Abstract
Background Generative artificial intelligence (AI) technology has the revolutionary potentials to augment clinical practice and telemedicine. The nuances of real-life patient scenarios and complex clinical environments demand a rigorous, evidence-based approach to ensure safe and effective application.
Methods We present a protocol for the systematic evaluation of generative AI large language models (LLMs) as chatbots within the context of clinical microbiology and infectious disease consultations. We aim to critically assess the clinical accuracy, comprehensiveness, coherence, and safety of recommendations produced by leading generative AI models, including Claude 2, Gemini Pro, GPT-4.0, and a GPT-4.0-based custom AI chatbot.
Discussion A standardised healthcare-specific prompt template is employed to elicit clinically impactful AI responses. Generated responses will be graded by a panel of human evaluators, encompassing a wide spectrum of domain expertise in clinical microbiology and virology and clinical infectious diseases. Evaluations are performed using a 5-point Likert scale across four clinical domains: factual consistency, comprehensiveness, coherence, and medical harmfulness. Our study will offer insights into the feasibility, limitations, and boundaries of generative AI in healthcare, providing guidance for future research and clinical implementation. Ethical guidelines and safety guardrails should be developed to uphold patient safety and clinical standards.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The author(s) received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study protocol was reviewed and approved by the Institutional Review Board of the University of Hong Kong (HKU) / Hospital Authority Hong Kong West Cluster (HKWC) – HKU/HA HKW IRB–UW 24-108. Informed consent was exempted.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Deidentified research data will be made publicly available when the study is completed and published.