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Abstract

Accurate assessment of progression and disease course in multiple sclerosis (MS) is vital for
timely and appropriate clinical intervention. The transition from relapsing-remitting MS (RRMS)
to secondary progressive MS (SPMS) is gradual and diagnosed retrospectively with a typical
delay of three years. To address this diagnostic delay, we developed a predictive model that is
able to distinguish between RRMS and SPMS with high accuracy, trained on data from
electronic health records collected at routine hospital visits obtained from the Swedish MS
Registry containing 22,748 patients with 197,227 hospital visits. To be useful within a clinical
setting, we applied conformal prediction to deliver valid measures of uncertainty in predictions at
the level of the individual patient. We showed that the model was theoretically and empirically
valid, having the highest efficiency at a 92% confidence level, and demonstrated on an external
test set that it enables effective prediction of the clinical course of a patient with individual
confidence measures. We applied the model to a set of patients who transitioned from RRMS to
SPMS during the cohort timeframe and showed that we can accurately predict when patients
transition from RRMS to SPMS. We also identified new patients who, with high probability, are in
the transition phase from RRMS to SPMS but have not yet received a clinical diagnosis. We
conclude that our methodology can assist in monitoring MS disease progression and proactively
identify patients undergoing transition to SPMS. An anonymized, publically accessible version of
the model is available at https://msp-tracker.serve.scilifelab.se/.
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Introduction
Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease affecting the central
nervous system. It is a leading cause of neurological disability in young adults globally. The
course of MS is heterogeneous but typically involves an early, predominantly inflammatory
disease phase termed relapsing-remitting MS (RRMS) and a later, principally degenerative
stage known as secondary progressive MS (SPMS). SPMS is diagnosed retrospectively, where
the average delay is three years1. While current disease-modifying therapies are effective in
RRMS, the majority have very limited benefit in SPMS, if at all. Proactive recognition of patients
with progressive disease could limit exposure to ineffective medications and their side effects.
Early identification of patients eventually fulfilling the criteria of SPMS would, therefore, be a
valuable addition to the armamentarium of clinical practitioners, enabling meaningful
intervention.

Previous studies have explored invasive and non-invasive biomarkers, including biochemical
and imaging-based measures, for predicting disease progression2,3, and the transition to
SPMS4–11. However, the predictive value of these markers is limited4,12, they lack an uncertainty
measure, and they are not routinely used in clinical practice. One potential approach to timely
disease progression identification is using artificial intelligence (AI) and machine learning (ML).
Progress in these fields has opened up the possibility of assimilating and interpreting complex
data in healthcare and is expected to be transformational13. Machine learning and deep learning
(DL)-based methods have been developed to predict the transition from RRMS to SPMS14.

In a study by Manouchehrinia et al., the authors achieved an accuracy of 77 to 87% when
predicting the risk of conversion to SPMS in 10, 15, and 20 years using a nomogram-based
method15. The study used electronic health record data (EHR) from 8,825 RR onset MS patients
in Sweden and was validated using 6,498 patients. However, the model was developed only
using data from the first hospital visit from a certain patient, and there were no risk scores
associated with each hospital visit. A similar study to predict transition to SPMS within 180, 360,
or 720 days was carried out by Seccia et al, utilizing 1,624 patients with 18,574 clinical
records14. The tool was designed to make predictions using both historical clinical records and
individual follow-ups. While this study demonstrated higher specificity and recall, the precision of
the predictions was lower, resulting in an increased number of false positives being included.
Both studies focused solely on RRMS patients, potentially missing those who had transitioned.
Additionally, the studies did not incorporate any uncertainty measure for their predictions,
making the model susceptible to errors when applied to external data.

As the transition from RRMS to SPMS is gradual, with overlapping disease processes during
this transitional period, developing a binary classifier is challenging16. More generally, the
adoption of predictive AI tools in healthcare thus far has been limited by more than solely their
measured performance. Significant shortcomings in the clinical setting include an inability to
convey uncertainty in a given prediction17 and a lack of explainability or interpretability for a
given prediction18. The explainable AI (XAI) models can help healthcare practitioners
understand and more easily verify the results provided by these models.
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Conformal prediction (CP) is a framework for complementing single-valued predictions from
standard ML/AI classifiers with a valid measure of the prediction’s uncertainty19. At a specified
confidence level, the conformal predictor will provide a region around the point prediction
containing the true label. For instance, when predicting a patient's RRMS or SPMS disease
state, CP produces four outputs: {RRMS}, {SPMS}, {RRMS, SPMS}, and {}. If the CP output
contains multiple-labels, the prediction incorporates more than one true label, thus predicting a
patient to be both RRMS and SPMS. Conversely, if a CP generates empty predictions, it
signifies that a valid prediction cannot be made. We have recently demonstrated that CP can
substantially reduce the number of errors made by an AI classifier in grading prostate biopsies20,
and that ML in combination with CP can aid in predicting the transition of SPMS based on
biomarkers measured in cerebrospinal fluid (CSF) analysis21. However, this approach has not
been assessed with EHR data alone, which could circumvent the need for invasive or costly
biomarkers.

In this study, we develop conformal predictors for ML-assisted diagnostics in MS using clinical
information from the EHR collected from 22,748 MS patients with 197,227 hospital visits. We
demonstrate that the model is well-calibrated, meaning the conformal predictors are valid. This
allows us to produce reliable predictive uncertainties for each patient’s hospital visit. We also
show how these predictors can be used to monitor a patient’s disease progression in the
spectrum between RRMS and SPMS, allowing earlier identification of patients fulfilling the
criteria of SPMS. We then incorporated SHapley Additive exPlanations (SHAP) to demonstrate
the contributions of clinical variables to the individual predictions and the entire test dataset22.

We believe this approach can assist in monitoring the disease progression, earlier identification
of transition to SPMS, and provide a powerful tool for tracking interventions’ effects that can also
be used in clinical trials. Finally, we have set up a publicly accessible web server deploying the
ML architecture for research use only.
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Results
We trained an AI model to identify patients with diagnoses of either RRMS or SPMS using EHR
data from the Swedish MS Registry (SMSReg)23. The SMSReg is a nationwide registry
containing data from 22,748 MS patients, with 197,227 hospital visits, collected between 1972
and 2022. The registry has high validity and broad coverage, estimated to include over 80% of
all people with MS in Sweden24. More than 850 neurologists have contributed data to the
registry.

The data from the registry was processed as illustrated in Fig. 1. Only patients with an RRMS or
SPMS diagnosis at the first presentation were included. Duplicate entries were removed, and
individual patient records were divided into hospital visits. Fifty-six clinical parameters from the
EHR were used to generate 61 derived features (Supplementary Table 1). The dataset was split
into four non-overlapping subsets of patients for the training (individual patients, np=10,067),
validation (np=1,078), calibration (np=2,157), and testing (np=1,080) of the models. The
baseline characteristics of the patients in these four subsets were similar, as outlined in Table 1.

