
an ongoing threat to public health (1). 

Bacterial pathogens most frequently isolated from the sinuses of children with acute 
sinusitis include Haemophilus influenzae (HFLU), Streptococcus pneumoniae (SPN), and 
Moraxella catarrhalis (MCAT) (2, 4). Viruses such as influenza virus (INF), respiratory syncytial 
virus (RSV), coronavirus (COV), adenovirus (ADV), human rhinovirus (HRV), human 
metapneumovirus (MPV), enterovirus (EV), and parainfluenza virus (PIV) can produce symptoms 
that can be difficult to distinguish from acute bacterial sinusitis (5). 

Recently, it has been suggested that one way to distinguish between bacterial and viral 
infections would be to obtain samples from the middle turbinate or nasopharynx of children with 
suspected sinusitis and to test these samples (using culture or qRT-PCR) for the three bacterial 
pathogens that frequently cause acute sinusitis (6). However, distinguishing bacterial sinusitis from 
an uncomplicated viral URTI using currently available microbiological tests is challenging for 
several reasons. First, pathogenic particles from asymptomatic infection or past infections may 
lead to false positive qRT-PCR detections that have little relevance to the presenting symptoms 
(7). Second, because many pathogens frequently colonize the nasal passages of children even 
during health, detecting their presence is often not indicative of the occurrence of a bacterial 
infection (8, 9). 

With the remarkable reduction in the cost of high-throughput sequencing technologies, 
sequencing has emerged as an appealing strategy for the detection and taxonomic characterization 
of microorganisms in clinical samples from patients and has potential to overcome several 
limitations of currently available methods such as culture or qRT-PCR (10, 11). High-throughput 
sequencing of total RNA from a patient sample (metatranscriptomics) allows for a broad, 
untargeted approach to detect common, uncommon, and novel pathogens. Pathogen detection by 
high-throughput RNA or DNA-sequencing is showing promise in a growing number of infectious 
disease applications including pneumonia (12, 13), COVID-19 (14), meningitis (15), and febrile 
illness (16), and has been effective in identifying potential pathogens causing infection, including 
cases where no pathogen was detected using qRT-PCR or culture. 

In addition, a significant benefit of metatranscriptomic sequencing is that it captures both 
pathogen-derived as well as host-derived RNA, which facilitates both pathogen detection as well 
as analysis of host gene expression patterns (host response profiling). Whereas sequence-based 
pathogen detection relies on detecting sequences of known pathogens, host-response profiling may 
quantify the expression level of biomarkers that indicate active host immune response to infection 
in a pathogen-agnostic manner. Thus, information on host-response may help distinguish active 
infections from colonization. Several previous studies have used RNA-seq or microarray 
techniques to identify and quantify biomarkers that differentiate between viral and bacterial 
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respiratory infections (17–22). Using 104 host-response genes identified using microarray analysis 
of blood samples, Tsalik et al. developed separate bacterial and viral infection classifiers that had 
a combined accuracy of 87% (17). Host-response profiling from blood samples has also formed 
the basis of commercially available systems (e.g., MeMed BV®). If host-response profiles from a 
nasopharyngeal (NP) sample can similarly be used to differentiate bacterial from non-bacterial 
sinusitis infections, this could contribute to the development of biomarker assays that inform 
clinical decision making regarding the use of antibiotics. 

In this work, to examine the ability of metatranscriptomics to uncover microbiological and 
clinically relevant information, we performed metatranscriptomic analysis of NP swabs from 221 
children with clinically diagnosed acute sinusitis who were a subset of children enrolled in a 
previously described clinical trial (6). Through RNA-seq analysis of NP swab samples, we 
performed metatranscriptomic pathogen detection and assessed its ability to reproduce culture and 
qRT-PCR results for 3 bacteria and 12 viruses. We then assembled partial to complete genomes 
of 205 viruses. Finally, we performed host-response profiling and identified gene expression 
signatures of bacterial and viral infection, which correlated significantly with pathogen load. Our 
work shows the potential of metatranscriptomics for improving diagnosis of sinusitis and upper 
respiratory tract infections. 
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RESULTS  
Cohort characteristics: 

A subset of 221 pediatric patients presenting with symptoms of acute sinusitis from a previous 
study (6) (Feb 2016 to Mar 2022) were selected for NP RNA-seq (Fig. 1, Table 1). Further details 
are provided in the Methods and in Shaikh et al. (6). One naris was sampled using a NP swab and 
this was used for viral qRT-PCR, bacterial culture, and RNA-sequencing (23); 171 (77 %) and 169 
(76%) of the children tested positive for at least one bacteria or virus, respectively. Parents assessed 
symptom severity daily during the 10 days following diagnosis. 

 
 

 
Fig. 1. Overview of study design. The study cohort was comprised of 221 children with acute sinusitis who underwent 

collection of NP swabs. Culture was used to detect three bacterial species (Haemophilus influenzae, 
Streptococcus pneumonia, Moraxella catarrhalis) and qRT-PCR was used to detect 12 viruses of clinical 
relevance. Haemophilus influenzae isolates were tested for beta-lactamase production (N=69). Parallel to 
this, RNA extraction from NP swabs and sequencing was also done to conduct metatranscriptomic analysis 
using a bioinformatics approach. Using the sequencing data, several analyses were performed: pathogen 
detection and quantification, assembly of detected respiratory viruses, detection of beta-lactamase genes, and 
transcriptomic analysis of host responses. 
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Bacterial pathogen detection by metatranscriptomic analysis of NP samples: 
To identify potential bacterial and viral pathogens in the 221 samples, we performed high-

throughput sequencing of total RNA derived from NP swabs. First, we aimed to quantify the 
abundance of three bacterial pathogens of interest -- S. pneumoniae (SPN), M. catarrhalis 
(MCAT), and H. influenzae (HFLU) -- as these pathogens are commonly isolated in children with 
bacterial sinusitis4. We note that our use of the term “pathogen” does not imply that these 
organisms are necessarily the causative agents of sinusitis infections. After quality filtering, we 
performed taxonomic classification of the sequencing reads using Kraken 2 (24). The relative 
abundance of the three bacterial pathogens (shown in Fig. 2A) was calculated based on the 
normalized abundance of reads (reads per million, RPM) that mapped to each species. One or more 
of these three bacterial pathogens were detected in a total of 177 patients (80%). Two or more 
bacterial pathogens were detected in 89 (40%) patients, and 25 (11%) of patients had all three 
bacterial pathogens detected. On an individual basis, SPN was detected in 73 (33%), MCAT in 
137 (62%), and HFLU in 81 (37%) of patient samples. Tables S1 and S2 contain the clinical culture 
and RNA-seq based results for bacterial detection for each patient. 

