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Abstract 

Alzheimer’s  disease (AD) includes  a long period of  presymptomatic  brain changes.  Different  risk
factors are associated with AD development, including having a family history of AD (FHAD). The
Braak scheme suggests that tau pathology, in synergy with amyloid-beta (Aβ), spreads along structural
connections in AD, eventually leading to atrophy. Studying the pathways in which atrophy spreads
early on, as well as the factors underpinning this pathway, is crucial for improving diagnostic accuracy
and early interventions. However, the pattern of atrophy progression in people with a FHAD and the
biological factors associated with this progression remain unclear. Here we used structural MRI from
three  databases  (ADNI,  PREVENT-AD and  Montreal  Adult  Lifespan  Study)  to  map  the  atrophy
progression in FHAD and AD and assess the constraining effects of structural connectivity on atrophy
progression.  Cross-sectional  and  longitudinal  data  up  to  4  years  were  used  to  perform  atrophy
progression analysis in FHAD and AD compared to controls. Positron emission tomography (PET)
radiotracers were also used to quantify the distribution of tau and Aβ proteins at baseline. We first
derived cortical atrophy progression maps using deformation-based morphometry from 153 FHAD,
156 AD, and 116 controls with similar age, education, and sex at baseline. We next examined the
spatial  relationship  between  atrophy  progression  and  spatial  patterns  of  tau  and  Aβ  deposition,
structural connectivity, and neurotransmitter receptor and transporter distributions. Our results show
that there were similar patterns of atrophy progression in FHAD and AD, notably in the cingulate,
temporal and parietal  cortices, with more widespread and severe atrophy in AD. Both tau and Aβ
pathology tended to accumulate in regions that were structurally connected in FHAD and AD. The
pattern of atrophy and its progression also aligned with existing structural connectivity in FHAD. In
AD,  our findings suggest that atrophy progression results from propagating pathology that occurred
much earlier, on an intact connectome. Moreover, a relationship was found between the serotonin 5-
HT6 receptors spatial  distribution and atrophy progression in AD, supporting an important role of
these receptors in neurodegeneration. The current study demonstrates that regions showing atrophy
progression  in  FHAD  and  AD  present  with  specific  connectivity  and  cellular  characteristics,
uncovering certain of the mechanisms involved in preclinical and clinical neurodegeneration.
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Introduction

In Alzheimer’s disease (AD), family history stands as the second strongest risk determinant, surpassed

only by advanced age (Tanzi, 2012). A meta-analysis revealed a 3.5-fold increase in AD susceptibility

for individuals with at least one first-degree relative with AD (“family history of AD”, FHAD) (Van

Duijn et al., 1991). The heritability of AD is estimated to be between 58% and 79% (Karlsson et al.,

2022)) and one of the most well-established genetic risk factors is the presence of one or two e4 alleles

of the apolipoprotein E gene (APOe4) (M Donix et al., 2012).  However, the etiology of AD extends

beyond a single genetic locus and  APOe4 interacts with other genetic and environmental factors to

influence AD risk as well as brain structure and function (Andrews et al., 2023). The concept of family

history as a risk factor may encapsulate both known and cryptic genetic susceptibilities, as well as non-

genetic factors that are transmissible across generations (Borenstein et al., 2006; Robinson et al., 2008).

Investigating how brain structures are affected in individuals with FHAD could offer insights into the

neuronal mechanisms underlying the onset of atrophy in AD or its alleviation.

AD pathology is associated with brain structural alterations and tissue loss across various

regions, notably the temporal lobe, frontoparietal and parieto-occipital regions, and the hippocampus

(Bakkour et al., 2013; Binette et al., 2020; Du et al., 2001; Jagust et al., 2008). The medial temporal

lobe and hippocampus are among the earliest regions to show atrophy, while other cortical regions are

affected at later stages (Planche et al., 2022). While hippocampal atrophy has been extensively studied

in the context of AD (Barnes et al., 2009; Shi et al., 2009), it lacks specificity as it also occurs in other

forms of dementia such as vascular, semantic and Parkinson’s disease dementia  (Pini et al.,  2016).

Therefore, cortical atrophy patterns may offer a more specific marker for tracking AD progression,

especially in its preclinical stages  (Pini et al., 2016). Impaired  white matter integrity in widespread

brain regions (decreased in fractional anisotropy and increase mean diffusivity)  (Sexton et al., 2011),

white matter loss and reduction in fibre density in specific pathways (Mito et al., 2018) and decreased

structural connectivity between brain regions (Palesi et al., 2016), have also been observed in AD. On

the other hand, brain structural changes in FHAD remain elusive and have been under investigated. In

FHAD, whole-brain gray matter atrophy (Honea et al., 2011) and local atrophy in the precuneus and

insula  (Kate  et  al.,  2016) have  been  reported,  alongside  white  matter  damage  (lower  fractional

anisotropy, higher mean and radial diffusivity) in regions affected in AD, including the cingulum and

uncinate fasciculus (Bendlin et al., 2010; Binette et al., 2021). Atrophy in FHAD has been associated

with higher tau and amyloid-beta (Aβ) depositions (Binette et al., 2021). However, the progression of
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atrophy and its modulation by structural connectivity and, underlying tau and Aβ depositions in FHAD

remain unclear.

Alterations  in  neurochemical  systems  (such  as  dopamine,  norepinephrine,  serotonin,

acetylcholine, glutamate and histamine) are well known in AD and may contribute to brain atrophy

(Reddy, 2017; Xu et al., 2012). Notably, serotonin depletion has been shown to be related to pathology,

depression and sleep disturbances in AD (Reddy, 2017). In addition, loss of acetylcholine-producing

neurons  can  lead  to  cognitive  decline  and  histaminergic  dysregulation  can  contribute  to  brain

inflammation (Reddy, 2017). Also, reduction of dopamine receptors has been associated with cognitive

deficit severity in AD (Xu et al., 2012) while norepinephrine reduction has been linked with neurotoxic

proinflammatory  conditions  and  reduces  Aβ clearance  (Chalermpalanupap  et  al.,  2013).  Excessive

glutamate release can also lead to neurotoxicity and contribute to neural degeneration (Reddy, 2017).

However, the specific mechanisms implicated in AD-related brain atrophy progression is still an open

question  and  which  neurotransmitter  systems  interact  in  FHAD  to  influence  atrophy  progression

remains to be elucidated.

Therefore,  brain  atrophy  in  AD  might  be  influenced  by  multiple  factors,  including

accumulation  of  tau  and  Aβ  deposition,  reduced  structural  connectivity,  as  well  as  changes  in

neurotransmitters  distribution.  Understanding  how  these  factors  role  shape  the  trajectory  of  brain

atrophy progression in individuals with FHAD could be key to early detection and intervention. For

example,  treatments  could  be  developed to  reduce  tau  and Aβ deposition,  to  block the  spread of

pathologocial agent throught the brain connectome or enhance specific neurotransmitter functions. The

primary aim of  this  study was to  elucidate  the features  underlying cortical  atrophy progression in

individuals with a FHAD and compare them to those in individuals with AD. We applied Deformation-

Based Morphometry (DBM) to quantify cortical  atrophy progression in both groups and advanced

tractography algorithms to assess whether structural connectivity exerted a constraining effect on brain

atrophy progression,  tau,  and Aβ pathology in each group. Using PET scans,  we next investigated

whether the atrophy progression patterns significantly overlapped the spatial distributions of tau and Aβ

pathology.  Finally,  we studied  whether  brain  atrophy  progression  patterns  occurred  within  regions

expressing specific types of neurochemical receptors and transporters based on curated PET maps.

Materials and methods 

We employed  T1-weighted  MRI to  quantify  brain  atrophy  progression,  Tau-PET and Aβ-PET via

Positron  Emission  Tomography  for  mapping  Alzheimer-related  pathology,  and  Diffusion-Weighted
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Imaging (DWI) to  quantify cortical  structural connectivity in FHAD and AD. Figure 1 provides a

summary of the main methodological steps for each of these three modalities.