To account for uncertainty on an individual patient level, we used conformal prediction and
assessed the model efficiency as the fraction of all the predictions, resulting in a single-label
prediction. We also evaluated the model's validity, i.e., the error rate did not exceed the
pre-specified significance level of the conformal predictor, added XAI using SHAP to elucidate
the features influencing the predictions, and developed a publicly available model for use in
research.
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Fig. 1: Overview of model training, validation, calibration, and testing. (a) 70% of the data
was used for training, with (b) 7.5% used as a validation set for the validation. (c) 15% of the
data was kept aside as the calibration set(d) 7.5% was set aside as the test set to evaluate the
model efficiency.
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Table 1: Patient characteristics in the train, valid, calibration, and test dataset.
Distributions of patients with diagnoses of RRMS and SPMS. Distributions are similar in all
datasets (train, valid, calibration, and test). In this table, patients recorded to have a diagnosis of
RRMS at the final hospital visit were categorized as RRMS. Patients with a diagnosis of SPMS
were categorized as SPMS. In the SPMS patients, patients with SPMS at initial and at final
hospital visits (SPMS-SPMS) 1np=1,859; nv=11,320, 2np=193; nv=1,178, 3np=395; nv=2,551,
4np=203; nv=1,187 and patients with RRMS at initial and SPMS at final hospital visits
(RRMS-SPMS) 1np=1,318; nv=16,171, 2np=158; nv=1,762, 3np=284; nv=3,588, 4np=149;
nv=1,775. np=number of individual patients, nv=number of hospital visits.

Train dataset
np=10,067; nv=79,721

Valid dataset
np=1,078; nv=8,388

Calibration dataset
np=2,157; nv=17,339

Test dataset
np=1,080; nv=8,336

Features

RRMS
(np=6,890:
nv=52,230)

SPMS1

(np=3,177:
nv=27,491)

RRMS
(np=727:
nv=5,448)

SPMS2

(np=351:
nv=2,940)

RRMS
(np=1,478:
nv=11,200)

SPMS3

(np=679:
nv=6,139)

RRMS
(np=728:
nv=5,374)

SPMS4

(np=352:
nv=2,962)

Female % 72.2 69.7 70.4 75.5 72.3 70.4 73.1 68.8

Age ± SD 40.4 ± 10.9 56.3 ± 10.8
39.9 ±
11.1

55.8 ±
10.6 40.5 ± 11.3 55.9 ± 10.8

40.9 ±
11.9

54.8 ±
10.9

EDSS ±
SD 1.7 ± 1.2 5.6 ± 1.7 1.58 ± 1.1 5.6 ± 1.7 1.8 ± 1.2 5.6 ± 1.6 1.7 ± 1.2 5.6 ± 1.7

Disease
duration ±
SD 8.9 ± 7.2 22.1 ± 11.4 8.6 ± 7.9

21.5 ±
11.3 8.5 ± 6.9 20.9 ± 10.8 9.0 ± 7.4

21.7 ±
10.4

Debut
relapse
age ± SD 24.1 ± 16.6 26.5 ± 17.3

22.8 ±
16.8

26.5 ±
17.6

24.15 ±
17.0 28.7 ± 17.2

24.2 ±
17.2

26.0 ±
16.7
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Machine learning models on EHR data produce accurate models
to predict RRMS and SPMS
First, we assessed the performance of different ML models in predicting whether a patient had a
diagnosis of RRMS or SPMS at a given hospital visit. Four ML models were trained: logistic
regression, support vector machines (SVM), gradient-boosting (GB), random forest (RF), and a
DL model ('long short-term memory’, LSTM). The latter was selected for its ability to use
historical information from prior hospital visits to guide predictions for the same patient in
subsequent visits.

We evaluated the ML and DL models using tenfold cross-validation on the combined training
and validation datasets (individual patients, np=11,145; hospital visits, nv=88,109). Based on the
macro average F1 score, the combined measure of precision and recall, the performance in
discriminating between RRMS and SPMS at hospital visits was high. RF, SVM, and GB all had
an F1 score of 0.91. These three models significantly outperformed logistic regression and
LSTM (p< 0.05, Supplementary Fig. 1 and 2). While the three traditional ML models performed
similarly to one another, RF had the lowest variation (0.905 ± 0.007), and we selected this for
subsequent analysis.

In many cases, the information the different clinical variables hold is redundant. We investigated
if we could identify a minimal number of clinical features used in the model without negatively
impacting the overall performance. On average, the RF model performed best when we
excluded the information from the patient-reported Multiple Sclerosis Impact Scale (MSIS-29),
retaining 27 features (Supplementary Table S1, and Supplementary Fig. 3 and 4).

Conformal prediction produces valid and efficient models for
predicting MS diagnosis at a hospital visit
We added a valid measure of the prediction uncertainty using CP to complement the
single-valued prediction from the best-performing RF model. The output p-values from the
model were calibrated using the calibration dataset with data from 2,157 patients at 17,339
hospital visits. The calibration plot (Fig. 2a) demonstrates the very close correspondence
between the specified significance level and the resulting observed prediction error, indicating
excellent validity of the conformal predictor.

The performance of the conformal predictor can be illustrated at different pre-specified
significance levels (Fig. 2b). The conformal predictor had the highest proportion of correct
single-label predictions at a significance level of 0.08, i.e., a confidence level of 92%.
Consequently, we evaluated the efficiency of the conformal predictor at a 92% confidence level
for predicting RRMS or SPMS in the test data set.
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Fig. 2: Calibration and efficiency plots on the test set data. (a) The calibration plot shows
the observed prediction error on the y-axis and the prespecified significance level on the x-axis,
i.e., the tolerated error rate. The observed error rate is close to the diagonal line, indicating a
valid conformal predictor. (b) The efficiency plot shows the label distribution of correct
single-label, incorrect single-label, multiple-label, and empty predictions for the test set at
different significant levels. The plot demonstrates the expected confidence-efficiency trade-off,
whereby lower significance levels (higher confidence levels) result in the conformal predictor
returning an increasing proportion of multiple-label prediction and vice versa, returning an
increased proportion of empty prediction at lower confidence. The confidence level corresponds
to 1-significance level. The peak single-label prediction (i.e., the highest proportion of
single-label predictions) is at 92% confidence, corresponding to a significance of 0.08. (c)
Predictions in the test set data at 92% confidence (highest efficiency) with the predictions RRMS
and SPMS indicate single-label prediction, whereas empty represents no prediction, and
multiple-label represents both RRMS and SPMS prediction. (d) Normalized bubble plot showing
prediction of the test set at 92% confidence.
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Prediction with confidence for all the hospital visits using
conformal prediction
The test dataset contained 1,080 patients and 8,336 hospital visits. Of these, 728 patients
(5,374 hospital visits) were diagnosed with RRMS throughout, and 203 with SPMS (1,187
hospital visits). The remaining 149 patients (1,775 hospital visits) had a diagnosis of RRMS at
the first visit and a diagnosis of SPMS at the last hospital visit. Based on these data, we
evaluated the conformal predictor's ability to determine the correct diagnosis i) at each hospital
visit, ii) the final diagnosis for each patient, and iii) in patients with an initial diagnosis of RRMS
and a final diagnosis of SPMS (“transitioning” patients). The final group was also evaluated
based on the visit at which the patient was first diagnosed with SPMS relative to the conformal
predictor´s initial prediction of SPMS for each patient.

