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Summary 

Many cancer risk variants are located within enhancer regions and lack sufficient molecular 

interpretation. Here, we constructed the first comprehensive atlas of enhancer RNA (eRNA)-

mediated genetic effects from 28,033 RNA sequencing samples across 11,606 individuals, 

identifying 11,757 eRNA quantitative trait loci (eRNA-QTLs) significantly associated with 

eRNA expression. Mechanistically, eRNA-QTLs frequently altered binding motifs of 

transcription factors. In addition, 28.48% of cancer risk variants were strongly colocalized with 

eRNA-QTLs. We further performed an eRNA-based transcriptome-wide association study and 

identified 626 cancer susceptibility eRNAs across 23 cancer types. 54.9% of the eRNA target 

genes were overlooked by traditional gene expression studies, and most are essential for cancer 

cell proliferation. To substantiate our findings, we confirmed the enhancer functionality of two 
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newly identified susceptibility eRNAs, CCND1e and SNAPC1e, through CRISPR-based 

inhibition, resulting in a marked decrease in the expression of their respective target genes, 

consequently suppressing the proliferation of prostate cancer cells. Our study underscores the 

essential role of eRNA in unveiling new cancer susceptibility genes and establishes a strong 

framework for enhancing our understanding of human cancer etiology. 

 

Introduction 

Genome-wide association studies (GWASs) have identified numerous single-nucleotide 

polymorphisms (SNPs) associated with complex human traits and disorders 1. Most are located 

in noncoding regions of the genome 2, particularly enhancer regions 3-5. Expression quantitative 

trait loci (eQTLs) often act as a crucial link between GWAS SNPs and disease phenotypes. 

Although eQTLs and other molecular QTLs 6 provide valuable insights into regulation of nearby 

gene transcription, the functional roles of these disease-associated genetic variants spanning 

noncoding RNAs remain largely unknown.  

Enhancer RNAs (eRNAs) are a subclass of noncoding RNAs transcribed from active enhancer 

regions within the genome 7-9. eRNA transcription is closely associated with RNAPII binding 

and epigenetic modifications, such as histone marks H3K27ac and H3K4me1 10. Transcribed 

eRNAs can act as independent regulators that modulate the expression of nearby genes. For 

instance, p53-bound enhancer regions can generate eRNAs that stimulate their transcription in 

response to DNA damage, resulting in activation of p53-dependent cell cycle arrest and 

apoptosis 11,12. In addition, eRNAs make major contributions to the modulation of disease 

progression and trait development 13, especially in human cancers 14,15. Specific examples 

include CCAT1e, an eRNA transcribed from the CCAT1 locus, which interacts with the 
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transcription factor (TF) TCF7L2 to activate the wnt signaling pathway, thereby promoting colon 

cancer cell proliferation and invasion 14,16,17. Additionally, KLK3e and PSAe are eRNAs 

transcribed from enhancers regulated by the androgen receptor that affect androgen-induced gene 

activation and potentially contribute to the development of prostate cancer 18,19. In addition, 

eRNAs play an important role in the pathology of neurodegenerative disorders 20,21, contributing 

to the loss of neuronal function and viability by regulating genes critical for synaptic plasticity, 

neuroinflammation, and protein misfolding. However, despite these individual examples, the 

prevalence and magnitude of eRNAs influencing cancer susceptibility remain largely unknown.  

Several specialized experimental profiling methods, such as nuclear run-on followed by cap-

selection assay (GRO/PRO-cap) and self-transcribing active regulatory region sequencing 

(STARR-seq), can identify actively transcribed eRNAs 22. However, these approaches have not 

been widely adopted by population-scale studies. By contrast, RNA sequencing (RNA-seq) has 

been extensively used in many genomic projects, such as Genotype-Tissue Expression (GTEx) 

23. In addition, recent studies demonstrate the ability of RNA-seq to identify eRNAs 15. Despite 

extensive attention to eRNAs, however, their genetic impact and role in cancer susceptibility 

remains poorly understood. 

In this study, we performed the first large-scale, systematic analysis assessing eRNA-mediated 

genetic effects on 49 human normal tissues and 31 tumor types by analyzing an extensive dataset 

of 28,033 RNA-seq samples from 11,606 individuals. eRNA-QTLs often disrupt the binding 

motifs of TFs, leading to altered expression of corresponding eRNAs. We validated this using 

CRISPR-based base editing experiments. Additionally, we conducted eRNA expression 

transcriptome-wide association studies (eRNA-TWAS) that facilitated the functional 

characterization of cancer risk loci. We also validated the enhancer activity of two newly 
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identified susceptibility eRNAs (CCND1e, SNAPC1e) in regulating their target expression by 

CRISPR-based inhibition, consequently suppressing the proliferation of prostate cancer cells. 

Lastly, we developed a comprehensive data portal called the eRNA-QTL atlas 

(http://bioinfo.szbl.ac.cn/eRNA-QTL-atlas/), which provides a valuable resource for the research 

community by granting access to the extensive information generated in this study. Overall, our 

findings substantially advance our understanding of the eRNA-mediated genetic effects 

contributing to cancer risk.  