1 Brain atrophy progression

1.1 Datasets

To create cortical atrophy progression maps for individuals with FHAD, AD dementia, and cognitively

unimpaired healthy control (HC) without a FHAD, clinical and structural MRI data were downloaded

from  three  databases:  the  Presymptomatic  Evaluation  of  Experimental  or  Novel  Treatments  for

Alzheimer’s  Disease  (PREVENT-AD),  internal  and  open  database  (Breitner  et  al.,  2016),  The

Alzheimer’s  Disease  Neuroimaging  Initiative  (ADNI)  (Jack  et  al.,  2008),  and  the  Montreal  Adult

Lifespan Study (MALS) (Ankudowich et al., 2016) in August 2021. Adults (> 55Y) with T1-weighted

MRI at baseline (in the internal PREVENT-AD, ADNI and MALS databases) and follow-up MRIs over

a period of up to four years (in the internal PREVENT-AD and ADNI databases) were included in this

study. The number of participants at each time point and each main step of the method are detailed in

Table  1  (see  Supplementary  Table.1 for  the  number  of  subjects  at  each  step  in  each  database

separately). The acquisition parameters for the PREVENT-AD and MALS datasets (internal databases)

were  the  same.  The detailed  protocols  are  described in  (Tremblay-Mercier  et  al.,  2021).  All  MRI

images from these two databases were acquired on a Magnetom Tim Trio 3 Tesla (Siemens) scanner at

the Douglas Mental Health University Institute (Montreal, Canada). PREVENT-AD is a longitudinal

study of cognitively normal older adults who have a parent or at least one sibling diagnosed with AD

(FHAD). Participants enrolled in the study were required (1) to be at least 60 years old, or between 55

and 59 if their age was within 15 years of their first-affected relative's age at the onset of dementia, (2)

to  not  have  a  history  of  neurological  or  psychiatric  disorders,  and  (3)  to  have  normal  cognitive

functions as indicated by a neuropsychological evaluation. In the MALS database, all participants were

healthy adults (age range: 19-76Y) with no history of neurological or psychological illness or family

history of AD.

Participants from the ADNI database (adni.loni.usc.edu) were assigned to one of three groups

for our analysis: HC, FHAD, or AD. The ADNI was launched in 2003 as a public-private partnership,

led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, PET, other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD). For up-to-date information, see www.adni-info.org. Participants with Mini-Mental Status
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Exam (MMSE) scores from 24 to 30, a normal delayed recall of 1 paragraph from the Logical Memory

II subscale of the Wechsler Memory Scale–Revised and a Clinical Dementia Rating (CDR) score of

zero were assigned to the HC group if they had no family history of AD, or to the FHAD group if they

had a parent or a sibling with AD. ADNI participants with an MMSE score from 20 to 26, impairments

on the delayed recall of 1 paragraph from the Logical Memory II subscale of the Wechsler Memory

Scale–Revised,  a  CDR  score  ≥  0.5  and  who  met  NINCDS/ADRDA  criteria  for  probable  AD

(McKhann,  1984) were assigned to the AD group. The inclusion criteria  in  ADNI  were described

previously (Petersen et al.,  2010). Exclusion criteria in ADNI included any significant neurological

disease other than AD, major depression, bipolar disorder, a history of schizophrenia, and a history of

alcohol or substance abuse within the past 2 years. T1-weighted MRI from ADNI, acquired on 3 and

1.5 Tesla scanners, were included (detailed protocol described in (Jack et al., 2008)).

For  all  datasets,  participating  centers  received  approval  from  a  local  research  ethics

committee. All the procedures and tests followed these committees’ guidelines. Informed consent was

obtained from each participant according to the Declaration of Helsinki before the beginning of each

study.

[Insert Figure 1 here]

[Insert Table 1 here]

1.2 Processing and Quality Control

DBM  was  used  as  a  voxel-wise  measure  of  brain  atrophy.  DBM  maps  were  derived  from  each

participant’s  T1-weighted MRI image at  each time point  by performing non-linear  transformations

from the participant’s brain to a template (MNI152-2009c) using the Advanced Normalization Tools

(ANTs)  Longitudinal  Cortical  Thickness  Pipeline  (Tustison  et  al.,  2014,  2018).  DBM  maps  were

generated by concatenating the non-linear warps that mapped the T1-weighted images from each time

point to the corresponding subject-specific template, and then by mapping the subject-specific template

to the MNI152-2009c template. The derivative of these deformation maps was used to estimate local

tissue  volume  changes,  which  were  quantified  as  the  determinant  of  the  Jacobian  matrix  of

displacement. The maps were smoothed with a 2 mm Gaussian kernel to decrease spatial noise. Finally,

the natural logarithm of the Jacobian determinant was calculated. Relative to the MNI template, a value

of zero indicates no volume difference, negative values indicate tissue expansion and positive values

indicate tissue loss (atrophy).  Quality control was done by visual inspection of the resultant DBM

maps. In total, 158 subjects with AD (19%), 40 FHAD subjects (18%) and 67 HC (18%) were excluded
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mostly due to segmentation issues (see Table 1 for the remaining number of subjects at each time

point).

1.3. Parcellation, site harmonization, and group balancing

DBM maps were parcellated using the Cammoun atlas consisting of 448 equal-size cortical regions

(Cammoun  et  al.,  2012).  To  account  for  scanning  site  variability,  we  used  a  variational  Bayes

harmonization  method  developed  for  longitudinal  brain  imaging  data.  Longitudinal  ComBat

(LongComBat)  was  applied  region-wise  to  harmonize  the  DBM data  and regress  out  site-specific

effects (age, sex and group were used as covariates). LongComBat has been validated and shown to be

effective in reducing site-specific effects with longitudinal data (Beer et al., 2020). The baseline maps

from four  subjects  with  AD were  excluded because  they  were  the  only  subjects  for  their  site.  In

addition, participants were selected to ensure that the three groups were similar in terms of age (mean

FHAD: 72.6Y, range: 66 - 87.8Y, mean AD: 72.8Y, range: 55.2 - 83.7Y and HC: 72.6Y, range: 60.0 -

83.4Y; p-value=0.94), education (mean FHAD: 16.1Y, range: 9 - 20Y, mean AD: 15.6Y, range: 13 -

20Y, and HC: 16.1Y, range: 7 - 20Y; p-value=0.15) and sex (FHAD vs. HC: χ2 = 3.67, p-value= 0.06;

AD vs. HC: χ2 = 3.67, p-value= 0.06) at baseline. Individuals with a FHAD who were under 66 years

old and, HC and AD subjects over 84 years of age were removed. Ultimately, this study included data

from 153 subjects  with FHAD (85 women),  156 subjects with AD (80 women),  and 116 HC (73

women) at baseline, with follow-ups for up to four years.

1.4 Participants

Table 2 describes the clinical characteristics of the participants with AD, FHAD, and HC at baseline

included in this study. Two-tailed F-tests with post-hoc comparisons and Bonferroni-Holm correction

were used to compare the groups. Compared to HC, the Montreal Cognitive Assessment (MoCA) score

(Nasreddine et al., 2005), corrected for education, was significantly lower in AD (mean AD: 16.3 vs.

HC: 27.1; p-value<.0001) as well as the MMSE score (mean AD: 23.1 vs. HC: 29.2; p-value<.0001).

Slightly higher depressive symptoms as assessed through the GDS score (Marc et al., 2008) were found

in AD (mean AD: 1.7 vs. HC: 0.8; p-value<.0001). A higher proportion of AD subjects (70%) carried

either one or two APOe4 alleles compared to HC (26%), while a slightly higher proportion of FHAD

subjects carried two APOe4 alleles (FHAD: 8.6% vs. HC: 0.9%).

[Insert Table 2 here]
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1.5 Statistical analysis

The pattern of brain atrophy progression in FHAD and AD was investigated using linear mixed models

with  random intercept  and  slope.  The  atrophy  progression  (group*age  interaction)  was  compared

region-wise between the three groups (FHAD, AD and HC). Group, age, sex, education, body mass

index (BMI),  APOe4 status, and APOe4*age interaction were used as covariates. Post-hoc tests were

also  computed  between  each  group.  This  analysis  was  performed  using  MATLAB  (R2020b).

Secondary  analyses  were  done  to  further  assess  the  effect  of  sex  by  adding  a  group*sex*age

interaction, as well as group*sex and sex*age interactions, in the models. False Discovery Rate (FDR)

corrections were applied to control for multiple comparisons (Benjamini & Yekutieli,  2005).  In all

subsequent analyses, the regional b-values (beta) of the group*age interaction (FHAD vs. HC and AD

vs. HC) were used as an estimate of region-wise atrophy progression in FHAD and AD. A positive b-

value indicates more brain atrophy progression compared to HC, while a negative  b-value indicates

less atrophy progression. In addition, W-Score maps were generated region-wise for brain atrophy at

baseline to account for the effects of age and sex (La Joie et al., 2012). A higher W-Score indicates

greater atrophy at baseline compared to HC. Pearson’s correlations between FHAD and AD atrophy

progression,  and  atrophy  at  baseline,  were  also  computed.  Their  significance  was  tested  against

spatially auto-correlated null models using the software BrainSmash (1000 spins, two-tailed) (Burt et

al., 2020; Markello & Misic, 2021).