When analyzing each hospital visit, the proportion of correct single-label predictions was high
(92.7%). There were a total of 579 (6.9%) incorrect single-label predictions, with no instances of
empty predictions and 33 (0.4%) instances of multiple-label predictions (RRMS|SPMS) (Fig. 2c
and 2d). From the incorrect predictions, in 478 cases (7.7%), the patients were erroneously
predicted as having SPMS, and in 101 cases (4.8%), RRMS. Since the course of MS is
heterogeneous with periods of relapses, it is not unexpected that at some hospital visits, there
will be incorrect predictions. However, a closer inspection of these errors reveals that 50% of the
erroneous SPMS predictions originated from only 31 patients (2.9% of all MS patients).
Similarly, 50% of the incorrect RRMS predictions originated from only 11 patients (1% of all MS
patients) (Supplementary Fig. 5). These results indicate that the correct single prediction
efficiency of the conformal predictor is high, and the erroneous predictions often originate from a
smaller fraction of all patients.

Conformal prediction enables efficient prediction of MS diagnosis
on a patient level with individual confidence measures
As SPMS is diagnosed retrospectively, we sought to evaluate the conformal predictors' ability to
predict clinical courses based on the latest available diagnosis. The overall efficiency for
predicting the latest diagnosis was high (94.4%) (Table 2). There were no empty predictions,
and only one patient diagnosed with SPMS received multiple-label predictions (RRMS|SPMS).
At a confidence level of 92%, there were 60 erroneous predictions. Fifty-five of these (7.6%)
were patients with the latest diagnosis of RRMS who were instead predicted to have SPMS.
The remaining five (1.4%) patients had a final diagnosis of SPMS and were predicted to have
RRMS.
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Following the prediction efficiency being markedly asymmetrical (98.3% for SPMS, 92.4% for
RRMS), we investigated the conformal predictor’s output p-values for the 55 patients incorrectly
predicted to have SPMS. These cases could be grouped into two categories: a majority (39
patients, 5.4%) had predictions of RRMS at the initial visit, with predictions of SPMS at later
visits, while the clinical diagnosis remained RRMS (Supplementary Fig. 6).

A small group of patients (15 patients, 2.1%) persistently had predictions of SPMS at all visits
despite diagnoses of RRMS, suggesting they could have SPMS already since their first
presentation (Supplementary Fig. 7). One patient had conflicting predictions with p-values
suggesting uncertain predictions (Supplementary Fig. 8).

Table 2: Prediction at final hospital visits on the test dataset with a confidence of 92%
compared to the clinical diagnosis. The predictions RRMS and SPMS indicate single-label
prediction, whereas empty represents no prediction, and multiple-label represents both RRMS
and SPMS prediction for the hospital visit. Np=number of individual patients. *Percentages
would not add up due to rounding-off.

Conformal prediction with a
confidence of 92%. Overall
efficiency was 94.4%.

Clinical diagnosis

RRMS
(np=728)

SPMS
(np=352)

Prediction

RRMS 673 (92.4%) 5 (1.4%)

SPMS 55 (7.6%) 346 (98.3%)

Empty-{} 0 (0%) 0 (0%)

Multiple-label
(RRMS|SPMS) 0 (0%) 1 (0.3%)
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Conformal prediction coupled with XAI enables the prediction of
transition states from RRMS to SPMS diagnosis
We applied our model to predict the clinical course of transitioning patients. Given the
retrospective nature of the SPMS diagnosis and previously demonstrated diagnostic delays, we
assessed the conformal predictor's performance in patients who “transitioned” from a clinical
course of RRMS to SPMS between the first and last visit (np=149, nv= 1,775).

Of 149 cases, the conformal predictor correctly predicted 107 (71.8%) to have RRMS at onset
and later transition to SPMS (Supplementary Table 2., Fig. 3A for a patient example). In 37
cases (24.8%), the conformal predictor predicted that the patient had SPMS from disease onset.
In 29 of these cases, they were predicted as having SPMS at all 213 subsequent hospital visits.
The remaining eight cases had subsequent multiple-label or incorrect RRMS predictions,
followed by SPMS predictions. These results display high agreement between the diagnosis
and predictions; 96.6% are correctly predicted to have SPMS, and when the two deviate, the
conformal predictor typically predicts the patient as having SPMS from the first presentation.

To aid in understanding and verifying the predictions made at each hospital visit, the weightage
given to features by the model can be interpreted using SHAP (Fig. 3b). Here, we can see that
conformal predictor predicts the patient to have SPMS at the hospital visit at 3.8 years, with a
moderate EDSS score of 4.0, which would typically not be sufficient for an SPMS diagnosis.
Almost three years later (year 6.5), the patient had a higher p-value for SPMS, which is
supported by the EDSS score of 6.0.

Upon analysis of collective feature contribution using the entire test set data, the model
demonstrates that EDSS and the age at the hospital visit had notable contributions compared to
other features (Supplementary Fig. 12). The features SDMT score, age at debut relapse, age at
MRI, first-line DMT, debut age, treatment, and age at SDMT had moderate contributions
compared to the rest of the 18 features. This demonstrates the ability of CP and XAI to aid in
early diagnosis, which also may assist in enabling meaningful intervention at an earlier stage.
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Fig. 3: Predicted disease course at 92% confidence for an example patient with 13
hospital visits complemented with XAI. (a) Disease course of a transitioning patient with
RRMS at the initial hospital visit and SPMS at the final hospital visit. In disease course plot 1
(top figure), the predictions consistently match the clinical diagnosis at each hospital visit,
showcasing the model's ability to identify the transition time at year 3.8. However, clinically,
SPMS assessment usually transpires between years 3.8 and 7.1, as indicated by the gray zone,
with an average delay of 3 years. Thus, the model identifies SPMS early, approximately 3 years
in advance. Disease-modifying treatment names taken during the disease course are listed atop

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303566doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303566
http://creativecommons.org/licenses/by-nc-nd/4.0/


the figure. The disease course plot 2 (bottom figure) manifests the progression of the disease
towards SPMS, indicating the disease worsening over time. A clear drop in RRMS p-value
occurs between years 0.7 and 3.8, and at the same time, an increasing p-value score for SPMS
is observed (between years 0.7 and 6.5). As the disability accumulates, the plot illustrates a
decreasing RRMS p-value with an increasing SPMS p-value. (b) Feature contribution
explanation using force plots for the predictions on the hospital visit at years 0.7, 3.8, and 6.5 of
the patient. During the hospital visit year 0.7, the model predicted RRMS, driven by lower EDSS
score, first-line DMT, and age at the visit. Meanwhile, the features contributing to SPMS are
minimal. Conversely, in the year 3.8, the model predicted SPMS, influenced by factors such as
EDSS score, age at relapse, age at SDMT, lack of steroid treatment, and complete remission of
the last relapse. Features such as age at visit, first-line DMT, and age at MRI contributed
towards RRMS. By year 6.5, a high EDSS score significantly influenced the prediction of SPMS,
while first-line DMT and age at visit contributed to RRMS. (The results of all visits are found in
Supplementary Fig. 9-11).

