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Abstract 

Pneumoperitoneum, necessitates surgical intervention in 85-90% of cases, relies heavily on CT scans 

for diagnosis. Delay or misdiagnosis in detecting pneumoperitoneum can significantly increase 

mortality and morbidity. Our study introduced PACT-3D, a deep learning model developed to identify 

pneumoperitoneum in CT images. In this single hospital study, we retrospectively reviewed 

abdominal CT scans from January 2012 to December 2021, excluded CT of image acquisition error 

and without reports to form the development dataset for training the model. We evaluated the PACT-

3D model using a simulated test set of 14,039 scans and a prospective test set of 6,351 scans, 

collected from December 2022 to May 2023 at the same center. PACT-3D achieved a sensitivity of 

0.81 and a specificity of 0.99 in retrospective testing, with prospective validation yielding a sensitivity 

of 0.83 and a specificity of 0.99. Sensitivity improved to 0.95 and 0.98 when excluding cases with a 

small amount of free air (total volume < 10ml) in simulated and prospective test sets, respectively. By 
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delivering accurate and consistent patient-level predictions and providing segmented masks, PACT-

3D holds significant potential for assisting rapid decision-making in emergency care, thereby 

potentially improving patient outcomes. 
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Introduction 

Pneumoperitoneum, which refers to the presence of extraluminal free air in the peritoneal 

space, is a potentially life-threatening condition that represents a differential diagnosis when 

managing acute abdominal pain in the Emergency Department (ED). In adults, perforated 

viscus is the leading cause of pneumoperitoneum, representing 85-95% of cases, and among 

these, surgical pneumoperitoneum comprises 85-90%1,2. Diagnostic tools for identifying 

pneumoperitoneum include plain radiographs, ultrasound, and Computed Tomography (CT) 

scan, with the latter remaining the gold standard, exhibiting reported sensitivity levels of 

approximately 96-100%3. Timely diagnosis of pneumoperitoneum is crucial, as delayed 

recognition can lead to sepsis and result in increased mortality and morbidity4,5. However, 

prolonged CT interpretation times are frequently observed in crowded EDs, with previous 

reports indicating an average delay of approximately 2 hours6. Moreover, the use of CT scans 

during ED visits has dramatically increased in the past decade, with a 330% rise reported in 

the US from 3.2% of encounters (95% confidence interval [CI] 2.9% to 3.6%) in 1996 to 

13.9%7.  

Diagnosing pneumoperitoneum from a CT scan is highly dependent on the reader's expertise 

and the amount of free air present. According to previous research, only 62.8% of junior 

physicians feel confident about diagnosing acute pathological findings from CT scans, such 

as pneumoperitoneum or bowel obstruction8. Moreover, studies have shown that discrepancy 

rates in the interpretation of emergency CT scans between residents and attending 

radiologists vary significantly based on the level of training, ranging from 13.5% to 30.0%9,10. 

Misinterpretations can have a direct negative impact on patient management, with adverse 

effects noted in 7.2% of patients11. These factors may contribute to considerable delays in the 

recognition of critical pathologies like pneumoperitoneum, potentially leading to poorer 

patient outcomes. 
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Artificial Intelligence (AI) has greatly advanced healthcare in recent years, particularly in 

medical imaging technologies such as computed tomography (CT) scans, X-rays, and 

ultrasonography12-16. AI has also contributed to increased speed and efficiency in medical 

image analysis, reducing the workload of healthcare professionals and improving patient 

outcomes. Recent studies have investigated the potential of deep learning algorithms in 

assisting the detection of pneumoperitoneum on CT scans17,18. However, the performance of 

these AI models varies and is dependent on the selection of datasets. For assessment of the AI 

model, it is critical to use a dataset that mirrors the actual incidence rate of 

pneumoperitoneum. Moreover, a prospective evaluation is necessary, along with ongoing 

enhancements to improve model performance.  