Next, we examined the extent that the calculated abundance of these bacterial pathogens 
from RNA-seq agreed with their presence/absence based on culture. For all three pathogens, we 
detected a significant increase in RNA-seq abundance in those with a positive culture, 
demonstrating concordance between the metatranscriptomic data and culture (Fig. 2B). Some 
pathogen-negative samples based on culture had an RNA-seq pathogen abundance greater or equal 
to the mean abundance seen in positive samples. We then assessed the ability of the RNA-seq data 
to predict the culture-based test results for each pathogen, and generated Receiver Operator Curves 
(ROCs) by varying the detection threshold (Fig. 2C). HFLU infections could be detected with the 
highest accuracy by RNA-seq with an area under the ROC curve (AUC) of 0.95, SPN infections 
with an AUC of 0.89, and MCAT infections with an AUC of 0.82. Using a threshold of 3 reads 
per million, HFLU was detected with a sens/spec of 94%/90%, SPN with 81%/89% and MCAT 
with 85%/64% (Table 2). 
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Fig. 2. Metatranscriptomic detection of bacterial pathogens in NP samples from children with clinically 

diagnosed acute sinusitis. (A) Heatmap showing the detected abundance of three bacterial pathogens (H. 
influenzae, M. catarrhalis, S. pneumoniae) in patient metatranscriptomes. For each bacterium, the culture-
based test result (positive – grey, negative – white) is shown on the left of the column, and the estimated 
RNA-seq abundance is depicted on the right of the column as a color gradient (absent – white, low – yellow, 
high – dark blue). Each row in the heatmap and tip in the hierarchical tree corresponds to an individual patient 
sample. (B) Boxplots depicting pathogen abundance in positive (+) versus negative (-) samples (labeled on 
X axis) defined based on culture.  The boxes show the interquartile range and median line, and the whiskers 
show the variability extending to the furthest data points within 1.5 times above and below the interquartile 
range. Outliers outside of these ranges are shown as data points. (C) ROC curves illustrating specificity and 
sensitivity of metatranscriptomic pathogen detection with area under the curve (AUC) values displayed 
above. 

 

 
Beta-lactamase gene detection in HFLU positive samples: 

We next examined whether metatranscriptomics could identify potential resistance genes 
associated with HFLU. Culture-based tests for beta-lactamase were performed for all HFLU-
positive samples, and these were used as the reference standard to analyze the accuracy of RNA-
seq based detection. We assembled all non-human reads from samples that were clinically positive 
for HFLU (N=69) and used the Comprehensive Antibiotic Resistance Database (CARD) (25) to 
detect beta-lactamase genes with at least 10% coverage (fig. S1). Beta-lactamase genes were 
detected in 74% (20/27) of the samples associated with resistant HFLU, and in 33% (13/42) of the 
samples associated with non-resistance HFLU, which reflects a significant (2.1-fold) increase in 
detected beta-lactamase genes in the resistant samples (p = 0.002, Fisher exact test). The imperfect 
concordance between RNA-seq based and culture-based beta-lactamase detection reflects the 
known challenges in detecting AMR genes using metagenomic approaches (26). The complete list 
of genes and the portion of the reference genome detected for each hit can be found in tables S3-
S5.  
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Metatranscriptomic detection and analysis of respiratory viruses: 
To examine the ability of metatranscriptomics to detect viral infections, we first focused 

on respiratory viruses identified using qRT-PCR. Viruses tested for included influenza A (INFA), 
influenza B (INFB), influenza C (INFC), human metapneumovirus (MPV), human rhinovirus 
(HRV, which tested for rhinovirus types A, B, and C), parainfluenza virus 1 (PIV1), parainfluenza 
virus 2 (PIV2), parainfluenza virus 3 (PIV3), parainfluenza virus 4 (PIV4), respiratory syncytial 
virus (RSV, types A and B), human adenovirus (ADV), and enterovirus D68 (EVD68). One or 
more viruses were detected by metatranscriptomics in 175 patients (79%), two or more in 101 
patients (46%), and three or more in 36 patients (16%). HRV was detected most frequently (45%), 
followed by MPV (14%) and INFA (13%). 

Next, we examined the extent that the RNA-seq based predictions matched viral 
presence/absence based on the qRT-PCR. As shown visually in Fig. 3A, the relative abundance of 
viruses detected by metatranscriptomics was in strong agreement with the results of qRT-PCR-
based tests, with lower qRT-PCR cycle threshold (Ct) values corresponding to higher RPM values 
in RNA-seq. A significant correlation (r = 0.75, p = 1.3x 10-46) was detected between 1/Ct values 
and viral load calculated as log10(reads per kilobase million, rpkm) (27) (Fig. 3B). Samples 
containing viruses detected by qRT-PCR but not by RNA-seq had significantly higher cycle 
thresholds (mean = 34.7) compared to true positives (mean = 23.2; t-test p-value = 5.5 x 10-5), 
which has been reported in previous RNA-seq studies (28). For all viruses except for INFC (which 
only had 8 positive samples), we detected an increase in metatranscriptomic abundance in those 
with a positive qRT-PCR result (Fig. 3C).  

We then calculated the accuracy of viral detection by using the results of the qRT-PCR 
tests as the ground truth. Due to the uniqueness of viral sequences, we found that a very low 
threshold (>=1 RPM) was sufficient to distinguish virus-positive from negative samples. Using 
this threshold, we calculated the sensitivity and specificity of metatranscriptomic pathogen 
detection for each of the 12 viruses as shown in Table 2. Nine out of the 12 viruses were detected 
with 90-100% sensitivity and specificity, while INFC, HRV, and ADV were detected with lower 
accuracy. Overall, we were able to detect the 12 viruses with an average sensitivity/specificity of 
86%/92%. These accuracies are consistent with other studies performing sequencing-based 
pathogen detection using NP samples (27, 28). 
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Fig. 3. Detection of common respiratory viruses in NP metatranscriptomes. (A) Abundance heatmap for viruses 

detected in NP metatranscriptomes for 221 patients. For each virus, the qRT-PCR result is shown on the left 
of the column as a color gradient (negative – white, high to low cycle threshold values – light gray to black), 
and the estimated RNA-seq abundance is depicted on the right of the column as a color gradient (absent – 
white, low – yellow, high – dark blue). Each row in the heatmap and tip in the hierarchical tree corresponds 
to an individual patient sample. (B) qRT-PCR abundance (1/ cycle threshold) versus metatranscriptomic viral 
load (log10 of the RPKM). The estimated viral load from RNA-seq is significantly correlated with 1/Ct value 
from qRT-PCR. (C) Metatranscriptomic abundance of respiratory viruses in negative (-) versus positive (+) 
samples (labelled on X axis) defined by qRT-PCR test result. The boxes show the interquartile range and 
median line, and the whiskers show the variability extending to the furthest data points within 1.5 times above 
and below the interquartile range. Outliers outside of these ranges are shown as data points. 