1.6 Brain atrophy progression in the resting-state networks

To  explore  the  relationship  between  brain  atrophy  and  cognitive  functions,  the  mean  atrophy

progression was calculated for each of the seven cortical resting-state networks, as defined by (Yeo et

al.,  2011).  The mean atrophy progression in each network was compared between the three groups

(FHAD, AD, and HC) with linear mixed models (random intercept and slope), along with post-hoc

tests.  Group,  age,  sex,  education,  BMI,  APOe4 status  and  APOe4*age  interaction  were  used  as

covariates. Partial Spearman’s correlations, adjusting for age at baseline, BMI and APOe4 status, were

also  performed  to  assess  the  associations  between  global  cognitive  measures  (education-corrected

MoCA scores) and baseline atrophy (as indicated by W-Scores regressing out normal aging and sex

effect) across each of the seven resting-state networks (p-valueFDR<.05, two-tailed).

2 Positron Emission Topography Imaging (PET)

2.1 Datasets
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To create the tau-PET and Aβ-PET maps at  baseline,  PET scans from the PREVENT-AD (internal

database) and ADNI were acquired for subjects with FHAD (tau:166 scans;  Aβ:221 scans) and AD

(tau:64  scans;  Aβ:167  scans)  (Table.  1).  Only  one  scan  of  each  tracer  per  subject  (baseline)  was

included in this study for both tau and Aβ, since there were no follow-up scans in the PREVENT-AD

study, and the number of follow-up scans was low and inconsistent between FHAD and AD in ADNI.

We obtained the unprocessed PET data for each acquisition in ADNI. 

For the subjects with FHAD from the PREVENT-AD database,  the radiotracers [18F]AV-

1451 (flortaucipir) and [18F]NAV4694 were used to quantify the distribution of tau and Aβ in the brain

(tau: 120 scans; Aβ: 122 scans). PET scans were performed at the McConnell Brain Imaging Centre at

the  MNI  (Montreal,  Canada)  using  a  brain-dedicated  PET  Siemens/CT  high-resolution  research

tomograph. Tau scans were performed 80 to 100 min after radiotracer injection (9.9 ± 1.0 mCi) and Aβ

scans were performed 40 to 70 min after injection (6.6 ± 0.4 mCi).  T1-weighted MRI scans  were

acquired up to one year before the PET scans (mean interval: 8.9 ± 4.8 months) on a 3T Siemens Trio

scanner  at  the Brain Imaging Centre  of the Douglas Mental Health University Institute (Montreal,

Canada). The following parameters were used: TR: 2300 ms, TE: 2.98 ms, FA: 9°; matrix size: 256 x

256; voxel size: 1 mm3; 160-170 slices. 

Baseline  PET  data  from  the  ADNI  database  were  downloaded  in  January  2023.  The

radiotracers [18F]AV-1451 (flortaucipir) and [18F]AV-45 (florbetapir) were used to assess tau and Aβ

distribution in subjects with FHAD and AD. This dataset included 46 tau and 99 Aβ scans for FHAD,

and 64 tau and 167 Aβ scans for AD (Table.1). T1-weighted MRI images, acquired up to one year prior

to the PET scans, were also downloaded. Acquisition parameters and detailed protocols for the T1-

weighted  MRI  are  described  in  (Jack  et  al.,  2008).  For  flortaucipir,  six  five-minute  frames  were

acquired starting 75 minutes following radiotracer injection (10.0 ± 1.0 mCi). For florbetapir, four five-

minute frames were acquired starting at 50 minutes following radiotracer injection (10.0 ± 1.0 mCi).

PET scanners  slightly  differed  by  site;  more  information  on  PET image  acquisition  in  the  ADNI

database is described in detail at http://adni-info.org.

2.2 Processing and Quality Control

PET scans from the PREVENT-AD and ADNI databases were then processed with the same standard

pipeline  (github.com/villeneuvelab/vlpp)  and quality  control.  Briefly,  for  each participant,  the  PET

image  frames  were  realigned,  averaged,  and  registered  to  the  corresponding  T1-weighted  MRI

processed using FreeSurfer v.6.0. Registered PET images were then masked to exclude CSF signal and
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finally smoothed (Sperling et al.,  2011). For the smoothing, a 6 mm Gaussian kernel was used for

PREVENT-AD scans, while a 8 mm kernel was applied for ADNI scans to match the approximate

resolution of the lowest resolution scanners used (Jagust et al., 2015). Standardized uptake value ratios

(SUVRs) using the inferior cerebellum gray matter for tau scans (Baker et al., 2017) and cerebellum

gray matter as the reference region for Aβ scans (Villeneuve et al., 2015) were computed voxel-wise.

PET  and  T1w  images  were  coregistered  and  mapped  into  the  MNI  space.  Quality  control  was

performed  to  remove  PET and  T1-weighted  images  with  artifacts,  segmentation  or  reconstruction

issues,  and misalignment  between PET and T1w images.  No participants  were excluded from the

PREVENT-AD cohort.  From the  ADNI  database,  9  tau  (5%)  and  2  Aβ  (1%)  scans  from FHAD

subjects, along with 2 tau (3%) and 8 Aβ (5%) scans from AD subjects, were excluded.

2.3 Parcellation, site harmonization, and group balancing

The Cammoun atlas (Cammoun et al.,  2012) was used to parcellate the MRI into 448 equal-sized

cortical regions. These regions were then used to extract SUVRs from the PET maps. Then, ComBat

was used to regress out inter-site variability from the PET images with age, sex and group as covariates

(Johnson et al., 2007). Data from sites with only one subject were excluded: FHAD: tau (N=11) and Aβ

(N=5); AD: tau (N=4) and Aβ (N=5). To ensure that the average age of the FHAD group was similar to

the  average  age  in  the  brain  atrophy  progression  analysis,  younger  FHAD subjects  (<66Y)  were

excluded (tau-PET:  t-value =.43,  p-value=.67  and Aβ-PET:  t-value =-0.87,  p-value=.38).  Older AD

subjects (>89Y) were also excluded (tau-PET: t-value =-1.18, p-value=.24 and Aβ-PET: t-value =-1.41,

p-value=.16).  After  site  harmonization  and  group  balancing,  the  spatial  distribution  of  Aβ-PET in

FHAD was highly correlated between participants from PREVENT-AD and ADNI despite the two

databases using different  radiotracers (r  = 0.84,  p-valuespin  = 0.001).  In total,  tau imaging from 96

subjects with FHAD and 58 patients with AD, and Aβ imaging from 165 subjects with FHAD and 145

patients with AD were used to create the PET maps. 

3 Structural connectivity

3.1 Datasets

To develop group-specific structural connectivity matrices for the FHAD and AD groups, we used

diffusion  MRI  data  from the  PREVENT-AD (N=304)  and  ADNI  (N=116)  databases,  respectively

(Table.1).  For  the  subjects  with  FHAD,  the  baseline  diffusion-weighted  MRI  (DWI)  data  were

downloaded from the open PREVENT-AD database in February 2023. The DWI consisted of one b0
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image and 64 diffusion-weighted volumes acquired with a b-value of 1000 s/mm2 for all subjects. The

PREVENT-AD sequence parameters were as follows: Manufacturer = SIEMENS, repetition time (TR)

= 9300 ms, echo time (TE) = 92 ms, and voxel size = 2 mm. The DWI data for the AD subjects at

baseline  were  downloaded  from the  ADNI  database  in  February  2023.  All  axial  DWI data  were

acquired with an echo-planar imaging sequence. The scan parameters were as follows: Manufacturer =

GE MEDICAL SYSTEMS (N=69), Philips Medical Systems (N=7), SIEMENS (N=40); b-value = 583

to 1225 s/mm²; gradient directions = 30 (N=8), 32 (N=6), 41 (N=49), 48 (N=14), 54 (N=22), 126

(N=10); voxel size = 0.91 × 0.91 mm² (N=20), 1.37 × 1.37 mm² (N=49), 2 × 2 mm² (N=44), 2.7 × 2.7

mm² (N=3); TR = 3400 to 16700 ms; TE = 55 to 105 ms; slice thickness = 2.0 mm (N=67) and 2.7 mm

(N=49).