Predicting the timing of a change in diagnosis from RRMS to
SPMS
Next, we examined the concurrence between the time (hospital visit) when the patient was
diagnosed with SPMS and the prediction made by the model at 92% confidence. In 107 cases
that transitioned from RRMS to SPMS (Supplementary Table 2), there was a precise time point
when the conformal predictor predicted a change in disease state. In 49 cases (45.8%), the time
for a change in disease state was predicted the same as the clinician has set in retrospect (Fig.
4). In 22 cases (20.6%), it was just one hospital visit in difference. In the remaining 36 cases
(33.6%), the conformal predictor predicted SPMS at an earlier hospital visit (20 cases, 18.7%) or
a later hospital (16 cases, 15.0%). These results display a high degree of agreement with the
time for a change in diagnosis from RRMS to SPMS and the prediction made by the model. In
85% of the cases, the predictions agreed with the time for a change in diagnosis within a
deviation of one visit or predicted the time for change at an earlier time.
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Fig. 4: Difference of the time (hospital visits and years) for change from RRMS to SPMS
diagnosis (107 patients) as found in EHR compared to the predictions at 92% confidence.
An earlier prediction to SPMS is illustrated by negative values and vice-versa for a later SPMS
prediction. (a) The difference in hospital visits. (b) The difference in years. Example: In Fig. 4A,
11 patients were predicted SPMS at one visit earlier and later than the clinician.
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Effects of increasing the confidence level in the conformal
prediction for predicting diagnosis
In six out of the 149 cases where the patient changed their diagnosis from RRMS at debut to
SPMS at the latest diagnosis, the predictions made by the conformal predictor were associated
with a higher degree of uncertainty. This means that for at least two consecutive hospital visits
with a period of >3 months between the visits, the patient was predicted SPMS but then
changed back to RRMS, which is generally not considered possible.

Since the evaluations made of the conformal predictor were made at a confidence of 92%,
where the model’s single-label predictions were highest, an alternating prediction can thus
indicate that the conformal predictor cannot assign correct single predictions for these cases
(Fig. 5). To investigate this further, we analyzed these cases with 95% and 99% confidence,
respectively. Increasing the confidence level led to an increase in the number of hospital visits
where the patient was predicted to have multiple-label (RRMS|SPMS) (Fig. 6 and
Supplementary Fig. 13). By predicting multiple-label means, the model makes no errors
compared to clinical diagnosis. Similar observations were found for the remaining five cases
(Supplementary Fig. 13-28).

The results of the conformal predictor for predicting diagnosis at the hospital visits when in
general, increasing the confidence from 92% to 95% and 99% are found in Table 3. There are
only 69 single-label misclassifications at 99% confidence (error of 0.8%), compared to 579 at
92% (error of 6.9%), but multiple-label predictions (RRMS|SPMS) increased from 33 to 1,718.

Since multiple-label predictions are when the model cannot distinguish between RRMS and
SPMS to assign a single-label, these predictions indicate the patient is closer to or can be in
transition to SPMS. We also found that some transitioning patients display non-typical disease
progression, with a period of four to eight and even up to 15 years with multiple predictions,
resembling an extended transition period for these cases. At a confidence level of 92%, 17
(1.6%) of all MS patients display this “atypical” disease progression, where changing the
confidence level can be used to give feedback to a physician as a tool to aid in clinical
decision-making.
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Fig. 5: Patient 1. The prediction results at a confidence of 92% for a patient with 15
hospital visits (13.4 years). At two consecutive hospital visits, the patient was predicted SPMS
with more than three months between the visits (years 4.1 and 4.8), followed by an RRMS
prediction at year 5.3. This alternation is also associated with low p-values for RRMS and SPMS
for the visits (disease course plot 2). Clinically, the transition occurred at the year 6.1, where the
identification of the transition would tentatively be between the years 6.1 to 9.7.
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Fig. 6: Patient 1. The prediction results at a confidence of 95% for a patient with 15
hospital visits (13.4 years). Increasing the confidence level from 92% to 95% allows for more
multiple-label predictions between years 4.1 and 7.7. From year 8.4 and onwards, the model
predicts only single-label SPMS. Here, the model does not make any errors but rather flags
these visits 4.1, 4.8, 6.4, 7.4, and 7.7 for human analysis. The model predicts SPMS at year 6.1
with 95% confidence, aligning with the clinical diagnosis gaining earlier identification of SPMS,
compared to clinical identification of SPMS between years 6.1 and 9.7.
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Table 3: Prediction on all the hospital visits on the test dataset with a confidence of 92%,
95%, and 99% compared to the clinical diagnosis. The predictions of RRMS and SPMS
indicate single-label prediction, empty represents no valid prediction, and multiple-label
represents both RRMS and SPMS prediction for the hospital visit. Nv=number of hospital
visits.*Percentages would not add up due to rounding off.

Predictions

92% confidence 95% confidence 99% confidence

RRMS
(nv=6,231)

SPMS
(nv=2,105)

RRMS
(nv=6,231)

SPMS
(nv=2,105)

RRMS
(nv=6,231)

SPMS
(nv=2,105)

RRMS
5,737
(92.1%)

101
(4.8%)

5,619
(90.2%)

45
(2.1%)

5,297
(85%)

3
(0.1%)

SPMS
478
(7.7%)

1,987
(94.4%)

281
(4.5%)

1,815
(86.2%)

66
(1.1%)

1,252
(59.5%)

Empty-{}
0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

Multiple-label
(RRMS|SPMS)

16
(0.3%)

17
(0.8%)

331
(5.3%)

245
(11.6%)

868
(13.9%)

850
(40.4%)

Publicly available web service
The model we have developed is based on retrospective data collected in Sweden. To aid in
enabling our model to be available to other researchers, we have built a publicly available model
with an interface named ‘MSP-tracker (Multiple Sclerosis Progression-tracker)’. First, there was
no statistically significant difference between the performance of the model without MSIS model
and a model that only included basic (Supplementary Table 1, Basic info) and relapse-related
information (Supplementary Table 1, relapse data), ‘Basic Info+Relapse’ (Supplementary Fig. 3
and 4). Secondly, we removed all possibly identifiable information from the data; the year of birth
was used instead of the exact date, and all other information with dates was reduced to year
and month, making an anonymized model. We found no significant loss in performance
difference between anonymized MSP-tracker and its counterpart ‘Basic Info + Relapse’
(p-value= 0.92), indicating no decay in performance by anonymizing the data.

