Abstract
Significance Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in every-day activities and environments. However, achieving robust measurements under such dynamic condition remains a significant challenge.
Aim The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide real-time probe 3-D shape estimation to improve the use of fNIRS in everyday conditions.
Approach The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3-D positions in real-time to enable advanced tomographic data analysis and motion tracking.
Results Optical characterization of the MOBI detector reports a noise equivalence power (NEP) of 8.9 and 7.3 pW/ Hz at 735 nm and 850 nm, respectively, with a dynamic range of 88 dB. The 3-D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared to positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided.
Conclusions To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3-D optode position acquisition, combined with lightweight modules (18 g/module) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research is supported by the National Institutes of Health (NIH) grants R01-EB026998 and R01-GM114365.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Northeastern University gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
A diagram was added to Figure 8(a) to provide further information on the optode localization algorithm. Subject demographic information was added to section 2.4.5. Additional discussion points were added in response to reviewer feedback.
Data Availability
All data produced in the present study are available upon reasonable request to the authors.