3.2 Processing and Quality Control

Tractography  and  connectomic  pipelines  were  applied  to  the  DWI  data  to  create  a  binary  group

connectivity  matrix  for  both  the  FHAD  group  (PREVENT-AD)  and  the  AD  group  (ADNI).  The

TractoFlow Atlas Based Segmentation pipeline (TractoFlow-ABS: github.com/scilus/tractoflow), with

the connectomics profile, was used to create tractography from raw DWI and T1 re-sampled from

FreeSurfer  v.6.0. (Theaud  et  al.,  2020b,  2020a).  The  DWI  processing  included  denoising,  topup

corrections to reduce the brain deformation induced by the magnetic field susceptibility artifacts, eddy-

currents correction,  N4 Bias Correction followed by the computation of DWI and fiber orientation

distribution  function  (fODF)  metrics  (Theaud  et  al.,  2020b).  For  TractoFlow-ABS,  the  following

parameters were selected for diffusion image processing: DTI shells: 0 500 1000 2000; fODF shells: 0

500 1000 2000; FRF value: 10, 3, 3; algorithm: local probabilistic tracking; local seeding mask type:

WM/GM interface; number of seeds per voxel: 20; spherical harmonic (SH) order: 6 (<32 gradient

directions) and 8 (>=32 directions). A higher SH order allows for more complex diffusion patterns to be

represented in  the context  of  a  larger  number  of  gradient  directions.  These  parameters  allowed to

obtaining valid estimations for both databases and all the gradient direction sequences (Schilling et al.,

2017).  Using  dMRIQCpy,  we  next  produced  quality  control  files  for  each  key  step  (raw  data,

intermediate DWI and T1 preprocessing, metrics from DWI and tractogram) to remove DWI data and

T1w-MRI showing artifacts (Theaud & Descoteaux, 2022). Five subjects with FHAD failed during the

Tractoflow-ABS processing, while 22 DWI images (7%) from the FHAD group (PREVENT-AD) and

25 DWI images (22%) from the AD group (ADNI) were removed after quality control.
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3.3 Parcellation, site harmonization, and group balancing

We  next  used  Connectoflow  v.1.1.0  (github.com/scilus/connectoflow)  to  build  the  structural

connectome with the Cammoun atlas (448 cortical regions) for both the FHAD and AD groups (Di

Tommaso  et  al.,  2017;  Kurtzer  et  al.,  2017;  Rheault  et  al.,  2021).  The  tractograms  generated  by

Tractoflow-ABS were employed in the Connectoflow pipeline. The Convex Optimization Modeling for

Microstructure Informed Tractography (COMMIT2) was used to assign to each streamline a weight,

which was used for removing false positive brain connections. To achieve this, COMMIT2 reconstructs

the  connectome,  providing  the  optimal  explanation  for  the  diffusion-weighted  signal,  while  also

reducing the number of invalid streamlines by minimizing the number of bundles. This filtering method

has  been shown to  highly  improve the  accuracy of  the  resulting  structural  connectomes (Schiavi,

Petracca,  et  al.,  2020).  A connectivity  matrix  was  obtained  for  274  subjects  (3  subjects  failed

Connectoflow) with FHAD and 90 subjects with AD (1 subject failed Connectoflow). Since the DWI

data from the AD subjects were obtained from different scanner sites, ComBat was used to remove

inter-site variability with age and sex as covariates (Fortin et al., 2017; Johnson et al., 2007). Then,

younger FHAD (<66Y) and older AD (>84Y) subjects were removed to ensure that subjects used to

build the group connectivity matrix had a similar age range to the FHAD and AD subjects in the brain

atrophy progression analysis (FHAD: 66 - 88Y; AD: 55 - 84Y). Finally, 78 FHAD (mean: 70Y, SD: 4Y)

and 72 AD subjects (mean: 73Y, SD: 7Y) were included to generate the two binary group-average

structural  connectivity  matrices.  For  each  connectivity  matrix,  connections  were  retained  if  they

appeared in at  least  τAvg subjects,  where τAvg is  the consensus threshold that results  in a  binary

density equal to that of the typical subject (Rubinov & Sporns, 2010). More specifically,  the total

COMMIT2  weights  were  sorted  in  descending  order,  and  the  highest  weighted  connections  were

selected based on the average number of connections per subject per hemisphere. The inter- and intra-

hemispheric connections were calculated separately.

3.4 Network spread analysis

According to the network spread hypothesis, pathology spreads along existing connections between

brain regions (Agosta et al., 2015). We tested this hypothesis in both FHAD and AD using the built

group-average structural connectivity matrices and an independent matrix from 70 young healthy adults

(age = 29 ± 9Y, 43 men) available at https://doi.org/10.5281/zenodo.2872624 (Mišić et al., 2015). A

similar  approach  was  previously  reported  to  investigate  atrophy  spreading  through  structurally

connected regions in isolated REM sleep behavior disorder (iRBD) (Rahayel et al., 2022), Parkinson’s

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303606doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303606


disease (Tremblay et al., 2021; Vo et al., 2023), and schizophrenia (Shafiei et al., 2019). However, all

these studies used a general connectivity matrix from young healthy adults (Mišić et al., 2015) and did

not include a structural connectivity matrix specific to the pathology being investigated. In this study,

we used the connectivity matrix from young healthy adults and the built group-average connectivity

matrices from AD and FHAD to compare the results with an intact connectome (removing the possible

effect  of  normal  aging  and  pathology).  For  the  network  analysis,  we  first  computed  Pearson’s

correlations between the brain atrophy progression observed in each of the 448 cortical regions of the

Cammoun atlas  and the  average  atrophy progression of  their  structurally  connected neighborhood.

Then, the significance of the correlations was tested against a null model preserving the spatial auto-

correlation between regions using the BrainSMASH software (1000 spins) (Burt et  al.,  2020). The

same analysis was also computed using the tau-PET and Aβ-PET measures to investigate the protein

spreading hypothesis (Vogel et al., 2020). In a supplementary analysis, Pearson’s correlations were also

computed with the non-structurally connected neighbors in both FHAD and AD.

4 Neurotransmitter receptors and transporters analysis

We next examined if the regional brain atrophy progression in FHAD and AD, as well as atrophy at

baseline in FHAD, AD, and HC, related to the spatial distribution of seven different neurotransmitter

receptors or transporters potentially implicated in AD. Spatial deformation relative to the MNI152-

2009c template  was used as  baseline atrophy measure (DBM maps at  baseline).  The receptor  and

transporter distributions include dopamine (D2), norepinephrine (NET1), serotonin (5-HT1B and 5-

HT6), acetylcholine (VAchT), glutamate (mGluR5), and histamine (H3) (Reddy, 2017; Xu et al., 2012).

All  the  distributions  were  derived  from  a  meta-analysis  of  PET  studies  (Hansen  et  al.,  2022).

Neurotransmitter receptors or transporters associated with PET tracers with more than one reference

(dopamine (D2),  glutamate  (mGluR5),  and acetylcholine  (VAchT))  were z-scored,  and a  weighted

average  was  calculated  to  account  for  the  varying  number  of  subjects  in  each  study.  Pearson’s

correlations were tested against null models preserving the spatial auto-correlation of the regions using

BrainSMASH (1000 permutations, two-tailed, with FDR correction:  p-value<.05) (Burt et al., 2020;

Markello & Misic, 2021).

5 Data availability

T1w-MRI and PET data used in this article were from the internal PREVENT-AD database (release

6.0) and ADNI dataset (available at https://adni.loni.usc.edu/data-samples/access-data/). The DWI data
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are  available  online  at  https://openpreventad.loris.ca  (PREVENT-AD)  and  at

https://adni.loni.usc.edu/data-samples/access-data/  (ADNI).  All  other  datasets  and software used are

available from the sources cited in the Methods. The brain atrophy progression and PET maps, as well

as the structural connectivity matrices for the FHAD and AD groups, are available upon reasonable

request to the authors.