 

 
RNA-seq uncovers additional pathogens and alternate explanations of disease etiology: 

By sequencing total RNA within a sample, metatranscriptomics has the potential to detect 
additional pathogens beyond those tested by culture or qRT-PCR. We therefore screened our 
RNA-seq dataset for additional pathogens previously associated with URTIs and/or sinusitis 
infections, as well as non-URTI pathogens and opportunistic pathogens, and further validated the 
identified species using additional bioinformatic approaches (see Methods). Across the 221 patient 
samples, we detected 22 additional pathogens that were not tested for clinically, including 11 
bacteria and 11 viruses (Fig. 4). These species were then ranked in terms of their maximum relative 
abundance within a sample (Fig. 4). 
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Newly identified bacterial pathogens includes fourteen species listed in Fig. 4. The most 
notable identifications include Mycobacterium pneumoniae and Chlamydia pneumoniae, which 
were not included in the clinical panel but have been previously implicated in pediatric sinusitis 
and URTIs (29, 30). In addition, opportunistic pathogens including Fusobacterium nucleatum, 
Moraxella spp., and others, were also detected (Fig. 4), but some of these likely have a commensal 
role in the nasopharynx. Interestingly, we also detected periodontitis-associated bacteria, 
Treponema medium, Prevotella intermedia, and Tannerella forsythia (31), in a few (N = 1 to 4) 
samples, and all three co-occurring in the same patient. Follow-up investigation of this patient 
revealed that they were admitted to an emergency room with a severe tooth infection one year after 
the NP swab sample was taken, highlighting the potential of NP RNA-seq to detect subclinical 
infection.  

Newly identified viral pathogens with the highest abundance include four human 
coronaviruses known to cause upper respiratory infections (NL63, OC43, HKU1, and 229E). We 
also detected parechovirus A and cardiovirus B (saffold virus), which have been associated with 
respiratory illness in children (32, 33), as well as other viruses that are not typically associated 
with respiratory infections including mamastrovirus 9, enteroviruses A and B, human 
gammaherpes virus 5, human betaherpes virus 5, and sequences related to murine leukemia virus 
(Fig. 4). 

Of the 19 samples that had no pathogen detected by culture or qRT-PCR, 11 contained 
identified pathogens based on RNA-seq profiling. Three of the 11 samples (circled in Fig. 4) 
contained known pathogens detected at high abundance that were not included in the clinical 
pathogen panel: the coronaviruses NL63 and 229E, and the bacterium, Chlamydia pneumoniae. 
Eight of the 11 samples had pathogens detected by RNA-seq but not by qRT-PCR or culture, 
including influenza B (N = 1), parainfluenza virus 1 (N = 1), SPN (N = 1), MCAT (N = 4), and 
HFLU (N = 1).  

Ultimately, these additional detected pathogens highlight the ability of RNA-seq to provide 
a more complete picture of the microbiome and virome present in acute sinusitis samples and 
suggests an expanded panel of viruses and bacterial pathogens to be used in future clinical 
workflows. 
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Fig. 4. Metatranscriptomics of NP samples from children with acute sinusitis identified organisms not detected 

by qRT-PCR or culture. The organisms included in the heatmap are a subset of the full set of organisms 
detected by RNA-seq that exceed minimum abundance thresholds and include human pathogenic bacteria 
and viruses (see table S6 for full dataset). The organisms are sorted vertically based on their maximum 
relative abundance within a sample (across 221 samples). The heatmap displays the relative abundance of 
each organism in each sample as estimated by Kraken 2. The left heatmap includes samples with clinically 
identified pathogens by qRT-PCR or culture (N = 202), and the right heatmap includes 19 samples without 
a pathogen detected by qRT-PCR or culture. For the latter samples, several samples contain additional 
organisms identified by metatranscriptomics that are plausible causes of sinusitis. The barplot on the right 
depicts the total number of samples containing each detected pathogen. 

 
 

Viral genome assembly and subtyping from host-derived metatranscriptomes: 
Read-based taxonomic classifications provide an estimate of microbial species present in 

each sample. However, de novo genome assembly methods may be used to assemble longer 
fragments including genomes of full-length RNA viruses, which can validate read-based 
predictions and reveal additional information.  

By aligning the RNA-seq reads to reference genomes of identified viruses, we were able 
to assemble partial to complete genomes for a total of 205 viruses across 163 samples, including 
25 different human pathogenic viruses (Fig. 5A). In addition to the 12 viral groups from the clinical 
panel (Fig. 3), genomes were assembled for 9 additional respiratory viruses (e.g., coronaviruses) 
not tested for clinically. We also assembled genomes of enterovirus A and B, WU polyomavirus, 
and mamastrovirus 9, which are typically implicated in other illnesses such as gastroenteritis. A 
total of 31 (15%) were 100% complete, while 60 (30%) had completeness >90% (table S7). All 
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assembled viral genomes were phylogenetically verified by sequence comparison to related 
genomes in NCBI through BLAST, with average nucleotide identities (ANIs) ranging from 95-
100%. 

To explore the use of assembled genomes for viral subtyping, we focused on the predictions 
for influenza A and B, since these were subtyped clinically using qRT-PCR. The subtyping results 
using assembled influenza genomes showed excellent agreement with the clinical results, with 
Influenza A subtypes H1N1 and H3N2 having 100% (15/15) agreement and Influenza B subtypes 
Yamagata and Victoria having 82% agreement (9/11) with qRT-PCR results (table S8).  