The anonymized version of the model is available online (https://msp-tracker.serve.scilifelab.se/)
and configured to accept up to 25 hospital visits. The web server can receive either direct input
or from uploaded CSV files. The model can also be used at user-defined confidence levels, with
output results displayed as disease course plots. The model explanation using SHAP is
available post-prediction, yielding both global interpretations on the input data and individual
interpretations at each hospital visit.
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Discussion
Having a clear understanding of the disease course and its current state is essential in MS, as
available treatments and treatment goals vary depending on the phase of the disease. Though
there are many disease-modifying treatments for RRMS, the treatments used for SPMS are few,
with relatively limited efficacy25,26. The identification of the transition from RRMS to SPMS is
made retrospectively, often with a delay of several years, and still remains a challenge1.
Therefore, early recognition of patients with a risk of progressive disease could enable timely,
meaningful interventions and also restrict unnecessary exposure to medications with associated
side effects in the longer term.

We present here a first-of-its-kind predictive model that is able to distinguish between RRMS
and SPMS at high accuracy, trained on data from EHR collected at routine hospital visits. To
enable future usefulness in clinical settings and research, we applied conformal prediction to
deliver valid measures of uncertainty in predictions on individual patient levels. We successfully
produced a theoretical and empirically valid model with the highest efficiency at 92% confidence
level and demonstrated on an external test set that it enables effective prediction of a patient’s
clinical course with individual confidence measures (Fig. 7).

Clinical AI tools must convey predictive uncertainty for each individual patient17. We have
recently demonstrated that CP-enabled AI can support predictions with user-defined
confidence20. A well-performing CP should ideally generate fewer unreliable predictions. In this
study, the model delivers 78% single-label predictions and 20% unreliable predictions at 99%
confidence, marking the error rate below 1%. When faced with unreliable predictions, the
explainable AI becomes essential to elucidate the reason behind these predictions. Both CP
and explainable AI equip tools for users to scrutinize and analyze the occasionally unreliable
predictions. Here, unreliable predictions are identified, thus allowing deeper analysis by an
expert neurologist

The clinical course for the transition from RRMS to SPMS has been defined by Lublin et al27 as
the “progressive accumulation of disability after [an] initial relapsing course" assessed, at a
minimum, annually28. As no “gold standard” criteria exist beyond this27,29, the SPMS diagnosis
ultimately rests on the individual clinician's judgment, primarily using the patient’s history and
the clinical examination. Lorscheider et al.30 have since further developed the definition of SPMS
by assessing the performance of standardized criteria against the “ground truth” of a consensus
diagnosis by independent, expert neurologists. Multiple permutations of seven different
EDSS-related criteria were generated and tested against the independent, consensus diagnosis
with the best-performing permutation proposed as standardized criteria for SPMS,
demonstrating performance comparable to the physician's diagnosis.
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Fig. 7: Summary figure illustrating a comprehensive view of the entire project. A predictive
model, capable of distinguishing between RRMS and SPMS, was trained on EHR data collected
during hospital visits in Sweden. Conformal prediction was incorporated to provide valid
measures of uncertainty for predictions at the individual patient level. The model showed proof
of validity and exhibited high performance on the test set data. Additionally, SHAP was utilized
to understand the contribution of features in each prediction.

While not widely used in clinical practice, their standardized criteria did show a notably higher
sensitivity than the physician diagnosis and identified SPMS patients around three years earlier
than the physician, though the specificity was lower. Using these criteria, it has been
demonstrated that at the time of SPMS diagnosis, individuals will typically have EDSS scores
above 429,30 with disease durations greater than ten years30. The importance of the EDSS score
in determining the transition from RRMS to SPMS is also reflected in our model, which had the
largest contribution to predictions. On the other hand, other factors, such as the age at visit or
time since diagnosis, also contributed substantially to the predictions in our model, but were not
considered as part of the criteria described by Lorscheider et al. More importantly, the now
proposed approach enables objective predictions, trained, validated, and calibrated on more
than 13,000 patients with over 105,000 hospital visits. Each prediction is complemented with a
measure of uncertainty, and the CP enables tracking the disease progression over time.
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Multiple approaches have been described to predict the conversion from RRMS to
SPMS10,14,15,31. In the study by Manouchehrinia et al., data from multiple cohorts was utilized,
and the prediction method was specifically designed for patients with RRMS15. However, the
model may not be applicable to patients initially diagnosed with SPMS, a limitation shared with
studies by Seccia et al14 and Skoog et al10. In contrast, Ziemssen et al. categorize patients as
RRMS, SPMS, or transitioning, using EHR and questionnaire data addressing this limitation31. In
comparison, our study utilized and exhibited superior results and implemented an uncertainty
measure for each hospital visit of a patient. Importantly, our model does not rely on additional
questionnaire data and was able to demonstrate the progression of the disease for individual
patients, which sets it apart from previous approaches. Moreover, the other models are
susceptible to systematic differences between the training and external data or data drift over
time. Using conformal prediction provides a robust means of handling uncertainties and
addressing potential shifts in data over time20.

Conformal prediction proves valuable in recognizing new data that deviates from the
characteristics of the training data. This is relevant when predicting an external dataset or when
encountering data that the model has not seen before. This study has trained the model on data
from over 850 clinicians and more than 60 Swedish hospitals. Although the model exhibits
notable performance, this might not hold true when predicting external data or on unfamiliar
cases within Sweden, signifying the use of CP to identify these. More than 80% of all Swedish
MS patients are present in the Swedish MS registry, and data from other countries has not been
part of this study, so generalization at large poses a challenge that needs to be addressed. Data
drift over the years can also lead to an increase in unreliable predictions, which warns the
recalibration necessary for the underlying AI and CP system.

The major strength of this study is using CP for predicting disease transition and disease state
at each visit, thereby outlining the disease course of a patient. By basing predictions on clinical
data already collected during hospital visits, the need for additional data collection, such as
biological markers or questionnaires, is eliminated, thereby facilitating easier implementation
and integration of the model in healthcare and research settings. Moreover, the model was also
integrated with explainable AI, facilitating easier interpretation and assignment of labels for
predictions regarded as unreliable.

The limitation of this study is the absence of analysis of the prospective data collected from the
clinics. By conducting prospective data analysis, the practicality of the model at the clinics can
be evaluated. Moreover, the model has not undergone evaluation using external data from other
cohorts outside of Sweden. Validating CP on external data could show the potential of the
model. To aid in this process, an anonymized version of the model is available online
(https://msp-tracker.serve.scilifelab.se/).
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Methods

Ethical approval
The study was approved by the Ethics Review Authority at Uppsala University (Dnr 2021-00702).