Results

Brain atrophy progression

The  DBM maps  were  used  to  reproduce  the  brain  atrophy  at  baseline  (Fig.2A)  and  compare  the

progression of atrophy over up to four years in 448 cortical regions between the three groups (FHAD,

AD, and HC) (Fig.2B, Fig.2C). This analysis showed a significant difference in atrophy progression

between groups (group*age interaction) in 138 cortical regions (p-valueFDR < .05). In AD, we found that

atrophy progressed significantly with age (+β) in 24 regions part of the cingulate cortex and occipital,

temporal, and parietal cortices, compared with age-expected effects in HC. Ten of these regions also

showed  significant  atrophy  progression  compared  with  age-expected  effects  in  the  FHAD  group:

including parts of the right occipital (cuneus and lingual gyrus) and frontal cortices (precentral gyrus);

the  left  temporal  (transverse  temporal  gyrus)  and  parietal  cortices  (postcentral  gyrus  and  superior

parietal  lobule);  and  the  bilateral  cingulate  cortex  (caudal  anterior  and  posterior  cingulate  gyrus).

Several  regions (n=102) also showed less  atrophy progression (-β)  in  AD than HC, mostly in  the

temporal and frontal cortices. Twelve of these regions also showed less atrophy progression in FHAD

than HC: including parts of the right parietal cortex (precuneus); left insular, temporal (fusiform gyrus

(n=2)),  frontal  (pars  triangularis,  lateral  orbitofrontal,  rostral  middle  frontal)  and  occipital  cortices

(lateral  occipital  gyrus);  and  bilateral  frontal  (superior  frontal  gyrus)  and  limbic  cortices

(parahippocampal  gyrus).  These  results  indicate  a  slower  atrophy  progression  at  older  age  within

specific regions in AD and FHAD compared to HC. The effect of sex on atrophy progression was also

investigated, but no significant effect was found for the group*sex*age and group*sex interactions (p-

valueFDR >.07), nor for the sex*age interaction (p-valueFDR >.13). Suggesting a ceiling effect of atrophy

in AD, more atrophy at baseline (W-Score) was negatively associated with atrophy progression in this

disease (r=-0.40, p-valuespin=.001), but not in FHAD (r=-0.008, p-valuespin=.87).

[Insert Figure 2 here]
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When comparing AD and FHAD, a significant Pearson’s correlation between AD and FHAD

atrophy  at  baseline  (W-Score)  was  observed (r=0.33,  p-valuespin=.001).  A significant  correlation

between  groups  was  also  noted  for  the  atrophy  progression  (r=0.75,  p-valuespin=.001).  These

correlations suggest a similar spatial pattern of atrophy and atrophy progression in both groups (Zou’s

CI: -0.51 to -0.33). However, post-hoc comparisons between FHAD and AD revealed that 12 regions,

including  parts  of  the  bilateral  temporal  (superior  temporal  regions)  and  parietal  cortices

(supramarginal  gyrus),  the  left  occipital  (lingual  gyrus)  and parietal  cortices  (inferior  and superior

parietal regions), as well as the right cingulate cortex (postcentral and caudal anterior cingulate gyrus),

exhibited  significantly  greater  atrophy  progression  (+β-value)  in  AD.  Conversely,  80  regions,

predominantly located in the temporal, frontal,  and parietal cortices, demonstrated significantly less

atrophy progression with age (-β-value) in AD (see Supplementary Fig.1 for details).  In sum,  these

results demonstrate that  FHAD subjects show brain tissue loss in regions also affected in AD with

atrophy being more severe and widespread in AD.

Brain atrophy progression in the resting-state networks

To describe the association between brain atrophy progression and resting-state functional networks,

we quantified atrophy progression and baseline atrophy in the seven resting-state networks as defined

by (Yeo et al., 2011). Within these networks, the average atrophy progression was compared between

the groups (group*age interaction including the FHAD, AD and HC groups) (Fig.3A). There was a

significant  interaction  for the  default  mode (p-valueFDR=.00002),  limbic  (p-valueFDR=.002),

somatomotor (p-valueFDR=.008) and ventral attention (p-valueFDR=.03) networks. Post-hoc comparisons

showed no significant interaction for FHAD compared to HC. However, the interaction was significant

for  AD  compared  to  HC  in  the  default  mode  (β=-.001,  p-valueFDR=.00009),  limbic  (β=-.001,  p-

valueFDR=.006), and somatomotor (β=.001, p-valueFDR=.01) networks. Only a trend toward significance

was observed for the ventral  attention network after FDR correction (p-valueFDR=.08).  The atrophy

progression  was  not  significant  in  any  of  the  resting-state  networks  in  FHAD  compared  to  HC.

However, the results in AD seem to indicate that the atrophy progression had a slower progression at

older  age  or  reached  a  ceiling  in  the  default  mode  and  limbic  networks  (-β-value),  but  it  is  still

progressing faster (+β-value) in the somatomotor network.

     [Insert Figure 3 here]
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Moreover, the average atrophy at baseline (W-Score) showed a significant correlation with

cognitive abilities (MoCA corrected for education) in the dorsal attention (r=-0.30,  p-valueFDR=.02),

frontoparietal (r=-0.39,  p-valueFDR=.002) and default mode (r=-0.28,  p-valueFDR=.02) networks in AD

(Fig.3B). No significant correlation was observed in the FHAD group. These results indicate that AD

patients with more atrophy in the dorsal attention, frontoparietal or default mode network also have

more global cognitive impairment (lower MoCA scores).

Association with tau-PET and Aβ-PET distribution

Linear regression models were used to compare tau and Aβ concentration between the FHAD and AD

groups. These models included age at baseline, sex, education, BMI and APOe4 status as covariates.

After FDR corrections, greater concentrations were found in AD compared with FHAD in 358 cortical

regions for tau-PET and 335 regions for Aβ-PET (Supplementary Fig.2). However, both tau and Aβ

distribution in FHAD showed significant spatial  overlap with tau  (r=0.91,  p-valuespin=.001) and  Aβ

(r=0.94, p-valuespin=.001) distribution in AD. This suggests that the patterns of regional distributions are

similar in the two groups (Fig.4 upper panel), but that the concentrations of tau-PET and Aβ-PET are

higher in AD than FHAD in most cortical regions.

The relationships of baseline brain atrophy and atrophy progression with baseline tau and Aβ

distribution  patterns  were  explored  for  both  FHAD  and  AD.  This  analysis  was  conducted  using

Pearson’s  correlations  against  spatial  null  models  (Fig.4  lower  panel).  In  FHAD,  significant

correlations were found between spatial patterns of atrophy at baseline and both tau-PET (r=0.38,  p-

valuespin=.001) and Aβ-PET (r=0.34,  p-valuespin=.001).  Similar correlations were obtained when using

only  FHAD subjects  who had both  PET and MRI data  available  at  baseline  (tau-PET:  r=0.40,  p-

valuespin=.006;  Aβ-PET:  r=0.39,  p-valuespin=.001)  (Supplementary  Fig.3).  However,  no  significant

correlation was observed between the spatial patterns of atrophy progression and tau-PET (r=-0.05, p-

valuespin=.26) or Aβ-PET (r=0.06, p-valuespin=.18) distribution in FHAD. In AD, positive and significant

correlations were observed between atrophy at baseline and both tau-PET (r=0.36, p-valuespin=.001) and

Aβ-PET  (r=0.23,  p-valuespin=.001).  Comparable  associations  were  observed  when  analyzing  only

participants  with AD who had both PET and MRI data  available  at  baseline (tau-PET: r=0.28,  p-

valuespin=.001;  Aβ-PET:  r=0.26,  p-valuespin=.002)  (Supplementary  Fig.3).  Moreover,  lower  atrophy

progression with age was related with more tau-PET (r=-0.44, p-valuespin=.001) and Aβ-PET (r=-0.35,

p-valuespin=.001) pathology. In sum, both tau and Aβ distribution are related to the atrophy pattern in

FHAD and AD, but not to the subsequent atrophy progression in FHAD.

[Insert Figure 4 here]
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Association with structural connectivity

We next investigated whether the distribution of cortical atrophy and atrophy progression as well as tau

or Aβ spatial distributions could be explained by a process propagating via brain connections (Fig.5). If

so, a region’s atrophy, atrophy progression, or tau or Aβ concentration should correlate with the same

measure in its structurally connected neighbors. Since structural connections will degrade as the disease

runs its course (Agosta et al., 2015), along with an independent structural connectivity matrix from

healthy adults,  we built  structural  connectivity  matrices  from the  subjects  with FHAD and AD to

investigate brain atrophy, atrophy progression, and pathology distributions following the breakdown of

connectivity associated with the disease. This allowed us to compare the role of connectivity prior to

appearance of pathology (using an intact connectome) and at different stages of the neuropathological

process.