   

Results  

Atlas of eRNA-mediated genetic effects 

To systematically detect eRNAs in primary human tissues, we annotated and quantified the 

expression of eRNA based on RNA-seq data following previously described methods 10. We 

identified 12,509 expressed eRNAs from 17,265 RNA-seq samples across 49 human normal 

tissues using the GTEx v8 dataset. We also included 9,111 expressed eRNAs from 10,768 RNA-

seq samples across 31 human tumor types using The Cancer Genome Atlas (TCGA) dataset (Fig. 

1A). To assess whether eRNA expression profiles effectively differentiate human tissues/organs, 

we performed clustering analysis of eRNA expression across all samples. This analysis unveiled 

distinct patterns of eRNA expression among various human tissues. eRNA expression 

originating from the same organ tended to cluster together and was discernibly different from 

expression in other organs, as exemplified by distinctions observed between the artery and heart 

(Fig. S1).  

To investigate the impact of genetic variations on eRNA expression, we identified 11,757 

eRNA-QTLs (i.e., genetic variants associated with eRNA expression) associated with 89.75% 
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(12,509/13,937) of annotated eRNAs using QTLtools 24 (Fig. 1A). Notably, genomic inflation 

lambdas for eRNA-QTLs ranged from 0.95 to 1.17 across all tissues, indicating that population 

stratification was tightly controlled. We found that the number of eRNA-QTLs varied across 49 

normal tissues from GTEx, ranging from 57 eRNA-QTLs associated with 57 eRNAs in the brain 

substantia nigra to 3,022 eRNA-QTLs associated with 2,533 eRNAs in the testis (Table S1). 

Interestingly, we observed that eRNA-QTLs were more prevalent in tissues with larger sample 

sizes (Rho = 0.99, P < 0.001; Table S1). In addition, we identified 9,316 eRNA-QTLs across 31 

tumor types from TCGA. Several previously known eRNA-QTLs were successfully recovered, 

such as the eRNA-QTL rs72700813 (Fig. S2A) linked to the modulation of GOLPH3L eRNA 

(GOLPH3Le) expression, which is closely associated with neurological disorders 25 (Fig. S2B).  

To estimate the heritability of eRNAs, we used genome-wide complex trait analysis (GCTA) 

26 to quantify the eRNA expression variation that can be explained by eRNA-QTLs. Our analysis 

revealed that eRNA-QTLs collectively explain an average of 24.4% and 20.97% of eRNA 

variation in normal tissues and tumor types, respectively (Fig. 1B). For example, NET1 eRNA 

(NET1e), an oncogene in breast, prostate, and liver cancer 14, had a high heritability estimate of 

0.46 (P < 2.2×10-16). Also, KANSL1 eRNA (KANSL1e), which disrupts autophagy and thereby 

results in memory impairment and neurodegeneration 20, had a high heritability estimate of 0.90 

(P = 6.49×10-11). Next, we performed conditional stepwise regression to identify independent 

genetic variants associated with eRNA expression. In contrast to eGenes (i.e., genes with at least 

one eQTL), for which up to 50% have at least two independent eQTLs in the given tissue 23, our 

results indicate that 77.25% and 76.03% of eRNAs contained one independent eRNA-QTL in 

normal tissues and tumor types, respectively (Fig. 1C). For example, BRCA1 eRNA (BRCA1e), 
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located upstream of the BRCA1 gene, contains an independent eRNA-QTL rs11650272 (P = 

1.63×10-10; Fig. S2B).  

To explore the sharing patterns of eRNA-QTLs across tissues, we applied the multiple 

adaptive shrinkage (Mash) model 27 to calculate pairwise eRNA-QTL sharing. Generally, eRNA-

QTLs cluster into two distinct groups: brain and non-brain tissues (Fig. 1D). Approximately 

73.4% of eQTLs are shared across multiple tissues 27,28. By contrast, we found that only 26.67% 

and 52.17% of eRNA-QTLs were shared among brain and non-brain tissues, respectively (Fig. 1, 

E to G). This suggests that eRNA-QTLs display a higher degree of tissue specificity than eQTLs. 

Using these results, we constructed a comprehensive atlas of eRNA-mediated genetic effects 

across 49 human normal tissues and 31 tumor types, highlighting the discriminative potential of 

eRNA-QTLs among various biological tissues.  

 

eRNA-QTLs have distinct molecular features 

We further conducted functional annotations to determine the positional distribution of lead 

eRNA-QTLs, defined as the genetic variants exhibiting the strongest associations with their 

corresponding eRNAs. As expected, most lead eRNA-QTLs were enriched within eRNA regions 

(Fig. S2C). By contrast, only 11.75% of lead eRNA-QTLs overlapped with eQTLs (Fig. S2D), 

demonstrating that eRNA-QTLs may represent unique genetic regulatory information. We 

further conducted functional annotation enrichment of lead eRNA-QTLs and eQTLs using torus 

29 and found that eRNA-QTLs were significantly enriched in enhancer (4.44-fold enrichment 

compared with matched background SNPs with the same annotation in the whole genome; two-

sided Fisher’s exact test, P = 8.43×10-59) and promoter (1.8-fold enrichment compared with 
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matched background SNPs with the same annotation in the whole genome; two-sided Fisher’s 

exact test, P = 2.43×10-114) regions (Fig. 2A).  