We then focused on several cases of interest, performing a deeper genomic and 
phylogenetic analysis of newly assembled genomes. Three examples of assembled viral genomes 
are shown in Fig. 5B, including a genome of a novel HCoV-OC43 strain, an RSVB genome, and 
an enterovirus D68 genome. All three of these genomes have distinct mutation profiles from other 
strains in the NCBI database (Fig. 5B), and clustered as unique strains in phylogenetic analysis 
(Fig. 5C). All three of the genomes also showed broad sequencing coverage across the genome, 
with the exception of the RSVB genome from sample 1141, which showed a lack of coverage 
spanning the glycoprotein G gene. Interestingly, a previous study also identified G protein deletion 
mutant RSV strains in pediatric pneumonia patients from South Africa (34). 

 

 

 
Fig. 5. Assembled genomes of viruses from children with clinically diagnosed acute sinusitis. (A) Bar graph 

depicting the number of assembled genomes for various species of respiratory viruses across the full dataset 
(N = 205 total viruses assembled from 163 samples). (B) Read pileups for three selected samples showing 
sequencing reads mapped to reference genomes of human coronavirus (HCoV) OC43, RSV, and enterovirus 
D68 with SNP profiles as colored lines. (C) Phylogenetic analysis of three assembled viral genomes and their 
top 25 closest matching complete genomes from BLAST. Each newly assembled virus (red) is a unique strain 
that clusters as a distinct branch within its phylogenetic tree. 
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Host-response expression profiles distinguish bacterial from viral infections: 
Although RNA-seq analysis was capable of detecting pathogens directly from reads, most 

reads within RNA-seq samples were host (human) derived, ranging from 64.7-99.9%, which 
enables host-response profiling to potentially identify host biomarkers and immune responses 
associated with disease etiology (35–38). 

To identify differentially expressed genes (DEGs) associated with bacterial versus viral 
infections, we compared host gene expression profiles of patients with bacterial pathogens to those 
with viral pathogens based on clinical diagnostic testing (Fig. 6A). Due to the presence of many 
(N = 138) complex samples containing a mixture of viral and bacterial pathogens, we chose to 
simplify the initial comparison and compared samples with only bacterial pathogens (N = 33) to 
those with only viral pathogens (N = 31), but subsequently analyzed all 221 samples. A total of 
821 significant DEGs were detected with q < 0.001, of which 548 genes had increased expression 
in bacterial-positive patients and 273 genes had increased expression in viral-positive patients (Fig. 
6A, table S9). We termed these genes as “bacterial upDEGs” and “viral upDEGs”.  

Based on function enrichment analysis, bacterial upDEGs were significantly associated 
with neutrophil regulation, regulation of inflammatory response, response to lipopolysaccharide, 
and response to molecule of bacterial origin (Fig. 6B), which are consistent with an immune 
response to bacterial infection. The identified bacterial upDEGs include genes previously shown 
to be markers of bacterial infection: for example, PTGS2 (6-fold increase in bacterial-positive 
patients, q = 3.1 x 10-7), S100A9 (4-fold increase, q = 4.2 x 10-6, PLAUR (5-fold increase, q = 7.3 
x 10-6), TNFAIP3 (4-fold increase, q = 1.3 x 10-5), IL1A (6-fold increase, q = 1.0 x 10-4), IL1B (6-
fold increase, q = 4.0 x 10-5), CXCL2 (4-fold increase, q = 1.3 x 10-5), and NFKBIA (4-fold 
increase, q = 1.8 x 10-5) (Fig. 6D). 

Viral upDEGs were found to be significantly associated with cytokine signaling, defense 
response to virus, T cell receptor signaling, and inflammatory response (Fig. 6C), which are related 
to viral immune response pathways. Consistent with this, the identified viral upDEGs include 
genes shown to be markers of viral infection in previous studies: for example, CXCL11 which was 
increased 33-fold in virus-positive patients (q = 4.9 x 10-23),  CXCL10 (15-fold increase, q = 2.6 x 
10-15), CCL8 (23-fold increase, q = 2.3 x 10-6), PRF1 (4-fold increase, q = 3.8 x 10-9) and IFI27 
(2-fold increase, q = 8.5 x 10-7), which represent putative biomarkers of viral infection in our 
analysis (Fig. 6D).  

In general, representative viral and bacterial upDEGs had lower expression levels for 
samples in which no bacteria or virus was detected by qRT-PCR/culture, and higher expression 
levels for samples containing both a virus and bacterial pathogen (Fig. 6D). Interestingly, there are 
several exceptions to this pattern including four samples that had a strong antiviral response despite 
there being no virus detected by qRT-PCR/culture. Deeper investigation of these samples by RNA-
seq revealed that three of them contained respiratory viruses (two coronaviruses and influenza B) 
(Fig. 4B) that were not detected by the qRT-PCR tests. Other exceptions include two samples 
which had no bacterial pathogen detected by culture/qRT-PCR but had a strong antibacterial 
response. One of these samples (sample 1303) had a bacterial pathogen (MCAT) identified in high 
abundance by RNA-seq. These results suggest that host-response profiling may provide an 
indication of viral or bacterial infection when traditional tests fail to detect a pathogen. 
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Fig. 6. Identification of differentially expressed host genes indicative of host-responses to bacterial and viral 

infection in acute sinusitis patients. (A) Volcano plot of differentially expressed genes between samples 
with only bacterial pathogens and samples with only viral pathogens according to qRT-PCR and culture test 
results. Human genes shown in the upper right quadrant have significantly increased transcript abundance in 
samples with bacteria (bacterial upDEGs), and genes in the upper left quadrant have significantly increased 
transcript abundance in samples with virus(es). Genes are partitioned in the plot based on p-value significance 
thresholds. (B and C) Biological functions and pathways that are significantly enriched among bacterial and 
viral upDEGs, calculated using enrichR. For each function term, the associated adjusted p-value and number 
of genes is depicted. (D) Example bacterial and viral upDEGs and their expression levels (transcript 
abundance) across four categories of patients: those with neither bacteria or virus detected by culture or qRT-
PCR; those with only bacteria, those with only virus, and those with both a bacteria and virus. 
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Magnitude of host responses correlates with viral and bacterial pathogen abundance: 
If the identified viral and bacterial upDEGs are genuine biomarkers of viral and bacterial 

infections, respectively, then their levels of expression should correlate with the abundance of viral 
and bacterial pathogens estimated from RNA-seq. To test this hypothesis, we calculated the total 
bacterial pathogen abundance as the sum of the relative abundance of the pathogens SPN, HFLU, 
and MCAT. We then binned all samples into ten groups, with group 1 having the lowest bacterial 
pathogen abundance, and group 10 having the highest. We then repeated this analysis for viral 
pathogens, summing the total abundance of 12 viral pathogens as well as the coronaviruses that 
were clearly present based on RNA-seq data, but missing from the clinical test. 