Relationship with connectivity in FHAD

Using an healthy connectome, we found that the higher the baseline atrophy and atrophy progression,

as well as the higher tau and Aβ concentration in a region, the higher the baseline atrophy (r=0.44, p-

valuespin=.001),  atrophy  progression  (r=0.36,  p-valuespin=.02),  tau  (r=0.24,  p-valuespin=.009)  and  Aβ

concentration  (r=0.29,  p-valuespin=.003)  in  regions  that  are  structurally  connected  (Supplementary

Table.2). In contrast, baseline atrophy, atrophy progression, tau and  Aβ concentration were lower in

regions  that  were  not  structurally  connected  (baseline  atrophy:  r=-0.50,  p-valuespin=.001;  atrophy

progression: r=-0.36, p-valuespin=.001; tau: r=-0.34, p-valuespin=.001 and Aβ: r=-0.39, p-valuespin=.001).

Similar results were obtained using the structural connectivity matrix from FHAD (Fig.5A Left upper

row; Supplementary Table.3). These results suggest that in FHAD, distributions of atrophy, tau, and Aβ

all depend on structural connections in a similar manner.

Relationship with connectivity in AD

Using a structural connectivity matrix from healthy adults, a significant correlation was found between

baseline atrophy in each region and that in their connected neighbors in AD (r=0.66, p-valuespin=.001).

Significant  and  positive  correlations  were  also  observed  with  atrophy  progression  (r=0.33,  p-

valuespin=.02), tau  (r=0.49,  p-valuespin=.001), and Aβ concentration (r=0.21,  p-valuespin=.004) (Fig.5A:

Right upper row; Supplementary Table.2). Additionally, negative correlations were noted with the same

measures  when  using  the  non-structurally  connected  neighbors  (baseline  atrophy:  r=-0.67,  p-

valuespin=.001; atrophy progression: r=-0.43, p-valuespin=.001; tau: r=-0.36, p-valuespin=.001 and Aβ: r=-
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0.32,  p-valuespin=.001). Using the structural connectivity matrix from AD, adjusted with ComBat for

inter-site  variability,  a  significant  correlation  was  observed  with  baseline  atrophy  (r=0.50,  p-

valuespin=.001).  However,  no  significant  correlations  were  found  in  AD  between  the  atrophy

progression in  each region and that  in  their  connected  neighbors  (r=0.11,  p-valuespin=.26)  (Fig.5A:

Right  bottom  row).  Similarly,  the  correlation  with  atrophy  progression  in  the  non-structurally

connected  neighbors  was  also  not  significant  (r=-0.16,  p-valuespin=.18).  In  addition,  significant

correlations  were  observed  with tau  (r=0.41,  p-valuespin=.03)  and  Aβ (r=0.28,  p-valuespin=.02)

concentration  in  a  region  and  the  average  concentration  in  their  structurally  connected  neighbors

(Fig.5B;  Supplementary  Table.3).  These  findings  support  that  in  AD,  tau  and  Aβ  accumulate

longitudinally  following  the  AD-specific  structural  connectome,  whereas  most  of  the  atrophy

progression rather depends on the healthy connectome, before AD-related damages have occurred.

[Insert Fig.5 here]

Relationship with receptor and transporter distributions

Since regional vulnerability may influence the local vulnerability of regions to atrophy progression, we

examined  the  spatial  correlations  between  cortical  atrophy  progression  in  FHAD and AD and the

distributions  of  seven  different  neurotransmitter  receptors  and  transporters  (Fig.6).  A  negative

correlation between the distribution of the 5-HT6 receptors and atrophy progression in FHAD was

observed (r=-0.15, p-valuespin=.04), but it was not significant after FDR correction (r=-0.15, p-valuespin-

FDR=.19).  A significant  Pearson’s  correlation  against  a  spatial  null  model  was  found  between  the

distribution of serotonin 5-HT6 receptors and atrophy progression in AD after FDR correction (r=-0.22,

p-valuespin-FDR=.04). No other significant correlations were observed with atrophy progression in both

groups (Supplementary Table.4). The observed negative correlation between atrophy progression and

serotonin 5-HT6 receptors in AD possibly reflects the ceiling effect and the lower atrophy progression

at older age in AD. 

As a supplementary analysis, the correlations with baseline atrophy in HC, FHAD, and AD,

and  the  distributions  of  the  neurotransmitter  receptors  and  transporters  were  also  investigated.

Subsequent  analysis  showed  positive  and significant  correlations  between 5-HT6 distributions  and

atrophy at baseline in HC (r=0.45,  p-valuespin-FDR=.004), FHAD (r=0.46,  p-valuespin-FDR=.004), and AD

(r=0.35,  p-valuespin-FDR=.004). This suggests that regions with more atrophy at  baseline also possess

higher concentrations of serotonin 5-HT6 receptors across all groups. A significant correlation was also

observed with the distribution of serotonin 5-HT1B receptors in HC (r=0.33,  p-valuespin-FDR=.01) and
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FHAD (r=0.32,  p-valuespin-FDR=.01),  but  not  in  AD (r=0.15,  p-valuespin-FDR=.17).  Additional  analysis

showed significant correlations between atrophy at baseline and the distribution of glutamate (mGluR5)

receptors in HC (r=0.44, p-valuespin-FDR=.004), FHAD (r=0.48, p-valuespin-FDR=.004), and AD (r=0.42, p-

valuespin-FDR=.004).  No  other  significant  correlation  was  observed  with  atrophy  at  baseline

(Supplementary Table.5). Taken together, these results suggest that more atrophy is observed in regions

with a higher concentration of serotonin 5-HT6 and mGluR5 receptors in all groups, while a similar

association with the serotonin 5-HT1B distribution is only observed in HC and FHAD.

[Insert Fig.6 here]

Discussion

We found similar patterns of cortical atrophy progression in FHAD and AD, although the severity and

spatial extent were greater in AD. Tau and Aβ proteins also showed a similar regional distribution in

both groups, but the concentration was higher in AD. Interestingly, the distribution of these proteins

correlated spatially with atrophy at baseline, but not with the subsequent atrophy progression, possibly

due to a lower atrophy progression with age (possible ceiling effect of atrophy). Indeed, it is likely that

there is an upper limit on the amount of tissue loss detectable with MRI and brain deformation measure

(DBM). Structural connectivity analyses revealed that both proteins accumulate in connected regions in

both FHAD and AD. Brain atrophy patterns and their progression also aligned with existing structural

connectivity in FHAD. However, in AD,  most of the progression of atrophy rather depends on the

healthy connectome, prior to the onset of AD-related white matter damage. In addition, brain regions

with more atrophy at baseline were associated with higher levels of serotonin 5-HT6 and glutamate

(mGluR5) receptors distributions derived from healthy older adults (HC), FHAD, and AD, while an

association with serotonin 5-HT1B receptor distributions was only observed in HC and FHAD.

Brain atrophy progression pattern in FHAD and AD

Our study revealed a similar cortical  atrophy progression pattern in FHAD and AD, although with

distinct differences in severity and regional distribution. Notably, a significant difference was observed

in atrophy progression between the groups in 92 out of 448 cortical regions. Both groups exhibited

significant atrophy progression in specific regions of the cingulate cortex, as well as the temporal and

parietal cortices. This is consistent with studies reporting atrophy in the cingulate cortex in individuals

with MCI and AD (Choo et al., 2010; Frisoni et al., 2002; Jones et al., 2006). These findings also are in

alignment with prior research documenting accelerated atrophy rates in the temporal and parietal cortex

in AD (Bakkour et  al.,  2013; Binette et  al.,  2020; Du et al.,  2001; Fox et  al.,  2000; Jagust et  al.,

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303606doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303606


2008) and FHAD (Markus Donix et al., 2010; Kate et al., 2016). In addition, our data suggest a ceiling

effect of the atrophy progression notably in AD, as detected by MRI, particularly in the precuneus and

regions within the temporal, frontal, and occipital cortices. These findings align with previous studies,

which  report  that  atrophy often begins  in  the  parietal  and temporo-occipital  cortex,  in  addition to

frontal association areas, before spreading to other cortical regions (Apostolova & Thompson, 2008;

Dickerson et al., 2011; Morris et al., 2009). Consistent with a ceiling effect, in AD, regions exhibiting

higher baseline atrophy also showed less atrophy progression over time, a correlation that was not

statistically significant in FHAD. This discrepancy could be attributed to the fewer regions (n=12) in

FHAD  showing  negative  atrophy  progression  compared  to  AD  (n=102).  Furthermore,  negative

correlations between the rate of atrophy, as well as cognitive decline, and age in cortical areas have

previously been observed in individuals with mild cognitive impairment (MCI) and AD, with older

individuals  exhibiting  less  progression  in  both  atrophy  and  cognitive  decline  (Fiford  et  al.,  2018;

Holland et al., 2012; Hrast et al., 2023). The neurobiological mechanims underlying these negative

relationships with age are still unclear and might be influenced by a ceiling effect of atrophy, notably in

AD. Overal, our findings suggest that while the initial regions affected may be similar, the severity and

spatial extent of disease progression differs between FHAD and AD.