In this study, we introduced PACT-3D, a 3-dimensional U-Net algorithm is a convolutional 

neural network architecture specifically tailored for 3D medical image segmentation, 

excelling in capturing spatial hierarchy and information across both the transverse and 

vertical axes of biomedical images. The PACT-3D model is designed to automatically 

segment areas of pneumoperitoneum from CT scans, providing predictions at the patient level 

and visualizations at the pixel level. It is engineered to detect pneumoperitoneum with high 

accuracy, and its performance has been thoroughly evaluated using both a simulated test 

dataset and in a prospective observational setting. 

 

Result 

3.1 Demographic Characteristics 

In this study, we retrospectively analyzed 140,339 abdominal CT scans from 2012 to 2021. 

After exclusions, 139,781 were eligible for analysis. Pneumoperitoneum was identified in 

973 of these and the studies were randomly allocated to training, validation, and test datasets 

in an 8:1:1 ratio (Figure 1). The training set comprised 695 scans with pneumoperitoneum, 
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alongside a randomly selected equivalent number of negative scans. The validation set 

included 139 scans with pneumoperitoneum, matched with an equal number of negative cases. 

To evaluate the performance of the PACT-3D model, the test set was designed to mirror a 

real-world prevalence ratio of approximately 1:100, consisting of 139 scans with 

pneumoperitoneum and a larger pool of 13,900 negative scans. Additionally, we conducted a 

prospective clinical evaluation using abdominal CT scans from December 2022 to May 2023 

at the same hospital, resulting in a prospective test set of 6,351 CT scans. This approach aims 

to thoroughly evaluate the model's performance under conditions that closely resemble those 

of clinical settings. 

The mean age of patients in the simulated test set was 54 years with a standard deviation (SD) 

of 13.1, while the prospective test set had a slightly higher mean age of 59 years (SD = 16.9). 

Females represented 48.2% (n=6,767) of the simulated test set and 47.2% (n=3,000) of the 

prospective test set. The incidence of pneumoperitoneum detected was set to 1.0% in the 

simulated test set. Analyzing all CT scans in ER, the incidence of pneumoperitoneum was 

1.3% (n=82) in the prospective test set (Table 1).  

 

3.2 Distribution of CT Vendors 

Regarding the distribution of CT vendors, there were noticeable differences between the 

simulated and prospective test sets. In the simulated test set, Philips Brilliance 64 scanners 

were used in 8.0% of cases, while Siemens Somatom Definition and Definition Flash 

scanners were used in 10.7% and 5.5% of cases, respectively. GE LightSpeed VCT scanners 

accounted for 15.7% of the scans. A significant portion, 60.1%, involved Siemens Somatom 

Definition AS scanners (Table 1). 

In contrast, the prospective test set exhibited a varied distribution. Siemens Somatom 

Definition AS scanners were used less frequently, constituting 43.6.9% of the scans. The GE 
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Revolution Frontier became more prevalent, representing 24.8% of scans in this set. This 

shift in vendor distribution indicates a temporal change in scanner preference or availability 

between the two test sets. The image acquisition setting of different CT vendors was shown 

in Supplemental Table 1. 

 

3.3 Model Performance 

The trained 3D U-Net model demonstrated satisfactory performance in detecting 

pneumoperitoneum on the validation set. The Dice score for pneumoperitoneum 

segmentation was 0.81, indicating a high degree of overlap between the predicted and ground 

truth regions. Throughout the training process, we meticulously balanced the number of 

negative CT scans against positive ones at varying ratios to refine the model's sensitivity and 

positive predictive value (PPV). Our objective was to optimize the F1-score, which 

harmonizes sensitivity and PPV, as reflected in Supplemental Table 2. The data revealed that 

a balanced ratio of positive to negative cases (1:1) yielded the highest F1-score. 

In the simulated test set, our model achieved a F1-score of 0.54 (95% CI: 0.47-0.61), with a 

sensitivity of 0.81 (95% CI: 0.75-0.86), a specificity of 0.99 (95% CI: 0.98-1.0), and a PPV 

of 0.41 (95% CI: 0.34-0.38). Of the 139 CT scans positive for pneumoperitoneum, the model 

identified 112 and missed 27. Among the 13,900 negative scans, 167 were incorrectly 

classified as pneumoperitoneum. In the prospective test set at ER, the model's performance 

yielded F1-score of 0.58 (95% CI: 0.51-0.65), with a sensitivity of 0.83 (95% CI: 0.77-0.90), 

specificity of 0.99 (95% CI: 0.98-0.99), and a PPV of 0.44 (95% CI: 0.37-0.52). Out of the 69 

CT scans with confirmed pneumoperitoneum, the model detected 54 and misclassified 88 out 

of 8,451 negative scans (Table 2). 