To examine the regulatory mechanisms of eRNA-QTLs and their target genes, we employed a 

Bayesian network (BN) 30 to analyze the extent of causal regulation of eRNA-QTL on target 

gene expression via eRNA. We evaluated three causality models: a causal model 

(SNP→eRNA→gene) in which eRNA-QTLs affect eRNA expression and then influence gene 

expression; a reactive model (SNP→gene→eRNA) in which eRNA-QTLs affect nearby gene 

expression and then influence eRNA expression; and an independent model 

(eRNA←SNP→gene) in which eRNA-QTLs affect eRNA expression and nearby gene 

expression independently (Fig. S3A). We identified 15,879 SNP-eRNA-gene triplets across 

various tissues, with a median of 375 triplets per tissue. Notably, a median of 48.67% of SNP-

eRNA-gene triplets was consistent with a causal model (Fig. S3B). Interestingly, the SNPs in the 

causal model were more proximate to eRNAs, whereas the SNPs in the reactive model were 

closer to the target genes (Fig. S3, C and D; two-sided Wilcoxon rank-sum test, P < 2.2×10-16). 

To investigate whether these models were enriched in active histone marks associated with gene 

expression, we utilized FORGE2 31 to map histone mark enrichment for 39 cell types from the 

Roadmap Epigenomics Project 32. The causal and reactive models were enriched with active 

histone marks associated with active enhancers or transcription, such as H3K4me1  and 

H3K4me3 (Fig. S3, E and F). Also, all models of SNPs were relatively common in active but not 

repressive histone marks, suggesting the involvement of eRNAs in regulating transcriptional 

activation (Fig. S3F). Our findings also reveal that causal model eRNAs were more frequently 

associated with enhancer-promoter loops than reactive model eRNAs (Fig. S3G, Fisher’s exact 

test, P = 7.17×10-3) and independent model eRNAs (Fisher’s exact test, P = 1.26×10-9), 
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illustrating the intricate interactions contributing to transcriptional regulation. Conversely, 

reactive model eRNAs were more frequently associated with the chromatin remodeling process 

than causal model eRNAs (Fig. S3H, Fisher’s exact test, P = 0.03) and independent model 

eRNAs (Fisher’s exact test, P = 0.04). Taken together, our findings highlight the causal role of 

eRNA-QTLs in regulating gene expression. 

 

eRNA-QTLs disrupt known and novel transcription factor binding sites  

To investigate the potential genetic mechanism contributing to eRNA expression, we 

hypothesized that certain eRNA-QTLs could disrupt transcription factors binding sites (TFBSs), 

leading to alterations in eRNA expression. We analyzed ChIP-seq data for 194 TFs and 17 

histone marks from The Encyclopedia of DNA Elements (ENCODE) project 33. 158 TFs were 

identified that exhibited significant enrichment in eRNA-QTLs in the GTEx dataset, and 171 TFs 

showed significant enrichment in eRNA-QTLs in the TCGA dataset. Notably, several TFs were 

enriched in eRNA-QTLs across a diverse set of tumor types. Specifically, MYC displayed 

significant enrichment in eRNA-QTLs across 16 tumor types (Fig. S4A). Several TFs are known 

to be associated with eRNA regulation. For example, SNP rs17776622, located within the core 

consensus binding motif of YY1, was significantly associated with the expression of SOX7 eRNA 

(SOX7e) (Fig. S4B). Moreover, SOX7e displayed tight co-regulation with SOX7 (Fig. S4C), 

suggesting that eRNA-QTL rs17776622 could affect SOX7 gene expression by altering YY1 

binding motifs. Pathway enrichment analysis demonstrated that these TFs are involved in several 

important biological processes, including transcription activator activity (Fisher’s exact test, 

adjusted P = 9.80×10-7) and polymerase II transcription activator activity (Fisher’s exact test, 

adjusted P = 1.88×10-6) (Fig. S4D). Interestingly, we observed significant enrichment of eRNA-
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QTLs in CTCF binding sites across all tissues (Fig. 2B). To validate our hypothesis, we 

performed CRISPR-based base editing experiments to mimic the A allele of rs6703982, the SNP 

located at the CTCF binding site (Fig. 2C), in HEK293T cells and successfully obtained two 

clones containing heterozygous G/A mutations (Fig. S4E). Consistent with our prediction, 

disrupting rs6703982 inhibited the expression of rs6703982-associated NENF eRNA (NENFe) 

and its potential target NENF (Fig. 2D). Thus, our findings suggest that a proportion of altered 

eRNA expression is elicited by eRNA-QTLs that disrupt the binding motifs of TFs. 