Relationship with tau and Aβ concentration

Relationships were observed between baseline atrophy and both tau and Aβ concentration in FHAD

and AD. This is in accordance with previous studies suggesting a  relationship between tau and Ab

deposition and volume loss (Ekman et al., 2018; Malpetti et al., 2022). However, there was a negative

relationship between atrophy progression and regional tau and Aβ concentration, particularly in AD,

which possibly reflects a ceiling effect in the detection of ongoing tissue loss.  While the correlations

between the atrophy pattern and tau-PET were consistently higher than with Aβ-PET, the differences

between the correlations were not significant.  Further investigations will  be needed to confirm the

stronger  relationship  between  cortical  atrophy  and  tau  deposition  compared  with  Aβ deposition

(Malpetti  et  al.,  2022).  The FHAD  and  AD  groups  also  showed  similar  patterns  in  the  spatial

distribution of abnormal tau and Aβ proteins (r >.90), but the concentrations were consistently higher in

AD. These results  support other findings suggesting an important relationship between tau and Aβ

proteins in FHAD and AD and the atrophy progression patterns (Ozlen et al., 2022; Vogel et al., 2020). 
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Structural connectivity mediates atrophy and proteins propagation

The differences in brain atrophy progression in specific networks between FHAD and AD may underlie

the more pronounced cognitive dysfunction observed in AD despite comparable age and educational

backgrounds. AD preferentially targets distinct neuronal networks, notably the limbic and associative

regions  of  the  cortex  (Braak  &  Braak,  1991).  Atrophic  changes  in  AD  were  found  to  be most

pronounced in the limbic network, followed by the DMN (Grothe et al., 2016). Our study revealed that

while FHAD did not show significant brain atrophy in these networks, in AD, atrophy appeared to

plateau  in  the  default  mode  and  limbic  networks  and  continued  to  progress  in  the  somatomotor

network. Moreover, in this study, AD patients with greater atrophy at baseline in either the DMN,

frontoparietal,  or  dorsal  attention  network  also  exhibited  more  pronounced  cognitive  deficits,  as

indicated by lower MoCA scores. This aligns with previous findings of altered activation patterns in the

DMN, frontoparietal, and somatomotor networks during cognitive tasks in AD (Li et al., 2015). A meta-

analysis on resting-state connectivity has also corroborated the alterations within the DMN and limbic

networks (Badhwar et al., 2017). Although altered structural patterns in the dorsal attention network

have been reported in AD (Qian et al., 2014) and its  early stages (Wu et al., 2023), the relationship

between these  alterations  and the  cognitive  deficits  in  the  disease  remains  to  be  further  explored.

FHAD-related atrophy has also been localized to the precuneus, a core component of the DMN (Kate et

al., 2016). Yet, no significant correlation was found between brain atrophy in any of the seven Yeo

networks, including the DMN, and MoCA scores in FHAD. This is possibly due to the milder cognitive

impairments  exhibited  by  these  individuals.  While  no  specific  network  seems  to  be  significantly

affected in FHAD yet, these findings are supporting the important role of the DMN in AD-related

atrophy and cognitive dysfunctions.

To further evaluate the role of brain networks in the progression of AD pathology we tested

whether the spatial patterns of atrophy were shaped by structural connectivity. In both FHAD and AD,

the  connectivity  analysis  revealed  that  structural  connectivity  significantly  influences  the  baseline

distribution of tau, Aβ and atrophy regardless of the connectivity matrix used (i.e., group-specific or

intact). These results are consistent with a previous study in ADNI showing that using a AD-specific

connectome compared to  an  intact  connectome did  not  significantly  impact  the  spread of  atrophy

predicted  by  a  diffusion  model  (Powell  et  al.,  2018).  Our  finding  also  aligns  with  the  network

propagation of tau and Aβ observed in AD as reported previously (Lee et al., 2022; Vogel et al., 2020).

Interestingly, in AD alone, Aβ distribution was less influenced by structural connectivity compared to

tau  deposition  and  atrophy  at  baseline.  This  supports  prior  studies,  including  (Franzmeier  et  al.,
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2020) and  (Vogel  et  al.,  2020),  which  have  demonstrated  that  tau  plays  a  key  role  in  AD

neurodegeneration and spreads via both functional and structural connectivity. These observations are

in line with the Braak staging scheme suggesting that tau pathology spreads along connections between

regions (Braak & Braak, 1991). Tau deposition has been shown  to closely correlate with patterns of

atrophy and cognitive dysfunction in AD (Bejanin et al., 2017; Harrison et al., 2019; Ossenkoppele et

al.,  2016).  In our  study,  we  observed  that  while  Aβ proteins  exhibited  similar  relationships  with

structural  connectivity  in  both  FHAD  and  AD,  tau  distribution  and  baseline  atrophy  were  more

influenced by structural connectivity in AD. This discrepancy could be due to the broader spatial extent

of atrophy and tau distribution in AD.

In  FHAD,  we  found that  the  pattern  of  brain  atrophy  progression  aligned  with  existing

structural connectivity. In contrast, in AD, no significant correlation was observed between atrophy

progression and current structural connectivity. However, when using the structural connectivity from

healthy adults, a significant correlation with the structurally connected regions was observed in both

FHAD and AD.  This  suggests  that  in  AD,  atrophy  may  continue  to  propagate  along  pre-existing

structural pathways, despite current damage to connectivity or that progression of atrophy results from

propagating pathology that occurred much earlier, on an intact connectome. This finding is also in line

with the observed ceiling effect of atrophy in AD, where the ability to detect tissue loss with MRI

appears to slow down or stop in many regions. As a result, the correlation between current structural

connectivity and regional atrophy progression is weaker than with the atrophy at baseline in AD. In

contrast,  localized white matter damage in FHAD does not seem sufficient to disrupt the progression

pattern  of  atrophy.  Indeed,  the  correlation  between  atrophy  progression  in  a  given  region  and its

structurally connected neighboring region remained consistent, whether we used the FHAD-specific

connectivity matrix or the matrix derived from healthy adults. Nonetheless, our findings align with the

network spread hypothesis initially proposed by (Braak & Braak, 1991), emphasizing the critical role

of structural connectivity in the distribution of pathological markers and atrophy progression in both

FHAD and AD.

Relationship with serotonin and glutamate receptors distribution

The spatial  distribution of  brain  atrophy at  baseline  was associated with higher  regional  levels  of

serotonin 5-HT6 and the metabotropic glutamate subtype 5 receptors (mGluR5) distribution in HC,

FHAD, and AD. A negative correlation was also detected between atrophy progression and the spatial

distribution of serotonin 5-HT6, most likely reflecting a ceiling effect of atrophy detection in AD.
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There was also a positive association between baseline atrophy and the distribution of serotonin 5-

HT1B receptors  that  was unique  to  FHAD and controls.  Both  5-HT6 and 5-HT1B receptors  play

significant roles in memory and learning (Childers & Robichaud, 2005). Indeed, when inhibited, 5-HT6

receptors have been shown to enhance cognitive function (Mitchell & Neumaier, 2005; Perez-Garcia &

Meneses, 2008). Moreover, antagonists of 5-HT1B receptors have been shown to improve memory and

cognitive performance in high-cognitive-demand conditions  (Buhot et al., 2000).  Our findings are in

line with these observations, revealing more atrophy in regions with higher 5-HT6 receptor densities in

normal aging, FHAD, and AD, all conditions where different levels of memory decline occur (Koen &

Yonelinas,  2014).  The relationships  found with  5-HT1B receptor  distribution  in  normal  aging and

FHAD suggest that these receptors might contribute most significantly to atrophy in these conditions.