Dataset and Quality Control
The data was obtained from SMSreg23, containing 22,748 patients with 197,227 hospital visits,
with clinical measurements collected during each hospital visit, collected between 1972 and
2022. The data was cleaned for duplicates and missing essential data points for Expanded
Disability Status Scale (EDSS) score, date of birth, progress during each visit such as
RRMS/SPMS/PPMS, and debut date. The data comprises patients with transition (initial
diagnosis as RRMS and final diagnosis as SPMS), RRMS (initial and final diagnosis as RRMS),
and SPMS (initial and final diagnosis as SPMS). For the RRMS patients, all the visits within two
years of the last visit were removed as their clinical endpoint had not yet been determined. This
ensures the removal of all the unidentified transitions from the data. After quality control and
removal of PPMS patients, 17,045 patients with 143,053 hospital visits were retained.

A hospital visit consisted of age and EDSS measured at the visit. For each visit, the last
collected clinical measures such as treatment, clinical assessment tests, relapse data, MRI
data, and MSIS data (supplement table S1) were appended, along with the age at which these
measures were collected. For therapeutics, the drugs/treatments were categorized into first-line,
second-line DMT, relapse treatment drugs, stem cell treatment, and any other drugs
(supplement table S1).

For data relating to relapses, the total number of occurrences of different categories of relapses
(including unilateral optic neuritis, sensory/afferent monofocal relapse, multifocal relapse, and
relapses requiring steroid treatment) were summed up until the day of the hospital visit before
appending. Additional information regarding treatment received for the relapse and remission of
the last relapse was also included as binary variables. For the MRI data, the number of
T2-weighted lesions, and the number and site of T1-weighted gadolinium-enhancing lesions (ie.
brain vs. spinal cord) were considered. Each type of lesion was binned into three groups based
on the number of lesions present at the hospital visit: 1) ≤9, 2) >9 and ≤20, 3) >20 lesions.

For a patient, during the initial hospital visit EDSS, age at visit, age at diagnosis, age at debut
relapse and sex were recorded. However, certain parameters may be missing as they have not
yet been measured. The missing values, including those for other parameters of the patient,
were imputed using the value -1.
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Data splitting
There were three possible types of data for a patient: a patient having hospital visits with only
RRMS, only SPMS, or RRMS at debut, and SPMS at the latest. To maintain an even distribution
of these patients across the data splits, a stratified split was applied, grouping all the visits
associated with a patient in the same split of the data. Thereby dividing the data into four
subsets: training (70%), validation (7.5%), calibration (15%), and test (7.5%) datasets (Table 4).
The validation set is created to optimize the deep learning model, and therefore, for traditional
machine learning models, the validation dataset is merged with the training set for training. For
cross-validation used in this study, the training and validation sets are merged for both deep
learning and machine learning models and used for training.

Table 4: Data splits created from SMSREG data. The dataset is divided into train, valid,
calibration, and test sets, each containing unique patients and their EHR.

Data set
Number of
patients

Number of
hospital visits

Number of RRMS
patients

Number of SPMS
patients

Number of
transitioning
patients

Training set (70%) 10,067 79,721 6,890 (68%) 1,859 (18%) 1,318 (13%)

Validation set
(7.5%) 1,078 8,388 727 (67%) 193 (18%) 158 (15%)

Calibration set
(15%) 2,157 17,339 1,478 (69%) 395 (18%) 284 (13%)

Test set (7.5%) 1,080 8,336 728 (67%) 203 (19%) 149 (14.%)

Architectures
Five methods were employed for prediction, 1) logistic regression (LR) 2) support vector
machines (SVM) 3) gradient-boosting (GB) 4) random forest (RF) and 5) DL model using long
short-term memory (LSTM). For SVM, GB and RF, gridsearch CV was carried-out to obtain the
best performing model. For SVM, the RBF kernel was utilized with the parameter gamma set to
0.0001 and the regularization parameter C set to one. For GB, number of estimators was 50, a
minimum sample split of two with criterion set to friedman_mse with exponential loss. For the
RF architecture, minimum samples per leaf were five with the criterion as gini and the number of
estimators was set to 150. The deep learning model was an LSTM with one layer having a
hidden cell size of 256, combined with an fully connected multi-layer perceptron with two hidden
layers and an output size 64.
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Conformal prediction
Conformal prediction (CP) is a framework built on top of any ML model to retain the error rate of
the prediction to a pre-specified level19. CP is model agnostic (meaning, it can be implemented
on all models) and is implemented on top of a prediction algorithm. Unlike single-valued output
from a prediction algorithm, CP produces a prediction region containing a set of class labels for
classification and a confidence interval for regression. Using CP, a non-conformity measure i isα
calculated for an object i using a non-conformity function h(xi), where x represents the features
and h represents a scoring algorithm such as a machine learning algorithm. When applied to a
classification problem, at first, non-conformity i is calculated for all the n instances in theα
calibration set, yielding 1, …, n. During the prediction phase, the non-conformity n+1 from aα  α  α
test instance is used to calculate a set of p-values for each class label using equation 1, which
ranks the n+1 against all the 1, …, n. Using a statistical test and employing a confidence cutoff α α  α
(1-significance), such as 95%, implying a significance of 0.05, all the labels with a p-value
greater than or equal to 0.05 are included in the output prediction, resulting in single-label,
multiple-label, or empty predictions.

(1)𝑝
𝑛+1

 =  
| 𝑗 = 1, ..., 𝑛 + 1 : α

𝑗
 ≥α

𝑛+1
 | 

𝑛+1

For a binary classification, the possible output from CP are {0}, {1}, {0,1}, or {}. A smaller
prediction region with only a single-label ({0} and {1}) is more desired and efficient, for
explaining the output of the model. A multiple-label prediction ({0,1}) is when multiple class
labels have higher confidence, and the model is unable to determine between the two class
labels. This occurs when uncertainty arises in assigning a single-label for the prediction.
Although these predictions can be harder to interpret, they are not incorrect per se. These can
be interpreted as unreliable/uncertain predictions, and can be flagged for manual or expert
inspection to determine the correct class label. The empty set ({}) predictions are obtained if the
confidence is low on both class labels, and it occurs when the input data differs from the data
the model is trained on. This can highlight systematic differences between training and external
data or data drifts that happened over time.

The desired CP confidence can be set by the user during the prediction time. At higher
confidence, the probability of having the correct label in the output prediction set increases,
yielding a wider prediction region (increase in multiple-label predictions). Likewise, lower
confidence produces a smaller prediction region (increase in single-label predictions and empty
predictions).

There are two ways of calibrating a conformal predictor: 1) transductive framework and 2)
inductive framework. In transductive CP, for each new instance during the predictive phase, all
the data is used to calculate the conformity score, making it necessary to retrain the model for
every datapoint in the calibration and test set. Though this method is more robust to outliers and
anomalies in the dataset, the computational demand makes it unusable for large datasets and
deep learning algorithms. Inductive CP (ICP), on the other hand, is built using training and
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calibration datasets and is applied on the test dataset. The calibration dataset is identically
independently distributed (IID) data from the training dataset. The lower computational demand
and easiness of recalibrating the model make ICP popular in many fields.