 

eRNA-QTLs strongly contribute to cancer heritability  

To investigate the proportion of disease-associated variants in the eRNA region, we analyzed the 

genomic distribution of disease-associated fine-mapped variants (95% credible sets) from 

CAUSALdb 34. Cancer-associated variants showed the highest enrichment in the eRNA region 

compared with other disease domains, highlighting the potential role of eRNAs in carcinogenesis 

(Fig. 3A). For example, the prostate cancer lead SNP rs4857906 (P = 1.05×10-9) was identified 

in the eRNA region of the GATA2 gene, which encodes a member of the GATA family of zinc-

finger TFs (Fig. 3B). Remarkably, it exhibited the highest posterior probability of being a causal 

SNP of prostate cancer (Fig. 3B). 

To further evaluate the enrichment of eRNA-QTLs on cancer traits, we compiled and curated 

57 GWAS summary statistics covering 23 cancer types from the literature (Table S2) and 

performed functional GWAS analyses 35. Among these 395 tissue-trait pairs, 20.76% showed 

significant associations with eQTLs, and 21.77% showed significant associations with eRNA-

QTLs. Among the eRNA-QTLs tissue-trait pairs, 3.54% displayed a more significant effect than 

eQTLs, and 16.20% were exclusive to eRNA-QTLs. Many eRNA-QTLs were enriched in tissues 
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relevant to their diseased states, such as mammary breast tissue for breast cancer (enrichment = 

1.23; Fig. 3C), stomach tissue for gastric cancer (enrichment = 3.89), and uterus tissue for 

leiomyoma of the uterus (enrichment = 2.75). Another instance was observed in stomach tissue, 

in which there was enrichment of eRNA-QTL but not eQTL in gastric cancer (Fig. 3, E and F). 

To investigate the extent of cancer heritability attributed to eRNA-QTLs, we used linkage 

disequilibrium score regression 36 to estimate the proportion of eRNA-QTLs associated with 

cancer heritability. We observed that a relatively high proportion of heritability, ranging from a 

mean of 5.41% to 29.61% per trait, could be explained by eRNA-QTLs (Fig. 3G). Altogether, 

these findings suggest that eRNA-QTLs make strong contributions to cancer heritability.  

 

Most colocalized cancer loci were exclusively detected by eRNA-QTLs  

To identify the subset of eRNAs contributing to cancer risk through genetic effects, we 

performed summary data-based Mendelian randomization (SMR) 37 and colocalization 38 

analyses to evaluate whether cancer risk loci share the same causal variants as eRNA-QTLs. A 

total of 85 cancer risk loci were found to colocalize with eRNA-QTLs (Fig. 4A; Table S3 and 

S4). An average of 28.48% cancer risk loci colocalized with eRNA-QTLs, and 70.02% 

colocalized cancer loci were exclusively detected by eRNA-QTL but not eQTL (Fig. 4B). For 

instance, eRNA-QTL rs6866783 in CLPTM1L eRNA (CLPTM1Le) exhibited strong 

colocalization with cervical cancer (posterior inclusion probability (PP)H4 = 0.92), whereas there 

was no colocalization with the eQTL of CLPTM1L (PPH4 = 0.01; Fig. 4C), which encodes cleft 

lip and palate transmembrane protein 1-like and could increase susceptibility to various cancers. 

In another instance, eRNA-QTL rs62431527 in CNR1 eRNA (CNR1e) exhibited strong 

colocalization with ovarian cancer (PPH4 = 0.99), whereas there was no colocalization with the 
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eQTL of CNR1 (PPH4 = 0.00; Fig. 4D). Furthermore, genetic variant rs56687477, associated with 

an increased risk of breast cancer, was correlated with higher expression of ZNF703 eRNA 

(ZNF703e) (PPH4 = 0.99) and ZNF703 (PPH4 = 0.98, Fig. S5A), which encodes zinc finger 

protein 703, a commonly observed oncogene in luminal B breast cancer.  

To further investigate whether eRNA-QTLs are enriched at causal cancer risk loci, we 

conducted fine mapping on colocalized eRNA-QTLs and compared them with cancer risk loci 

within a 95% credible set. Our analysis revealed that cancer-credible set variants shared with 

eRNA-QTLs had a significantly higher PP than those not shared with eRNA-QTLs (Mann-

Whitney U test, P = 1.41×10-6; Fig. 4E). Moreover, incorporating eRNA-QTLs significantly 

improved the genetic resolution of cancer-credible sets, leading to the identification of 19.58% 

risk loci with one potential causal variant compared with only 12.45% risk loci when eRNA-

QTLs were not considered (Fig. 4F). These results suggest that eRNA-QTLs contribute 

distinguishably to cancer risk variants. 

 

The landscape of cancer susceptibility eRNAs across 23 cancer types 

To systematically identify eRNA-linked susceptibility genes associated with human cancers, we 

adapted the traditional TWAS methodology (using FUSION software 39) by examining the 

association between eRNA expression and GWAS statistics (referred to as eRNA-TWAS). In 

each dataset, we employed a mixed-linear model to estimate the heritability of eRNA expression. 