 

3.4 Subgroup analysis 
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When analyzing performance by etiological subgroup, the PACT-3D model displayed 

remarkable accuracy for gastroduodenal and small bowel perforations, as well as trauma-

related cases, achieving sensitivities of 0.93 (0.82-0.98), 1.0 (0.87-1.0), and 1.0 (0.57-1.0), 

respectively. In contrast, the model demonstrated relatively lower sensitivities for large 

intestine perforation and post-operative changes, recording values of 0.64 (0.41-0.77), 0.59 

(0.33-0.84). During the prospective observational period, a consistent pattern was observed. 

The sensitivities for gastroduodenal, small bowel, and trauma-related perforations were 0.87 

(0.73-0.94), 0.88 (0.63-0.98), and 0.83 (0.45-0.97), while those for large intestine perforation and 

post-operative changes were 0.73 (0.50-0.89) and 0.8 (0.55-0.93), respectively (Table 2). 

In subgroup analyses evaluating performance across various total volumes of free air, we 

observed improvement in the sensitivity of PACT-3D. Specifically, sensitivity increased to 

0.89 (95% CI: 0.84-0.93) and 0.91 (95% CI: 0.86-0.95) on the simulated and prospective test 

sets, respectively, when scans with a total free air volume of less than 1ml were excluded. 

This sensitivity further escalated to 0.95 (95% CI: 0.90-0.98) and 0.98 (95% CI: 0.93-1.0) 

upon excluding scans with less than 10ml of total free air volume, indicating a correlation 

between detection capability and the quantity of free air present (Table 2). 

From another point of view, an association was found between scans predicted as positive by the 

model and a heightened rate of urgent surgeries, defined as surgeries conducted within 24 hours 

following the CT scan. After excluding post operation scans, in the simulated test set, urgent surgeries 

were performed on 84 (85.8%) of the patients out of 99 whose pneumoperitoneum was identified by 

the model. In contrast, among the patients with missed pneumoperitoneum diagnoses by the model, 10 

(55.6%) out of 18 underwent urgent surgeries (p<0.001). Within the prospective test set, 40 (75.5%) 

of the 53 patients diagnosed with pneumoperitoneum by the model received urgent surgeries, as 

opposed to 8 (57.1%) of the 14 patients with pneumoperitoneum that the model failed to detect 

(p<0.001). 
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Discussion 

In this study, we introduced PACT-3D, a 3D U-Net-based deep learning model, designed for 

detecting pneumoperitoneum on abdominal CT scans. The robustness of PACT-3D is 

underlined by its training on scans from a wide array of CT scanner models and its validation 

across different time periods, ensuring consistent performance despite the evolving landscape 

of medical imaging technology. PACT-3D demonstrated exemplary performance, 

characterized by high sensitivity and specificity. The model's high specificity and satisfactory 

PPV are particularly noteworthy given the rarity of pneumoperitoneum in routine settings, 

which is crucial for minimizing false positives and thus reducing the risk of alarm fatigue. 

The consistent performance of PACT-3D, observed through its application on a prospective 

test set that included newer CT scanner models, further substantiates its reliability and 

potential for aiding clinical decision-making across various clinical scenarios and timeframes. 

Historically, AI algorithms have encountered challenges when attempting to detect free air in 

CT scans. They often exhibit reduced sensitivity, even if their specificity is commendable17,18. 

Previous studies, focusing on the utilization of 2D segmentation models for 

pneumoperitoneum detection, have highlighted challenges in differentiating free air from the 

common place bowel gas18. While 2D models have been a cornerstone in healthcare deep 

learning applications, this is largely because many medical imaging modalities, such as X-

rays, ultrasound, and specific MRI or CT slices, intrinsically generate 2D images, making 

these models a natural choice19-22. Additionally, 2D models tend to be computationally less 

demanding than 3D models, suiting institutions with restricted computational capabilities. 