As shown in Fig. 7A, with increasing abundance of bacterial sinusitis pathogens (MCAT, 
SPN, HFLU), there is a clear increase in expression levels of bacterial upDEGs. To quantify this 
pattern, for each sample we calculated the “magnitude” of the bacterial and viral host response as 
the average expression level (Z-score) of the bacterial and viral upDEGs. As shown in Fig. 7B, the 
magnitude of bacterial host response correlated significantly with bacterial pathogen abundance 
(Pearson r = 0.50, two-tailed p = 1.6 x 10-15). The same pattern was also seen for viruses: that is, 
the abundance of viral pathogens also correlated significantly with the magnitude of viral host-
response (Pearson r = 0.33, two-tailed p = 5.8 x 10-7) (Fig. 7C,D). Both the bacterial and viral host 
responses however did not correlate with other clinical features including the duration of cold 
symptoms and symptom severity (Fig. 7A). Although these pathogen-host-response correlations 
are a general pattern, not all samples display this trend. For example, several samples with high 
bacterial pathogen abundance lack a strong bacterial host response. In addition, one outlier 
(marked * in Fig. 7A) shows an individual with a low detected bacterial pathogen abundance but 
a strong bacterial host response. This could indicate an immune response to an unknown bacterial 
species. 

In addition to the association between host-response and pathogen abundance, we also 
tested for host-response correlations with other clinical metadata. A weaker but significant (r = 
0.33, p = 6.6 x 10-7) host-response pattern was detected between a subset of genes and patient 
symptom severity scores (PRSS) at the time of diagnosis. A total of 45 genes were differentially 
expressed as a function of PRSS, which subdivided into 2 expression clusters (fig. S2). Cluster 1 
was positively correlated with PRSS and includes the following genes: METTL7B, MMP3, PRF1, 
GNLY, MMP1, FPR3, GIMAP6, OLFML2B, DESI1, IL12RB2. Function enrichment analysis 
revealed that cluster 1 was associated with a response to infection (cellular defense response, 
natural killer cell mediated immunity, and cellular response to cytokine stimulus). Other pathways 
such as proteolysis and pyroptosis are also involved in innate host immune response by eliminating 
and degrading infected cells (39, 40).  
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Fig. 7. Host-response correlates with relative abundance of bacterial and viral pathogens. (A) Expression 

heatmap of bacterial upDEGs (bacterial host response genes), with samples (columns) sorted by total 
metatranscriptomic bacterial pathogen abundance. The associated metadata for all samples is also plotted 
above the heatmap. * Also shown is an outlier sample associated with a strong bacterial host response but 
with low detected abundance of MCAT, HFLU, or SPN. (B) Bacterial host response score versus 
metatranscriptomic bacterial pathogen abundance. The bacterial host response score was calculated as the 
mean expression level (Z-scores) of all the bacterial upDEG genes. (C) Expression heatmap of viral upDEGs 
(viral host response genes), with samples (columns) sorted by metatranscriptomic viral pathogen abundance.  
(D) Viral host response score versus metatranscriptomic viral pathogen abundance. The viral host response 
score was calculated as the mean expression level (Z-scores) of all the viral upDEG genes. (E) Heatmap of 
bacterial and viral host responses (upDEGs), where samples (columns) have been sorted into four groups 
based on high or low bacterial/viral pathogen abundance, with high considered as a 60th percentile or greater 
relative abundance. In general, samples with low bacterial and viral abundance tend to lack a bacterial/viral 
host response, whereas samples containing bacteria, viruses, or both displayed the appropriate response. (F) 
Jitter plots of the bacterial and viral host response scores across four categories of samples. Bacterial and 
viral host response scores were calculated by averaging the expression level Z-scores of all bacterial and viral 
upDEGs, respectively.  
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RNA-seq classifies patients into distinct groups with unique pathogen-host response 
profiles: 

After examining host responses to bacterial and viral infections individually, we considered 
how bacterial and viral relative abundance together impact host responses within patients. To 
investigate this, we used the RNA-seq abundance to bin samples into four groups: those with low 
bacterial / low viral pathogen abundance (N = 60, 27%), high viral / low bacterial pathogen 
abundance (N = 51, 23%), high bacterial / low viral pathogen abundance (N = 51, 23%), and high 
bacterial / high viral pathogen abundance (N = 59, 27%). Here, the thresholds of “high” and “low” 
pathogen abundance based on RNA-seq estimated levels (>=60th percentile) and not the 
presence/absence classification obtained from qRT-PCR and culture-based testing. 

The four groups of patients display distinct host response signatures (Fig. 7E,F). As 
expected, samples with low bacterial and low viral pathogen abundance tend to have weak 
bacterial and antiviral responses (Fig. 7E). Samples with high viral abundance but low bacterial 
abundance display a strong antiviral pattern and a weak bacterial response. Samples with high 
bacterial pathogen abundance but low viral pathogen abundance are associated with a strong 
bacterial host response, and samples with high bacterial and viral pathogen abundance show both 
host responses. Again, there are several outliers that are exception to these general trends. The 
viral host response for individuals with both bacterial and viral pathogens was lower than the viral-
only group (p = 0.01), and the bacterial host response for individuals with both bacterial and viral 
pathogens was not significantly different from the bacterial-only group (p = 0.82). Finally, we 
tested whether the bacterial and viral host-response magnitude alone could predict samples with 
high pathogen abundance, with pathogen abundance defined as described above using RNA-seq 
measurements. The bacterial host response magnitude predicted high-bacterial samples with an 
AUROC of 0.79, and the viral host response magnitude predicted high-virus samples with an 
AUROC of 0.80. If sensitivity is desired over specificity, high-bacterial samples could be predicted 
with a sensitivity/specificity of 80%/68% using host-response information alone. Ultimately, these 
analyses suggest that host-response information alone may have diagnostic value in differentiating 
between viral and bacterial sinus infections, especially when the relative abundance (pathogen 
load) is high. 
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DISCUSSION  
In this study, we performed metatranscriptomic analysis of 221 NP samples from children 

with clinically diagnosed acute sinusitis. Prior to this work, there has been a lack of research 
evaluating the use and applications of RNA-seq profiling in this clinical context. Our study 
provides several research contributions. First, it highlights the ability of RNA-sequencing of 
clinical samples to accurately identify bacterial and viral pathogens associated with sinusitis 
infections and URTIs. Second, it provides an original dataset to assist with the development of 
future bioinformatic approaches for infectious disease profiling, including hundreds of assembled 
viral pathogen genomes contributing to ongoing pathogen genomic surveillance efforts. Third, it 
identifies host-response signatures of bacterial and viral infections in sinusitis, which could serve 
as the basis for the development of biomarker assays to be used in future clinical workflows that 
optimize delivery of care. 