This estimation was based on cis-SNPs located near the eRNA in a reference panel consisting of 

cohorts with matched RNA-seq and genotype data. Only eRNAs with significant heritability 

estimates (cis-h2) at a P < 0.05 were included in further analyses. For each FUSION-trained 

model, such as the best linear unbiased predictor (BLUP), elastic-net regression (ENET), and 
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lasso regression (LASSO), we utilized cross-validation to select the model that offered the most 

accurate prediction for eRNA-TWAS for each specific eRNA. In total, we generated 34,633 

tissue-specific eRNA-TWAS prediction models using the GTEx and TCGA reference panels. 

These models covered 8,498 unique eRNAs. The number of eRNA-TWAS prediction models 

was highly correlated with the sample size of the reference panels (Fig. S5B). The average in-

sample prediction accuracy for eRNA-TWAS models was 80.45%, similar to that for previous 

gene expression TWAS models. These results indicate that similar to gene expression TWAS 

models, most cis-regulated eRNA is captured by cis-SNPs.  

To characterize the landscape of cancer susceptibility eRNAs, we applied our prediction 

models to 57 GWAS summary statistics of 23 cancer types. Our analysis revealed 626 

susceptibility eRNAs associated with cancer susceptibility across these different cancer types 

(false discovery rate (FDR)<0.05; Fig. 5A; Table S5). As previously described 10, eRNA-linked 

genes were determined based on their proximity ( ≤ 1MB) and significant co-expression 

(Spearman's correlation Rho ≥�0.3 and FDR�<�0.05). Consequently, we identified a set of 

1,011 eRNA-linked genes that exhibited associations with the 23 distinct cancer types. Notably, 

54.90% of eRNA-linked cancer susceptibility genes were specifically identified through eRNA-

TWAS but not gene expression TWAS (eTWAS). For instance, within the eRNA-TWAS-

identified breast cancer susceptibility eRNA-linked genes, two widely recognized breast cancer 

susceptibility genes, BRCA1 and FGFR2 (Fig. 5B), were found to have statistically significant 

associations (FDR < 0.05). Additionally, in the context of prostate cancer, CCND1, a well-

established gene associated with prostate cancer susceptibility, was also identified (Fig. 5B). 

Collectively, we successfully identified 626 cancer susceptibility eRNAs and 1,011 eRNA-

linked cancer susceptibility genes across 23 cancer types. Notably, among these eRNA-linked 
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cancer susceptibility genes, 54.90% were specifically identified through eRNA-TWAS but not 

traditional eTWAS. 

 

Cancer susceptibility eRNA-link genes are essential for cancer cell proliferation 

To explore the biological and clinical relevance of cancer susceptibility eRNA-linked genes, we 

performed cancer hallmark enrichment analysis encompassing various key processes and 

characteristics of cancer development and progression. Our findings revealed that 343 cancer 

susceptibility eRNA-linked genes were involved in 10 well-established cancer hallmarks (Fig. 

S5C). These cancer susceptibility eRNA-linked genes were significantly enriched in multiple 

cancer hallmarks, specifically in sustaining proliferative signaling (P = 8.12×10−7; Fig. S5D), 

which indicated that the significant or substantial role of cancer susceptibility eRNA-linked 

genes were mainly involved in the cell proliferation. Therefore, we further analyzed the 

essentiality of cancer susceptibility eRNA-linked genes for cell proliferation using available 

CRISPR gene knockdown data 40. We evaluated essentiality based on the CERES score, 

accounting for factors such as copy number variations and guide RNA depletion. A lower 

CERES score indicates higher gene essentiality. Our analysis revealed that cancer susceptibility 

eRNA-linked genes exhibited significantly higher essentiality in promoting cell proliferation 

(Mann-Whitney U test, P < 2.2×10-16; Fig. 5C). Among the eRNA-linked genes identified in the 

relevant tissues, a substantial number demonstrated clear evidence of their essential roles in 

promoting cancer cell growth (CERES score < -0.5). For example, 19 breast cancer susceptibility 

eRNA-linked genes exhibited comparable or even higher levels of essentiality than the well-

established breast cancer susceptibility gene BRCA1 (BRCA1CERESscore = -0.36; Fig. 5D). 

Similarly, in prostate cancer, 18 eRNA-linked genes associated with prostate cancer 
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susceptibility displayed comparable or even higher levels of essentiality than the well-known 

prostate cancer oncogene CCND1 (CCND1CERESscore = -1.20; Fig. 5E). Notably, we observed a 

significant degree of essentiality in prostate cell lines for SNAPC1, a newly identified 

susceptibility eRNA target gene (SNAPC1CERESscore = -1.46). We also note that SNAPC1 was 

found to be essential for the proliferation of all studied cell lines (N = 1,095; Fig. 5E), whereas 

CCND1 was essential for the proliferation of 75.53% of cell lines analyzed (N = 827; Fig. 5E). 

These findings highlight the critical involvement of these eRNA-linked genes in driving cancer 

cell proliferation.  