In addition, elevated glutamate levels have been implicated in neurotoxicity and AD neurodegeneration

(Cheng et al., 2021; Findley et al., 2019). Our study identified a positive correlation between atrophy

distribution and higher regional levels of glutamate mGluR5 receptors in normal aging, FHAD, and

AD. The mGluR5 receptors might contribute to Aβ toxicity through various mechanisms, including

facilitating Aβ clustering (Renner et al., 2010). Furthermore, mGluR5 receptors may serve as a bridge

between Aβ and tau pathology in AD, eventually leading to tau phosphorylation (Larson et al., 2012).

The relationships with the mGluR5 receptor distribution found in this study supports the important role

of this receptor in neurodegeneration not only in AD, but also in normal aging and FHAD.

Strengths and limitations

This study has multiple strengths. It includes three demographically similar groups relative to age, sex

and education, including a control group. This allows for a direct comparison between FHAD and AD

in identifying both shared and distinct patterns of atrophy progression and underlying pathological

mechanisms. This study also utilized a multi-modal approach (T1-weighted MRI, diffusion MRI, tau-

PET,  and  Aβ-PET scans)  to  cover  multiple  facets  of  AD and  FHAD,  including  atrophy  patterns,

structural connectivity effects, and protein deposition. This provides a holistic view of the brain atrophy

progression in  both FHAD and AD. A negative relationship between atrophy progression and age,

possibly reflecting a ceiling effect in AD, was also identified, which could be crucial for understanding

the extent to which atrophy can progress or be detected, and for adequately interpreting findings. In

addition, the study extends beyond the commonly studied tau and Aβ proteins by exploring the role of

different receptors and transporters in atrophy. This exploration encompasses not only AD but also

FHAD and normal aging, thereby offering new insights for research in early intervention strategies.
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A few  limitations  should  also  be  noted.  This  study  does  not  account  for  all  potential

confounders, such as medication use or lifestyle factors like physical, cognitive, and social activities,

which might influence pathology progression. To mitigate the effect of potential confounding factors,

statistical  analyses were performed, controlling for age,  education,  BMI, sex and  APOe4 status.  In

addition,  the  study  relies  on  one  measure,  DBM,  for  measuring  atrophy,  and  DWI  for  structural

connectivity. The inclusion of cortical thickness and surface area measurements, as well as functional

MRI connectivity, could have enriched the findings. Another limitation is the study's focus on cortical

regions,  which overlooks the role of subcortical  areas in AD pathology. However,  cortical  atrophy

patterns have been suggested to be more specific for monitoring preclinical and early stages of AD

(Pini et al., 2016). Future studies could build upon our findings by incorporating multi-modal imaging

and  extending the  analysis  to  subcortical  regions  to  provide  a  more  holistic  understanding  of  the

complex interplay between structural connectivity, protein deposition, and atrophy in FHAD and AD.

Conclusion

This study delves into the pathological mechanisms at play in FHAD, highlighting both unique and

shared neurodegenerative mechanism between FHAD and AD. While structural connectivity influences

both atrophy and protein propagation in FHAD and AD, the extent of pathology appears to be less

severe  and less  widespread in  FHAD. This  study also revealed  that  regions  with  higher  levels  of

serotonergic and glutamatergic receptors may be especially susceptible to degeneration across normal

aging,  FHAD,  and  AD.  These  findings  not  only  shed  light  on  potential  biochemical  pathways

contributing to neurodegeneration but also suggest that AD atrophy may be influenced by mechanisms

present in both normal aging and FHAD, in addition to AD-specific pathology.
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Tables

Table 1. Number of subjects at each main step of the method for the patients with Alzheimer’s
disease (AD) and the individuals with a family history of AD (FHAD)
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Table 2. Descriptive statistics for the controls and participants with a family history of
Alzheimer’s disease (FHAD) and Alzheimer’s disease (AD) included in this study
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Figures

Figure 1. Five main steps of the method for the three modalities used in this study. The data were

first acquired from three different databases (step 1). Then, all neuroimaging data were processed using

different software specific to each modality, followed by quality control (QC) (step 2). Subsequently,

each brain map was parcellated using the Cammoun atlas with 448 cortical regions (step 3), and the site

effect  was regressed out  using  the  ComBat  software  (step  4).  Lastly,  we ensured  that  each  group

(participants with a family history of Alzheimer’s disease (FHAD) or with Alzheimer’s disease (AD)

and healthy controls (when applicable)) had a similar age and men/women proportion at baseline (step

5).
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Figure 2. Brain atrophy progression in individuals with a family history of Alzheimer’s disease

(FHAD) and patients with Alzheimer’s disease (AD) (A) Baseline atrophy (W-scores with age and

sex effects in normal aging regressed out) in FHAD and AD. (B) Positive (green) and negative (blue) β-

values  associated with higher and lower atrophy progression in FHAD and AD compared with healthy

controls (HC). Regions with more baseline atrophy overlap with regions with less atrophy progression.

(C) Cortical regions showing significant atrophy progression (negative atrophy progression in blue,

positive atrophy progression in green) in FHAD and AD after FDR corrections. 
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Figure 3. Brain atrophy progression in the seven resting-state Yeo networks in individuals with a

family history of Alzheimer’s disease (FHAD) and patients with Alzheimer’s disease (AD)  (A)

Positive and negative β-values associated with higher (white area:  b-values range=[0 - 0.002]) and

lower (gray area:  b-values range=[-0.002 - 0]) atrophy progression in each of the Yeo networks in

FHAD and AD. In AD, both the limbic and default mode network (DMN) demonstrated significantly

lower atrophy progression compared to healthy controls (HC). Conversely, the somatosensory network

showed an increased rate of atrophy progression (*p-valueFDR<.05). (B) Pearson’s correlations between

average baseline atrophy (W-Score) in each of the Yeo networks and the MoCA score, which evaluates

general cognitive abilities,  in  FHAD and AD. AD participants with higher baseline atrophy in the

dorsal attention (DA), frontoparietal  (FP),  and DMN networks had lower MoCA scores,  indicating

more cognitive deficits. SM: somatomotor network, DA: dorsal attention network, VA: ventral attention

network; FP: frontoparietal network; DMN: default mode network
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Figure 4. Relationships between brain atrophy, tau and Aβ distribution in individuals with a

family history of Alzheimer’s disease (FHAD) and Alzheimer’s disease (AD).  The patterns of tau

(A) and Aβ (B) distribution at baseline were significantly and negatively correlated with the atrophy

progression  only  in  AD  (*p-valuespin<.05).  Significant  and  positive  correlations  were  also  found

between  baseline  atrophy  and  both  tau  and  Aβ  distribution  in  FHAD  and  AD.  All  correlations

(Pearson’s r) were compared with null coefficient distributions using a model that preserves the spatial

auto-correlation between regions.
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Figure  5.  Relationships  with  structural  connectivity  in  participants  with  a  family  history  of

Alzheimer’s disease (FHAD) and patients with Alzheimer’s disease (AD). (A) This panel shows the

spatial correlations (Pearson’s r) between cortical atrophy progression in a given region and that in its

structurally connected (SC) regions in both FHAD and AD. The upper row depicts correlations using a

connectivity matrix from healthy adults, while the bottom row displays correlations using the group-

specific connectivity matrices. (B) This panel illustrates the spatial correlations between brain atrophy

progression, baseline atrophy, tau, and Aβ distribution in a region and those in its structurally connected

regions,  using  group-specific  structural  connectivity  matrices.  In  FHAD,  all  the  correlations  were

significant  while,  in  AD,  only  the  correlation  with  atrophy  progression  was  not  significant.  All

correlations were tested against spatial null coefficient distributions. 
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Figure 6. Serotonin and glutamate receptor distribution related to brain atrophy in individuals

with  a family  history of  Alzheimer’s  disease  (FHAD) and Alzheimer’s  disease  (AD).  (A)  The

spatial distribution of the serotonin 5-HT6 receptor in cortical regions was negatively correlated with

atrophy progression (β-values) in both FHAD and AD, but was only significant in AD after comparison

with a spatial null distribution and FDR correction (*p-valuespin-FDR<.05). (B) Positive and significant

correlations were observed between the serotonin 5-HT6 receptor distribution and baseline atrophy in

both groups, suggesting that the negative correlations most likely reflect a ceiling effect. In addition,

the distribution of the serotonin 5-HT1B receptor was significantly correlated with baseline atrophy,

but  only in FHAD. Finally,  significant correlations were observed between the glutamate mGluR5

receptor distribution and baseline atrophy in both groups.
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