The extensive availability of pretrained 2D models, which have been trained on diverse and 

vast datasets, further contributes to their dominance23. By fine-tuning these models for 

specific medical tasks, performance can often be enhanced, benefiting from features learned 
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across various domains. However, despite the prevalence of 2D architectures in healthcare, 

the detection of pneumoperitoneum, with its inherent risk of confusion with bowel air, greatly 

benefits from the depth of understanding offered by 3D morphology. Our employment of a 

3D segmentation model permits superior recognition of free air morphological patterns, 

distinguishing them from bowel gas with enhanced accuracy. This adaptation, coupled with 

the model's rapid inference capability, heightens its potential to augment diagnostic precision 

and efficiency. 

In the subgroup analysis, PACT-3D particularly excelled in detecting gastroduodenal and 

small bowel origin pneumoperitoneum, with sensitivities exceeding 0.9 in both test sets. For 

large intestine origin cases, sensitivity ranged between 0.64 and 0.73. We surmise this 

disparity arises from the inherently larger air bubble sizes in the upper gastrointestinal tract, 

facilitating differentiation from standard bowel gas. In contrast, large intestine perforations, 

frequently linked with inflammatory processes, present greater interpretative challenges, even 

for seasoned radiologists24,25. Consistent with this, the model demonstrated improved 

sensitivity when CT scans with minimal free air volume were excluded, showing an increase 

to 0.89-0.91 for total free air volumes greater than 1ml, and further to 0.95-0.98 for volumes 

greater than 10ml (Table 2).   

When assessing the model's predictions in relation to clinical outcomes, specifically the 

necessity for urgent surgery, we observed a significant correlation. Patients with 

pneumoperitoneum detected by the PACT-3D model underwent urgent surgery at a higher 

rate (75.5-85.8%) compared to those where pneumoperitoneum was not detected (55.6-

57.1%). This suggests that the model is more adept at identifying larger volumes of free air, 

particularly those originating from the upper gastrointestinal tract, where emergency surgical 

intervention is often imperative. Conversely, smaller volumes of free air, typically resulting 

from inflammatory conditions like acute diverticulitis, are usually managed with conservative 
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treatment or elective surgery in patients who are hemodynamically stable26. These findings 

indicate that the PACT-3D model can also serve as a valuable tool for risk stratification by 

illustrating the perforated area alongside the volume of free air. 

Comparatively, our model's performance aligns with or exceeds prior deep learning 

endeavors in detecting pneumoperitoneum or related abdominal pathologies on CT scans. 

This corroborates the robustness and superiority of our 3D U-Net-based approach. The 

remarkable sensitivity and specificity further posit PACT-3D as a potent ally for radiologists, 

especially under emergent circumstances where prompt and accurate detection is paramount. 

Several facets contribute to the success of PACT-3D, including the implementation of the 3D 

U-Net architecture, renowned for its efficacy in diverse medical image segmentation tasks, 

and the amalgamation of Dice loss and focal loss to counteract training set imbalances. 

Several limitations are inherent to our study. Firstly, our research was conducted within the 

confines of a single medical center, potentially constraining the generalizability of our 

findings. While PACT-3D demonstrated proficiency within this setting, its applicability 

across varied clinical landscapes remains to be seen. It would be prudent for future endeavors 

to evaluate PACT-3D's performance using datasets spanning multiple institutions, ensuring a 

more comprehensive representation of patient demographics and imaging variations. 

Secondly, while our model showcased robust performance in detecting pneumoperitoneum, 

the specific efficacy in discerning smaller or more subtle instances was not rigorously 

assessed. Given that such nuanced cases often present a diagnostic challenge, future research 

should zero in on the model's prowess in these scenarios, determining its true potential as a 

diagnostic aid. 

Despite the limitations of our study, the clinical implications of PACT-3D are profound. By 

serving as an auxiliary tool our model can potentially refine diagnostic accuracy, enhance 

radiologist or first line clinician’s confidence. In our future studies, the aim will be to validate 
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the model across diverse populations and clinical settings, and to evaluate its contribution to 

improving clinical workflow. 