Using RNA-seq we achieved an overall sensitivity of 87% and specificity of 81% in 
reproducing the clinical results for detection of three bacterial species that are mostly commonly 
implicated in sinusitis (4). RNA-seq also demonstrated a significant ability to detect viral 
pathogens that were also detected by the qRT-PCR panel (average sens/spec of 86%/92%), as well 
as predict viral load (Ct value). These accuracies are comparable to results obtained by previous 
studies using NGS for pathogen detection in NP samples (27, 28).  

For clinical decision making regarding antibiotic treatment, a key goal of sequencing-based 
approaches is to not only detect the pathogen of interest but also its antimicrobial genes, which 
can be especially challenging in mixed metagenomic samples. As proof of principle, we focused 
on beta-lactamase resistance in HFLU isolates, which represents a key clinical issue (41, 42). As 
done previously for pediatric nose and ear samples (43) we used CARD (25) to identify beta-
lactamases in RNA-seq data. This RNA-seq workflow was able to correctly detect beta-lactamase 
genes in 67% of the resistant HFLU isolates, with a specificity of 96%. Additionally, beta-lactam 
resistance SNPs in the Haemophilus influenzae PBP3 gene were also detected in several samples, 
which may represent an additional resistance mechanism that was detected by RNA-seq profiling 
but not covered by clinical AMR testing.  

Finally, through de novo assembly methods, we were able to assemble genomes of 205 
viral pathogens with varying degrees of completeness. Assembled genomes confirm read-based 
predictions and provide added information that cannot be obtained from short sequencing reads or 
qRT-PCR-based methods. For example, phylogenetic analyses of some of these viruses (e.g., 
HCoV-OC43, RSV B, enterovirus D68) revealed unique differences from closely related genomes 
in the database, suggesting that they represent distinct strains. A potentially relevant mutation 
(absence of large segments of the G gene) was identified in an RSV B strain similar to previous 
reports (34). Further analysis of RSV genomes from patient samples is needed to determine the 
frequency of G deletion mutants, which could be important information to consider for RSV 
vaccine design. 

An advantage of metatranscriptomic RNA-seq over culture or qRT-PCR is the ability to 
perform a broad and untargeted analysis to detect any species whose genome is available in the 
reference database, which theoretically improves sensitivity of pathogen detection and discovery. 
Out of 221 pediatric sinusitis patients tested, 19 did not have any bacterial or viral pathogen 
detected by culture-based or qRT-PCR testing. RNA-seq identified plausible pathogens for acute 
sinusitis in 11 of these 19 samples including cases of influenza B and PIV1 that were missed by 
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qRT-PCR. Not surprisingly, several new pathogenic bacteria and viruses were also detected in 
these samples and were verified by genome assembly and phylogenetics. These included two 
coronaviruses (NL63 and 229E), as well as the bacterium, Chlamydia pneumoniae. Other 
identified organisms included commensal organisms of the nasal microbiome and opportunistic 
pathogens that may or may not play a direct role in sinusitis (e.g., different species of Moraxella 
and Corynebacterium).  Clarifying the role of these and other species in sinusitis etiology is a 
challenging goal for future work.  

One of the most exciting aspects of this study is the identified host-response gene 
expression patterns associated with bacterial and viral sinusitis infectious. Since the pathogen 
composition of our patient cohort was complex including a large number of samples containing 
both bacterial and viral pathogens based on culture/qRT-PCR, we chose to simplify the initial 
comparison between virus-positive only samples versus bacteria-positive only samples. This 
enabled the detection of virus associated and bacteria associated host DEGs (“viral host response” 
and “bacterial host response”) that formed the basis of subsequent analyses. Remarkably, the 
magnitude of these host responses correlated significantly with the total abundance of bacterial or 
viral pathogens detected in the samples. Importantly, this correlation between pathogen abundance 
and host-response magnitude was only identified for a limited subset of bacterial species (those 
previously identified as sinusitis pathogens, MCAT, SPN, HFLU) and respiratory viruses, and the 
correlation was absent when examining other species detected in the data that may reflect 
commensal organisms. This finding indicates that the relative abundance of specific bacterial and 
viral species within the nasopharynx is a determinant of the strength of the host immune response. 
This is consistent with immunology since the expression of host antiviral and antibacterial 
pathways are dependent on the levels of viral (e.g., dsRNA) and bacterial pathogen-associated 
molecular patterns (e.g., lipopolysaccharide) sensed by the host immune system. Previous studies 
have also reported a correlation between antiviral host responses in RNA-seq and viral load (44–
46). However, our study is unique by analyzing the interplay between a complex mixture of 
bacterial and viral pathogens and their impact on the host transcriptomic response. 