In this project, we use the ICP framework, by using 15% of the available data as a calibration
dataset. The basic implementation of CP considers the error rate on a population level. Making
the error rate on one label to be lower than the other label. To overcome this, Mondrian CP was
used to achieve a predefined error rate within each class label. Instead of tuning on the entire
population, the CP was tuned on each class label. This enables reliability in prediction on an
individual level, making the model applicable for clinical use, as we are more interested in
individual predictions than population-level prediction in a clinical setting.

SHAP
SHapley Additive exPlanations (SHAP) uses a game theoretic approach to generate explainable
and interpretable output from a machine learning model22. Using this framework, SHAP values
can be calculated for each feature in a data point by contrasting predictions with and without the
presence of a specific feature. This process is iteratively applied for the entire dataset, resulting
in the generation of SHAP values for each feature across the dataset. The difference in the
impact of the feature for a prediction reveals positive or negative contributions for both individual
predictions and the prediction on the entire dataset. Thus, SHAP allows us to calculate both the
global interpretation, giving insight into the overall importance of features in the dataset, and
also for the individual predictions, interpreting the rationale behind the output using feature
contribution.

Providing explanations for individual predictions holds significant importance within clinical
settings. This offers a better understanding and increases the reliability of the predictions32. In
this project, we explain each prediction using force plots. In these plots, SHAP values for
individual features are plotted along the x-axis, where each feature is represented by a bar, with
the length of the bar corresponding to the magnitude of the feature’s impact and the colors
indicating positive values in red and negative values in blue. The visual nature of these plots
helps us understand why the model made a specific prediction.

In contrast, the global understanding of the model is achieved using a summary plot and a
beeswarm plot. Both these plots provide a comprehensive overview of the importance of
features in the entire dataset. The y-axis displays features ranked according to their importance,
with features having a higher impact on the predictions at the top. The x-axis in the summary
plot represents mean absolute SHAP values, displaying the global importance of the features. In
the beeswarm plot, the x-axis represents the SHAP values and their importance, color-coded
according to feature value. The SHAP value of a feature from each data point is plotted, with
overlapping SHAP values jittered in the y-axis to accommodate and form a distribution.
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Data availability
The data used in the study cannot be shared to protect the privacy of individuals. All the data
can be obtained by applying through SMSreg. All the necessary codes used are given in the
GitHub repository https://github.com/caramba-uu/MSP-tracker.git.

Code availability
The code used for data pre-processing, the final model, and the web server are available at
https://github.com/caramba-uu/MSP-tracker.git.
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Supplementary Information
Supplementary Table 1: All the derived features from the clinical features used for training of
the model. The data contained missing values for clinical assessment test (60-73%), relapse
data (12%), MRI data (26%) and MSIS-29 (59%). These missing values were imputed to form
the complete dataset.
Feature Feature type

Visit information (Basic info)

Diagnosis age Approximate age at which the disease was diagnosed

EDSS score EDSS score measured during the visit

Age at visit Age of the patient at the visit when the EDSS score was given

Patient information

Sex label Sex of the patient

Drug treatment

No treatment
Whether the patient has not received any treatment during this
visit

First-line DMT
Whether the patient is undergoing first line (disease-modifying
therapies) DMT

Second-line DMT Whether the patient is undergoing second-line DMT

Other drugs Whether the patient is consuming any other drugs/treatment

Relapse treatment drugs Whether the patient is receiving drugs for relapse

Stem cell treatment
Whether the patient has received hematopoietic stem cell
transplantation

Clinical assessment tests

EQ5D score EQ5D score during the visit

Age at EQ5D Age at EQ5D was given

SDMT score Symbol Digit Modalities Test (SDMT) score during the visit

Age at SDMT Age at SDMT was given

Relapse data

Mono on sum Sum of unilateral optic neuritis relapses

Monofocal sum Sum of other monofocal relapse

Multi focal sum Sum of multifocal relapse

Afferent non on sum Sum of sensory/afferent non-optic neuritis relapses

Steroid treatment sum Sum of steroid treatments received

Is last relapse steroid treated If the last relapse was treated with steroids

Is last relapse completely remitted Was the last relapse completely remitted
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Age at debut relapse Age at first relapse

Age at relapse Age at relapse

MRI data

T2 lesion category Number of T2-weighted MRI lesions (binned)

Brain barrier lesion category
Number of T1-weighted gadolinium-enhancing brain lesions
(binned)

Spinal barrier lesion category
Number of T1-weighted gadolinium-enhancing spinal cord
lesions (binned)

Age at MRI Age at the time that the MRI was performed

MSIS data

MSIS 01 - MSIS 29
(29 questions)

Hobart et al1
MSIS physically

MSIS psychologically

MSIS physically 100

MSIS psychologically 100

Age at MSIS Age at the time that the MSIS was administered
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Supplementary Fig. 1: Box plot showing F1 scores from the 10-fold CV of traditional machine
learning models and deep learning model. The random forest, support vector machines, and
gradient boosting had better performance when compared to logistic regression and deep
learning models. All the models showed an F1 score of >0.88.
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Supplementary Fig. 2: Randomization test (p-value<0.05) on F1 scores from 10-fold CV of
traditional machine learning models and deep learning models. Significant p-values represent a
higher or lower performance between the models. Comparing the box plot supplementary Fig. 1,
random forest, support vector machines, and gradient boosting models performed significantly
better than both the deep learning model and logistic regression.
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Supplementary Fig. 3: Box plot showing F1 scores from the 10 fold CV of RF models trained
on combination of features.
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Supplementary Fig. 4: Randomization test (p-value<0.05) on F1 scores from 10-fold CV of RF
models trained on combination of features. Significant p-values represent a higher or lower
performance between the models. Comparing supplementary Fig. 3, the features set “All
features - MSIS” has a significantly better performance than all the other combinations except
“Basic info + relapse”.
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Supplementary Fig. 5: Patients and the number of misclassified hospital visits. The x-axis
represents the number of misclassified hospital visits, and the y-axis represents the patients in
the test set. The cumulative contribution to the erroneous prediction by patients based on the
number of misclassified visits is given below. (a) The misclassification of 478 hospital visits from
147 patients diagnosed with RRMS and predicted SPMS. The 57.5% of misclassification is from
39 patients and the rest of the errors come from 108 patients. (b) The misclassification of 101
hospital visits from 47 patients diagnosed with SPMS and predicted RRMS. Twelve patients
contribute to 54.5% of the misclassification, and the rest 45.5% errors come from 35 patients.
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Supplementary Fig. 6: Predictions at a confidence of 92% for a patient with a disease course
of 15.5 years over 9 hospital visits. The patient was diagnosed with RRMS at the onset and at
the latest clinical hospital, while the prediction shows the patient has transitioned to SPMS at
the hospital visit year 10.6 (Disease course plot 1). From Disease course plot 2, there is an
apparent decrease in RRMS p-value between the hospital visit years 0 to 12.5, while there is an
increase in SPMS p-value from the year 10.1 till the last hospital visit (15.5 years), suggesting
transition from RRMS to SPMS.
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Supplementary Fig. 7: Predictions at a confidence of 92% for a patient with a disease course
of 10.5 years over 7 hospital visits. The patient was diagnosed with RRMS at the onset and at
the latest clinical hospital, while predicted to have SPMS from the onset (Disease course plot 1).
From the Disease course plot 2, there appears to be an increased SPMS p-value compared to
the RRMS p-value. Additionally, there is an increase in SPMS p-value from year 0 till year 10.5,
suggesting the patient may have already transitioned to SPMS.
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Supplementary Fig. 8: Predictions at a confidence of 92% for a patient with a disease course
of 4.2 years over 6 hospital visits. The patient was diagnosed with RRMS at the onset and at the
latest clinical hospital. The model makes predictions as RRMS for the visit years 1.0, 1.2, and
1.8, while the initial visit has been predicted as SPMS. The disease trajectory does not hold
clinical validity, as the disease course cannot go from SPMS to RRMS. The error is likely to
have been caused due to lower p-values for both RRMS and SPMS (disease course plot 2), and
these errors can be minimized by increasing the confidence of the model.
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Supplementary Table 2: Prediction made by the conformal predictor on transitioning
patients. Predictions were made on 149 patients diagnosed with RRMS at onset hospital visits
and SPMS at later hospital visits. The predictions can be divided into five categories based on
the predictions of the initial and final hospital visits. (RRMS - SPMS means RRMS at the initial
hospital visit and SPMS at the latest available hospital visit). Np=number of individual patients,
nv=number of hospital visits. *Percentages would not add up due to rounding off.