 

Validation of prostate cancer novel susceptibility eRNAs  

To further refine the transcript-based fine-mapping of the eRNA-TWAS outcome, we identified 

65 eRNAs meeting stringent criteria including significance below a threshold (PBonferroni <0.05) 

in the eRNA-TWAS analysis, and a high probability threshold (PPH4>0.75) in the colocalization 

analysis (Fig. 5F), among which 19 were found to be eRNA-linked genes specifically linked to 

prostate cancer susceptibility within the fine-mapped eRNA-TWAS analysis. Notably, although 

some of these genes have been previously reported, they were not directly identified through 

TWAS analysis. Base on the effect size in the eRNA-TWAS and strong colocalization with 

prostate cancer, we focus on the eRNAs in regulating the well-known oncogene Cyclin D1 

(CCND1) and a novel prostate cancer susceptibility gene Small Nuclear RNA Activating 

Complex Polypeptide 1 (SNAPC1) for further experimental validation (Zscore = 11.64 for 

CCND1 and Zscore = 16.04 for SNAPC1, PPH4 = 0.99 for CCND1 and PPH4 = 0.97 for SNAPC1, 

Fig 5G). Furthermore, our analysis revealed that SNAPC1e and CCND1e exhibited conditionally 

independent patterns at the specific prostate cancer loci under investigation (Fig. 5, H to I), 
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suggesting that eRNA-mediated risk variants account for a considerable portion of the GWAS 

signal within this particular genomic region.  

To experimentally confirm SNAPC1e as the target enhancer, we employed CRISPR 

interference specifically targeting SNAPC1e in prostate cancer cells (PC3) (Fig. 5J). This 

CRISPR interference resulted in a remarkable 84.20% reduction in SNAPC1 gene expression, 

providing strong evidence for its role as the enhancer target. Similarly, by interfering with 

CCND1e, we observed a 58.75% decrease in CCND1 gene expression (Fig. 5K). 

In conclusion, our comprehensive analysis integrating colocalization and eRNA-TWAS 

techniques successfully identified numerous novel cancer susceptibility eRNA-linked genes. 

Among them, SNAPC1 and CCND1 emerged as promising candidates that underwent rigorous 

experimental validation. The consistent identification of these genes in both the colocalization 

and eRNA-TWAS analyses, combined with their crucial involvement in the proliferation of 

prostate cancer cells, highlights their potential significance in cancer development.  

 

Discussion  

GWAS has been highly effective in identifying thousands of SNPs associated with a wide range 

of complex human traits and diseases. Notably, most SNPs identified through GWAS are located 

within noncoding regions of the genome, particularly enhancer regions that play a crucial role in 

regulating gene expression. Despite these findings, the biological relationship between genetic 

variants and disease susceptibility has remained largely unknown. A promising strategy to bridge 

this gap involves identifying eQTLs as essential intermediaries linking GWAS variant signals 

with disease phenotypes. eQTLs may provide valuable insights into how genetic variants 

contribute to the development and progression of diseases, whereas they can only explain a small 
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proportion of disease-related variants. Therefore, further research is needed to understand the 

molecular mechanisms contributing to complex diseases.  

 Here, we conducted QTL mapping for expressed eRNAs utilizing 49 normal tissues from the 

GTEx and 31 tumor types from the TCGA. Our analysis identified 11,757 eRNA-QTLs within 

the GTEx cohort and 9,316 eRNA-QTLs within the TCGA cohort. Our CRISPR-based base 

editing experiment confirmed that disruption of eRNA-QTLs affects the binding motifs of TFs 

and modifies the expression of eRNAs. eRNA-QTLs exhibited greater tissue specificity than 

eQTLs, consistent with a previous study 15 reporting that eRNAs (>30%) display higher cell-type 

specificity than mRNAs (<5%). The large-scale eRNA-QTL atlas allowed the generation of a 

genetic map between regulatory variants and complex human traits. By performing SMR and 

colocalization analyses, we revealed that 70.02% of colocalization events were unique to eRNA-

QTLs and not shared with eQTLs. Our eRNA-TWAS analyses identified 626 eRNAs associated 

with cancer susceptibility across 23 cancer types. Notably, 54.90% of the target genes of these 

eRNAs were overlooked by traditional gene expression studies. We experimentally validated that 

the inhibition of two newly identified susceptibility eRNAs (CCND1e and SNAPC1e) lead to a 

reduction in the expression of their target genes which ultimately contributes to cell proliferation. 

Our findings provide additional evidence for the oncogenic potential and therapeutic liability of 

eRNAs. This also suggests that eRNA-QTLs can explain additional disease signals that eQTLs 

might miss. To gain a deeper understanding of the functional interactions and relationships 

among these eRNA-linked genes, we conducted an integrative network analysis and revealed 

that cancer susceptibility eRNA-linked genes strongly converge in shared pathways, including 

mitotic DNA integrity checkpoint signaling (Fig. 6; hypergeometric test, P = 3.92×10-7) and the 

apoptotic process (hypergeometric test, P = 4.86×10-5). Overall, these results demonstrate that 
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eRNA-TWAS can effectively identify cancer susceptibility eRNAs and their linked genes that 

are essential for cancer cell proliferation across various cancer types.  