Although traditional methods (culture and qRT-PCR) provided a simple classification of 
our samples based on detected presence/absence of a pre-defined set of pathogens, 
metatranscriptomic data enabled a more holistic classification based on pathogen abundance and 
host-response information (Fig. 7). When taking both pathogen abundance and host-response 
information into consideration, the samples could be subdivided into four main groups: those with 
a “low” abundance of bacterial or viral pathogens which tend to lack a host-response, and those 
with a “high” abundance of bacterial pathogens, respiratory viruses, or both, which tend to show 
the expected host responses. Interestingly, the observed correlation between pathogen abundance 
and host-response is not perfect; there are several outlier samples which exhibited a strong host-
response pattern and yet lack a detected pathogen, and other samples which contained a high 
pathogen abundance but lack a detectable host response. For the former category, it is possible that 
those samples contained other pathogens that were not included in our pathogen panel, which may 
include opportunistic infections by commensal organisms for example. For the latter category, 
these cases could indicate delayed host-responses in patients at the time of sampling, shedding of 
viral RNA at a post-infection time point which may be associated with a reduced host-response, 
or simply an imperfect correlation between host-responses and pathogen abundance. Nevertheless, 
future research focusing on host-responses of patients with infectious disease and factors that 
account for discrepancies between detected pathogen abundance could clarify mechanistic 
understanding of disease etiology. 
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There are several limitations of our study that could account for variation in the results 
obtained. First, the classification into viral and bacterial infection was inferred based on the 
presence/absence of bacterial and viral pathogens, but some of these organisms may be present as 
commensals and their presence alone does not necessitate an infection (47, 48). Second, the 
enrollment criteria for this study recruited patients experiencing symptoms for at least 6 days when 
sampled. Since peak shedding of some viruses can occur within 48 hours of symptom onset, the 
chosen sampling time may have led to a reduced sensitivity of viral detection as well as lower 
coverage for genomes assembled. Variation in the timing of bacterial infections could also impact 
sensitivity of bacterial detection by RNA-seq. Third, our sensitivity for pathogen detection by 
RNA-seq is dependent on the depth of sequencing. Deeper sequencing may have been necessary 
to detect viruses, for example, that were false negatives by RNA-seq but were detected using qRT-
PCR. DNA viruses in particular (e.g., adenoviruses) may have been more prone to weak detection 
due to the use of RNA-seq over DNA-seq. Future studies that employ both metatranscriptomic and 
metagenomic sequencing with repeated time-series sampling of patients may overcome some of 
the limitations described above. Nevertheless, the current study provides a starting framework for 
exploring the use of high-throughput sequencing of patient samples to uncover etiology and host-
response in pediatric sinusitis and other upper respiratory infections. 
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MATERIALS AND METHODS 
Study design and description of the cohort: 

Between February 2016 and April 2022, 510 children 2 to 11 years of age (inclusive) with 
clinically diagnosed acute sinusitis were enrolled in a randomized multicenter double-blind trial 
(ClinicalTrials.gov number, NCT02554383). Exclusion criteria have been previously described 
(6). Children were recruited from 6 outpatient centers. Children were randomly assigned to receive 
10 days of amoxicillin-clavulanate or matching placebo. A total of 204 patients did not have a NP 
sample collected, or their sample was not preserved in RNA buffer and were excluded. Of the 
remaining 306 patients’ samples, 61 were not sequenced due to low RNA yield. Although 245 
samples underwent RNA-sequencing, batch 1 was prepared with a different kit/protocol and when 
analyzed displayed a strong batch effect and was thus removed, leaving 221 patients. The primary 
outcome, symptom burden, was assessed by having parents complete the Pediatric Rhinosinusitis 
Symptom Scale (PRSS) electronically every evening on Days 2 to 11. As previously described (6) 
the PRSS is a validated scale that assesses symptoms of sinusitis. 

 
Culture and sensitivity pattern of bacterial pathogens: 

We collected NP swabs from all children at study entry. As previously described (23), the 
tip of the swab was cut, placed in DNA/RNA shield (Zymo, R1100), and transported on ice to the 
lab. The remainder of the swab was placed into Amies transport medium and transported on ice to 
the Clinical Laboratory at UPMC Children’s Hospital of Pittsburgh within 48 hours and plated on 
blood and chocolate agars. Identification of SPN, HFLU, and MCAT on culture was accomplished 
using standard microbiological techniques. HFLU isolates were tested for the beta-lactamase 
production using a cefinase disk. 

 

qRT-PCR for viral co-infection: 
Using an aliquot of Amies transport media plus MagMax lysis/binding buffer, nucleic acid 

extraction was performed for viral identification using the ABI MagMax96 Express automated 
instrument and the MagMax 96 Viral Isolation Kit (Thermo Fisher, AMB 18365) (23, 49). 
Adenovirus, influenza subtypes A/B/C, human metapneumovirus (HMPV), human rhinovirus 
(HRV), parainfluenza virus (PIV) subtypes 1-4, Enterovirus D68, and respiratory syncytial virus 
(RSV) were tested for using individual real-time qRT-PCR assays. A Ct threshold of 40 was used 
for all viruses and positive and negative controls were included in each run.  

 
 

RNA-seq library generation, sequencing, and data processing: 
RNA was assessed for quality using a Fragment Analyzer 5300 and RNA concentration 

was quantified on a Qubit FLEX fluorometer. Libraries were generated with either the Illumina 
TruSeq Stranded Total RNA prep (20020599) or the Illumina Stranded Total Library Prep kit 
(Illumina: 20040529) according to the manufacturer’s instructions, after using the Illumina Ribo-
Zero Plus rRNA Depletion Kit (20037135). Batch 5 was additionally treated with the Illumina 
Ribo-Zero Plus Microbiome rRNA Depletion Kit (20072062). For library generation, 100 ng of 
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input was used for the Illumina TruSeq Stranded Total RNA protocol with 15 cycles of indexing 
PCR, and 20-100 ng of RNA input was used for the Illumina Stranded Total Library Prep protocol 
with 15 cycles of indexing PCR for 100ng of RNA input and 17 cycles of indexing PCR for input 
RNA ≤100 ng. Library quantification and assessment was done using a Qubit FLEX fluorometer 
and the Fragment Analyzer 5300. Libraries were normalized and pooled to 2 nM by calculating 
the concentration based off the fragment size (base pairs) and the concentration (ng/µl) of the 
libraries. Sequencing was performed on an Illumina NextSeq 2000, using a P3 200 flow cell with 
sequencing read lengths of 2x101bp, with a target of 40 million reads per sample. Sequencing data 
was demultiplexed by the Illumina on-board DRAGEN FASTQ Generation software. Library 
generation and sequencing was performed by the University of Pittsburgh Health Sciences 
Sequencing Core (HSSC), Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, 
Pittsburgh, Pennsylvania, United States of America.  

Fastp v0.23.1 (50)  was used for quality trimming and adapter removal on default 
parameters. FastQC v0.11.9 (49) and MultiQC v1.12 (51) were used to check the quality of all 
sequence files before and after processing to ensure data was ready for analysis.  