In conclusion, this study highlighted the feasibility of developing a deep learning model that 

accurately identify pneumoperitoneum in abdominal CT scans. As a 3-dimensional model in 

medical image segmentation, PACT-3D maintained consistent performance across different 

testing periods. Its high specificity helps to avoid clinician fatigue due to false alarms, while 

its high sensitivity is particularly noteworthy in cases with larger volumes of free air. The 

model holds significant potential to aid rapid decision-making in emergency care, which 

could lead to improved patient outcomes. 

 

Method 

2.1 Study Setting 

In our research, we employed a dataset of post contrast abdominal CT scans from a single 

medical center, collected over a period spanning from January 2012 to December 2021. This 

dataset was enriched with CT scans indicating the presence or absence of pneumoperitoneum, 

a condition diagnosed using formal radiologist reports. For scans identified as positive for 

pneumoperitoneum, verification was performed by two radiologists who confirmed the 

presence of free air during the annotation process. To assess its applicability in a clinical 

setting, the model was prospectively validated from December 2022 to May 2023 in the same 

hospital for its performance in real-world data. This study was reported under the STARD 

protocol and received approval from the Institutional Review Board of Far Eastern Memorial 

Hospital (FEMH 111086-F). All participant records were de-identified and anonymized prior 

to analysis. 

 
2.2 Image Data Acquisition 
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Abdominal CT scans during the study period were collected, and so does the corresponding 

reports. We included only the CT scans with contrast injection, axial plane scan, and 

reformatting slice thickness of 5 mm, with the field of view including the abdomen. CT scans 

with image acquisition and processing error, and CT scan without reports were excluded from 

this study. Figure 1 illustrates the recruitment and analysis flowchart. 

 
2.3 Dataset Collection and Splitting 

We employed natural language processing (NLP) methods to retrieve reports with and 

without a positive description of pneumoperitoneum from the image database. Initially, we 

utilized the NLP results as CT labeling and subsequently made minor revisions based on a 

random check of 1/5 of the CTs. We enrolled all CT scans that displayed pneumoperitoneum. 

The data was divided into training, validation, and test sets in a 5:1:1 ratio. To ensure no data 

leakage, CT scans from the same patient were exclusively allocated to the training set. For 

CT scans without pneumoperitoneum, we randomly selected non-duplicated patient scans, 

ensuring a 1:1 match with the pneumoperitoneum scans for both the training and validation 

sets. To mimic real-world conditions, our test set was formulated with a clinical ratio of 

1:100 for positive to negative cases, reflecting an annual prevalence. 

 
2.4 Image Annotation 

Two senior radiologists with both 13 years of experience radiologist manually segmented the 

free gas bubble on the axial section with a window width and center of 600 HU and 40 HU, 

respectively. Contouring of bowel gas was strictly prohibited. Later, the labeled pixels with 

CT number of corresponding image higher than -150HU were removed. Finally, another 

radiologist checked and revised all pneumoperitoneum annotations. Prior to using the data for 

training, we standardized all CT images by removing the window width settings and applying 

pixel normalization based on the maximal and minimal values. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303638doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303638
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
2.5 Deep Learning Model and Training 

For pneumoperitoneum segmentation, we developed a 3D U-Net based neural network to 

predict the segmented mask of bowel gas (Figure 2)27. Its design incorporates a contracting 

path to capture context, juxtaposed with a symmetric expanding path, which facilitates 

precise localization. In enhancing the network, successive layers replace traditional pooling 

operations with up-sampling operators, thereby refining the output resolution.  

To augment the data, we normalized all CTs to 512×512×z-axis and randomly cubed them to 

384×384×z-axis using the ‘albumentations’ library for each image in the training set26. The 

loss function we employed for the model combined Dice loss and Focal loss, each weighted 

at 50%. This approach aided in addressing class imbalance and enhanced accuracy for hard-

to-classify examples27. We used an adaptive moment estimation (Adam) optimizer with 

parameter settings of β1 = 0.9 and β2 = 0.999, and a CosineAnnealingLR scheduler with 

parameter settings of T_max=8 and eta_min=3 × 10-6. The model was trained with the Nvidia 

RTX A6000 GPU, with minibatches of size 1 and an initial learning rate of 3 × 10-4. 