Notably, a single eRNA only partially contributes to target gene expression, and multiple 

eRNA interactions can influence target gene expression levels 41. For example, we discovered 

that the disease locus associated with inflammatory bowel disease showed colocalization with 

the PSMG1 eRNA (PSMG1e) signal (Fig. S6A). However, this colocalization could not be 

explained by expression of the target gene PSMG1. Our SMR analysis further supports these 

findings, indicating that the inflammatory bowel disease locus could be explained, at least 

partially, by the role of PSMG1e (Fig. S6B). Examining single-cell level expression, we 

observed that PSMG1e was only expressed in a specific cluster, whereas its target gene PSMG1 

was expressed across all clusters (Fig. S6C). These single-cell expression data provide additional 

evidence of the differential expression patterns between PSMG1e and its target genes, 

highlighting the complexity of their regulatory relationships in specific cellular contexts. 

Considering the complexity of eRNA regulation, the eRNA-QTL strategy is a powerful approach 

to dissecting eRNA targets and their potential roles in disease-related processes. As 

demonstrated in our study, eRNA-QTL analysis provides a more comprehensive understanding 

of genetic regulation and disease mechanisms in cancer risk beyond what traditional eQTL 

analysis can capture. It expands the current strategy of molecular QTLs and supports the 

hypothesis that eRNA-QTLs contribute to a range of human phenotypes by regulating gene 

expression in a cell type-specific manner.  
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The following analytical methods were carried out to (i) investigate the genetic variant effects on 

eRNA expression and (ii) unveil new cancer susceptibility eRNAs and genes. 

 

Study subjects 

We employed a comprehensive dataset comprising 28,033 RNA sequencing samples from 

11,606 individuals. This dataset includes 838 genotype datasets and 17,265 genotype-matched 

RNA-seq datasets across 49 human normal tissues sourced from the GTEx project 23. 

Additionally, we incorporated 10,768 genotype-matched RNA-seq datasets across 31 human 

tumor types obtained from the TCGA dataset. 

 

eRNA annotation 

We integrated ENCODE, FANTOM, and Roadmap Epigenomics datasets to annotate enhancers. 

We only considered enhancers that appeared in at least two datasets. Similar to previous studies 

10, a 3-kb region around the center of the enhancer was defined as an eRNA region. To avoid the 

potential interference of known transcripts, we only kept intergenic eRNA that did not overlap 

with available annotations, including protein-coding RNAs and ncRNAs.  

 

GTEx data collection and quality control 

We acquired a comprehensive dataset comprising RNA-seq BAM files from 17,382 human 

normal samples across 54 tissues in 948 individuals obtained from the GTEx project (dbGaP, 

phs000424.v8.p2) 23. To align the original RNA-seq reads to the Human Reference Genome 

Build GRCh38 (hg38), we employed STAR 42 following the alignment parameters specified in 

the GTEx study 23. Rigorous measures were taken to ensure the integrity of the data, including 
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the exclusion of BAM files generated from diseased tissues and tissue types with limited sample 

sizes. To maintain consistency and reliability, RNA-seq BAM files lacking genotype data were 

also removed from the analysis freeze, as they were not included in the GTEx study.  

Genotype information was derived from whole-genome sequencing data obtained from the 

GTEx v8 release 23. Burrows-Wheeler alignment 43 was utilized to align whole-genome 

sequencing reads to the Human Reference Genome Build GRCh38 (hg38), and GATK 

HaplotypeCaller v3.5 was employed to call variants in variant call format. Subsequently, a 

stringent quality control process implemented by the GTEx Consortium led to the exclusion of 

low-quality samples, resulting in a final analysis freeze set that encompassed variants called from 

838 donors. To enrich the dataset further, imputation and phasing techniques using SHAPEIT v2 

44 were applied to the final variants. Additionally, sample description files providing valuable 

contextual information were downloaded from the GTEx Portal (www.gtexportal.org) and 

associated with the analyzed samples. SNPs were excluded if they: 1) had a low call rate (< 

95%), 2) had a low minor allele frequency (MAF < 1%), and 3) were out of Hardy-Weinberg 

equilibrium (P < 1×10-6). Samples with a low call rate (< 95%) were excluded. 

 

TCGA data collection, imputation, and quality control 

We obtained a comprehensive dataset comprising approximately 11,000 human tumors across 31 

diverse cancer types from the legacy archive of TCGA 45 (https://portal.gdc.cancer.gov/legacy-

archive). The RNA-seq raw data underwent processing by the TCGA consortium. We utilized 

STAR 42 to align the RNA-seq data to the Human Reference Genome Build GRCh38 (hg38). 