 

Taxonomic classification of RNA-seq reads for detection of bacterial and viral pathogens: 
Taxonomic classification of sequencing reads was performed using Kraken 2 v2.1.2 (24) 

with default parameters. The PlusPF database dated 9/8/2022 (https://benlangmead.github.io/aws-
indexes/k2) was used with Kraken 2, which was originally built from NCBI RefSeq archaeal, 
bacterial, viral, plasmid, human, UniVec_Core, protozoan, and fungal sequences. A Kraken 2 
detection threshold of 3 reads was used for bacterial species (selected based on F1 score 
optimization), while no threshold was used for viruses. New pathogens identified by Kraken 2 but 
not included in the clinical panel were further validated using BLAST (52), MASH (53) and 
metAnnotate (54), focusing on samples associated with the largest estimated abundance for each 
pathogen. 

The normalized abundance of each taxon was calculated as the number of reads per million 
(RPMs). Relative abundance heatmaps were generated using R v4.2.1 and the pheatmap package. 
For display, log10(RPM + 1) values were used to avoid log(0) errors. Receiver operator curves 
were also generated in R and the area under the curve was computed using the pROC package. 
Pathogen abundance jitter plots and top species plots were generated using ggplot2 in R (55). 

Viral load was estimated from RNA-seq data following the method of Graf et al (27). The 
number of detected reads for a virus was divided by the total number of reads in the sample and 
the size of the respective viral genome in kilobases, and then multiplied by 1 million to generate 
an RPKM value (reads per kilobase of reference sequence per million total sequencing reads).  

 

Detecting beta-lactamase genes using RNA-seq: 
For the samples that were positive for HFLU based on culture tests, sequencing reads 

classified as non-human by Kraken 2 were extracted using extract_kraken_reads.py and assembled 
into contigs using the rnaSPAdes v3.15.4 with default parameters (56). Using CARD resistance 
gene identifier (RGI) software v6.0.1 (25) and default database, the contigs were analyzed with 
the ‘main’ function of the RGI tool with the ‘low-quality’ and ‘include-nudge’ parameters. The 
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results were filtered to keep “strict” or “perfect” hits to beta-lactamase genes, genes acting on 
antibiotics belonging to the penam drug class, and hits with at least 10.0% sequence coverage to 
the reference gene. 

 

Viral genome assembly and phylogenetic analysis: 
RefSeq genomes for all viruses of interest were downloaded from NCBI. Non-human reads 

were mapped to viral genomes using BBMap v38.86 (57) to create .bam files. The consensus 
sequence for each sorted mapping result was produced using samtools v1.16.1 with the ‘-a’ option. 
A python script was used to calculate whole genome coverage relative to the RefSeq viral genome. 
Genome coverage was considered complete if >= 99.5%. FastANI v1.32 was used to calculate the 
average nucleotide identity to the closest reference genome for each genome assembled. 

Complete viral genomes were queried against the complete NCBI non-redundant 
nucleotide database using BLAST (52). Up to 35 top matching sequences were downloaded and 
aligned to the assembled genome using the MUSCLE algorithm (58). The multiple genome 
alignment was used to generate a phylogenetic tree with FastTree v2.1.10 (59), and FigTree v1.4.4 
was used for tree visualization. 

 
Host response gene expression analysis: 

Host transcript abundance quantification was performed using Salmon v1.7.0 (60) with the 
Human Gencode v39 reference transcriptome. Differential gene expression analysis was 
performed using using DESeq2 and tximport in R (61). Related statistical analyses are described 
in the following section. Heatmaps were produced in R using pheatmap, v1.0.12 jitter plots using 
ggplot2 v3.3.6, and volcano plots using the EnhancedVolcano package v1.14.0. 
 

Statistical analysis: 
 Differentially expressed genes (DEGs) were detected by comparing samples positive for 
viruses only versus samples positive for bacteria only based on culture or qRT-PCR testing. In the 
design formula for the ‘DESeqDataSetFromTximport’ function, we also controlled for potential 
confounding variables “batch number”, “sex”, and “age (scaled)”. Log2 fold changes and adjusted 
p-values (q-values) were calculated for all genes, and a significance threshold of q <= 0.05 was 
used to identify DEGs. Function enrichment analysis of genes with significantly increased 
expression in the viral and bacterial groups was performed using EnrichR (accessed June, 2023) 
(62) with the GO Biological Process 2021 ontology and an FDR threshold of 0.05. 
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Table 1. Demographic and clinical characteristics of pediatric patient participants with 
sinusitis. Demographic and clinical data for study cohort comprised of 221 children with 
persistent or worsening symptoms consistent with a diagnosis of acute sinusitis. Enrolled patients 
were assessed for symptoms and symptom severity. Pathogen detection for 3 common bacteria 
and a panel of 14 viruses was accomplished using culture and qRT-PCR, respectively. 
 

Demographics 

Age (years)* 4.8 (3.3–6.4) 

Gender   

  Male 115 

  Female 106 

Clinical Characteristics 

Number of Days with Symptoms* 14 (9–16) 

Fever at any time during the illness 121 

History of Asthma 39 

History of allergic rhinitis  64 

Coloured Nasal Discharge  148 

Clinical lab test results  

One or more bacteria detected 171 

One or more viruses detected 169 

Positive for beta-lactamase¥ 27 

* Median (interquartile range), ¥ Only samples positive for Hflu were tested (N = 69) 
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Table 2. Sensitivity and specificity metatranscriptomics for detection of bacteria identified 
by culture or viruses identified by qRT-PCR. 

 
 

 Sensitivity (%) Specificity (%) 

Bacteria   

Moraxella catarrhalis (MCAT) 85 64 

Streptococcus pneumoniae (SPN) 81 89 

Haemophilus influenzae (HFLU) 94 90 

Viruses   

Influenza A (INFA) 100 94 

Influenza B (INFB) 100 97 

Influenza C (INFC) 33 96 

Human metapneumovirus (MPV) 100 91 

Respiratory syncytial virus (RSV) 90 92 

Human rhinovirus (HRV) 73 77 

Parainfluenza virus 1, Human 

respirovirus 1 (PIV1) 100 94 

Parainfluenza virus 2, Human 

orthorubulavirus 2 (PIV2) 100 99 

Parainfluenza virus 3, Human 

respirovirus 3 (PIV3) 100 91 

Parainfluenza virus 4, Human 

orthorubulavirus 4 (PIV4) 91 91 

Adenovirus (ADV) 44 97 

Enterovirus D68 (EVD68) 100 90 
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