 
2.6 Performance Evaluation and Statistical Analysis 

The study aimed to evaluate the performance of the PACT-3D model in diagnosing 

pneumoperitoneum from abdominal CT scans, with continuous variables reported as means 

and SD, and categorical variables as counts and percentages. The model was trained to 

minimize loss within the validation dataset, and the optimized model weights were preserved 

for subsequent inference. 

To assess the model's efficacy, we evaluated its predictive performance on both a simulated 

test set and a prospective test set. Our primary metrics for evaluation included F1-score, 

sensitivity, specificity, and PPV, were calculated alongside their 95% confidence intervals. 

Additionally, we conducted a subgroup analysis to explore how the model's performance 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303638doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303638
http://creativecommons.org/licenses/by-nc-nd/4.0/


varied across different etiologies such as gastroduodenal, small bowel, large intestine 

perforations, trauma, and post-operative cases. The modeling pipeline was implemented 

using Python (3.9) with PyTorch (2.0) and MONAI (1.3.0) as the deep learning framework. 

Image processing and data analysis were facilitated by Python libraries such as SimpleITK 

(2.2.1), scikit-image (0.20.0), pandas (2.0.2), and matplotlib (3.7.1), while SPSS was utilized 

for all subsequent statistical analyses. 
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Table 1. Demographics and CT Vendor distributions in Simulated and Prospective Test Sets 

 
Simulated Test Set 
Mean (SD) / N (%) 

Prospective Test Set 
Mean (SD) / N (%) 

Total CT scans 14,039 6,351 

Age 54 (13.1) 59 (16.9) 

Female 6,767 (48.2%) 3,000 (47.2%) 

CT Vendors   

Philips Brilliance 64 1,123 (8.0%)  

Siemens Somatom 
definition 

1,502 (10.7%)  

Siemens Somatom 
definition Flash 

772 (5.5%) 524 (8.3%) 

Siemens Somatom 
definition AS 

624 (60.1%) 2,772 (43.6%) 

GE LightSpeed VCT 2,204 (15.7%) 1,479 (23.3%) 

GE Revolution 
Frontier 

 1,576 (24.8%) 

Pneumoperitoneum 139 (1.0%) 82 (1.3%) 

CT=Computed Tomography; PPV=Positive Predictive Value 
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Table 2. Performance of PACT-3D in Test Set 

Performance Metrics Simulated Test Set Prospective Test Set 

 value (95% CI) value (95% CI) 

Sensitivity 0.81 (0.75-0.86) 0.83 (0.77-0.90) 

Specificity 0.99 (0.98-1.0) 0.99 (0.98-0.99) 

PPV 0.41 (0.34-0.48) 0.44 (0.37-0.52) 

F1-score 0.54 (0.47-0.61) 0.58 (0.51-0.65) 

Ssensitivity in etiology   

Gastro-duodenal 0.93 (0.82-0.98) 0.87 (0.73-0.94) 

Small Bowel 1.0 (0.87-1.0) 0.88 (0.63-0.98) 

Large Intestine 0.64 (0.41-0.77) 0.73 (0.50-0.89) 

Trauma 1.0 (0.57-1.0) 0.83 (0.45-0.97) 

Post-operative 0.59 (0.33-0.84) 0.8 (0.55-0.93) 

Sensitivity in total volume 
of free air 

  

Total volume > 1ml 0.89 (0.84-0.93) 0.91 (0.86-0.95) 

Total volume > 10ml 0.95 (0.90-0.98) 0.98 (0.93-1.0) 
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Figure 1. 

 

 

Figure Legend of Figure 1. The inclusion flowchart of this study. 
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Figure 2. 

1.True Positive 

 
2.False Negative 

 
3.False Positive 

 
 

Figure Legend of Figure 2. This figure illustrates three distinct outcomes of the model inference in the 

simulated test set, namely, "True Positive", "False Negative", and "False Positive". For each scenario: 

'A' represents the original CT scan image, 'B' denotes the ground truth labeling, and 'C' illustrates the 

mask generated by the trained segmentation model. 
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