Predictions
(at first and latest
hospital visit)

Diagnosis of transitioning patients at debut and at
latest hospital visit. This is a subset of the SPMS
patients from Table 2 (np=149, nv=1775).

RRMS - SPMS 107 (71.8%)

SPMS - SPMS 37 (24.8%)

RRMS - RRMS 3 (2%)

SPMS - RRMS 1 (0.7%)

RRMS - Multiple-label 1 (0.7%)

40

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303566doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303566
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Fig. 9: Feature contribution explanation using force plots for the predictions on
the hospital visit year 0, 0.5, 0.7, 3.8, and 6.5 on the patient from Figure 3.
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Supplementary Fig. 10: Feature contribution explanation using force plots for the predictions
on the hospital visit years 7.1, 7.7, 8.2, 9.4, and 10.1 on the patient from Figure 3.
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Supplementary Fig. 11: Feature contribution explanation using force plots for the predictions
on the hospital visit years 10.7, 11.3, and 12.6 on the patient from Figure 3.
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Supplementary Fig. 12: The global importance of features for prediction on the test data is
explained using SHAP. (a) a summary plot using mean absolute SHAP values, (b) a bee swarm
plot showing the SHAP values for each feature, calculated iteratively for each datapoint in the
dataset. The values are plotted and color-coded based on their importance for each prediction.
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Predictions for six patients with higher uncertainty,
with confidence levels of 92%, 95%, and 99%.

Supplementary Fig. 13: Patient 1. Predictions at a confidence of 99% for a patient with a
disease course of 13.4 years over 15 hospital visits. There are more unreliable (multiple)
predictions between the years 4.1 and 8.8. The predictions for years 6.1 and 8.4 became
unreliable when the confidence increased from 95% to 99%.
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Supplementary Fig. 14: Patient 2. Predictions at a confidence of 92% for a patient with a
disease course of 19.9 years over 22 hospital visits. The patient switched disease state from
SPMS to RRMS at year 2.9, according to the predictions, and back to SPMS at year 3.4, which
is clinically not possible.
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Supplementary Fig. 15: Patient 2. Predictions at a confidence of 95% for a patient with a
disease course of 19.9 years over 22 hospital visits. The visits before year 2.9 and till year 7.5
became unreliable with multiple-label predictions. The disease trajectory holds clinical validity
now as compared to the predictions at 92% confidence.
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Supplementary Fig. 16: Patient 2. Predictions at a confidence of 99% for a patient with a
disease course of 19.9 years over 22 hospital visits. There is an increase in multiple-label, and
the predicted SPMS transition is at year 12.2, while the transition was marked at year 15.7 in
the clinic.
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Supplementary Fig. 17: Patient 3. Predictions at a confidence of 92% for a patient with a
disease course of 17.4 years over 18 hospital visits. The patient switched from SPMS to RRMS
at year 3.8, while changing back to SPMS again at year 4.7. The alternating prediction can be
associated with lower p-values of these predictions (Disease course plot 2).
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Supplementary Fig. 18: Patient 3. Predictions at a confidence of 95% for a patient with a
disease course of 17.4 years over 18 hospital visits. The lower p-value predictions became
multiple-label, making the disease trajectory valid. The model predicts transition at year 3.4,
while clinically, it occurred at year 2.7.
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Supplementary Fig. 19: Patient 3. Predictions at a confidence of 99% for a patient with a
disease course of 17.4 years over 18 hospital visits. The predictions became more stringent,
marking the predictions between years 2.7 to 8.3 multiple-label. The model predicts transition at
the year 11.0 at this confidence.
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Supplementary Fig. 20: Patient 4. Predictions at a confidence of 92% for a patient with a
disease course of 21.9 years over 19 hospital visits. The disease trajectory is invalid as the
disease transitioned from SPMS to RRMS at visit year 11.3.
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Supplementary Fig. 21: Patient 4. Predictions at a confidence of 95% for a patient with a
disease course of 21.9 years over 19 hospital visits. The disease trajectory became clinically
valid as the confidence increased.
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Supplementary Fig. 22: Patient 4. Predictions at a confidence of 99% for a patient with a
disease course of 21.9 years over 19 hospital visits. With further increase in confidence, the
model predicted transition at year 16.5 compared to year 10.9 at a confidence of 95%.
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Supplementary Fig. 23: Patient 5. Predictions at a confidence of 92% for a patient with a
disease course of 21.5 years and having 18 hospital visits.
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Supplementary Fig. 24: Patient 5. Predictions at a confidence of 95% for a patient with a
disease course of 21.5 years over 18 hospital visits. The model produced a clinically valid
disease trajectory as the confidence increased.
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Supplementary Fig. 25: Patient 5. Predictions at a confidence of 99% for a patient with a
disease course of 21.5 years over 18 hospital visits. Though there is a higher p-value for SPMS
from visit 14.4 and onwards, the model does not predict single-label for these hospital visits at
this high confidence.
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Supplementary Fig. 26: Patient 6. Predictions at a confidence of 92% for a patient with a
disease course of 20.1 years over 39 hospital visits.
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Supplementary Fig. 27: Patient 6. Predictions at a confidence of 95% for a patient with a
disease course of 20.1 years over 39 hospital visits. The disease trajectory holds clinically valid,
and there is an increase in multiple-label predictions. The p-values for these predictions are low,
indicating the patient could be in a extended transition phase.
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Supplementary Fig. 28: Patient 6. Predictions at a confidence of 99% for a patient with a
disease course of 20.1 years over 39 hospital visits. The predictions indicate an extended
transition period for a patient between year 3.4 and year 17.8.
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