The genotype data obtained from the TCGA legacy archive were genotyped using Affymetrix 

Genome-Wide SNP 6.0 arrays. Birdseed genotyping files containing information on 
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approximately 905,600 variants across a cohort of approximately 11,000 samples were 

downloaded for further analysis. Genotype data were aligned to the Human Reference Genome 

Build GRCh38 (hg38). We utilized IMPUTE2 software to impute genetic variants for the TCGA 

samples. The imputation process used the 1,000 Genomes Project as a reference panel. To ensure 

the reliability of the imputed data, we applied stringent quality control measures. Specifically, we 

considered only those variants with an imputation confidence score (INFO) ≥ 0.8, MAF ≥ 1%, 

SNP missing rate < 5%, and Hardy-Weinberg equilibrium P > 1 × 10-6. These strict criteria were 

employed as a cutoff to retain only high-confidence SNPs for subsequent analyses. 

 

eRNA quantification 

Quantification of eRNA expression was conducted through eRNA annotation. We applied reads 

per million to quantify eRNA expression and then used the inverse-normal transformation 

method for normalization. We kept only eRNAs with ≥1 reads per million for subsequent 

analyses. 

 

eRNA-QTL mapping 

eRNA-QTL analysis was conducted with QTLtools version 1.2 24. We employed a linear 

regression model to adjust for covariates and used the correct mode to regress out covariates 

from GTEx and TCGA sample expression data. The molecular phenotype data obtained from 

RNA sequencing had variability from biological and technical factors. To address technical 

variability while preserving biological variability, we accounted for three types of covariates: 1) 

sex, age, body-mass index, PCR, and platform for GTEx and age, gender, tumor grade, and stage 

for TCGA using the metadata provided in GTEx 23 and TCGA 45, respectively; 2) the first 50 
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genotype principal components (PCs) derived from individuals’ genotypes to correct for 

population stratification observed between samples; and 3) phenotypes PCs. We performed 

phenotype PC analysis using QTLtools software’s ‘pca’ mode to capture experimental/technical 

variability by centering and scaling the expression data. To determine the optimal number of 

phenotype PCs capturing technical variability for eRNA-QTL discovery in GTEx and TCGA 

samples, we conducted multiple rounds of eRNA-QTL mapping. Each round incorporated the 50 

PCs from genotypes and gradually added 0, 5, 10, 20, 30, 40, 50, 60, and 70 phenotype PCs as 

covariates. Through this iterative process, we selected PCs that maximized eRNA-QTL 

discovery in GTEx and TCGA samples.  

For eRNA-QTL testing, we performed permutations with 1,000 repetitions to establish the null 

distribution of associations for each eRNA individually. Using the qvalue package in R 24, we 

achieved an FDR of < 0.5 for multiple tests. Moreover, we rank-normalized the quantifications 

on a per-phenotype basis across all samples using the –normal option in QTLtools, ensuring a 

normal distribution with a mean of 0 and standard deviation of 1 (N (0, 1)). Nominal P-values 

for all SNP-eRNA pairs within the cis-window (1M bp) were obtained with the nominal pass 

implemented in the QTLtools package. Associations between SNPs and eRNAs reaching the 

significance threshold corresponding to an FDR of < 0.05 were retained for further analysis.  

 

Conditional eRNA-QTL discovery 

To evaluate the influence of additional genetic variants on the expression of a specific eRNA, we 

conducted a conditional analysis for each eRNA using the ‘-mapping’ option and a forward-

backward stepwise regression implemented in QTLtools 4. The inclusion of these factors as 
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covariates in the QTL mapping model enabled the assessment of whether an observed QTL was 

independent of other genetic factors. 

 

GWAS summary statistics curation and integration 

We collected GWAS summary statistics from various sources, including published literature, the 

UK Biobank Imputed Dataset v.3, FinnGen Biobank, and JENGER, as these datasets were 

publicly accessible. Our selection of studies was based on the availability of the original 

publications, clear recording of population-related information, and adequate sample sizes. To 

avoid duplication, we identified and retained the dataset with the most comprehensive 

information whenever redundancy occurred across different sources. We extracted essential 

details such as sample size, population, and data sources from the original studies. 

Our analysis focused only on GWAS data with population information precisely mapped to 

European ancestry individuals. To ensure data quality, we excluded individuals from 

consideration if their sample sizes were < 50,000, and we removed any studies that potentially 

had duplicated patients or controls. To assess the quality of the remaining GWAS summary 

statistics, we conducted a thorough examination using the R package xQTLbiolinks 46. This 

involved analyzing quantile-quantile (QQ)-plots to identify any inflation issues and P-Z plots to 

evaluate the consistency of analytical parameters such as beta values, standard errors, and P-

values. Following this rigorous quality check, we identified 57 cancer GWAS summary statistic 

datasets deemed suitable for further downstream analyses (Table S2). To ensure consistency of 

the cancer GWAS summary statistics, which were based on different genome versions, we 

utilized CrossMap 47. This tool was employed to convert the GWAS coordinates to the Human 

Reference Genome Build GRCh38 (hg38), harmonizing the GWAS data. 
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Heritability estimation 

We used a restricted maximum-likelihood model implemented in GCTA 26 to estimate the total 

heritability of eRNAs arising from common genetic variants (MAF > 0.01). Heritability, in this 

context, refers to the proportion of phenotypic variation that can be attributed to the total genetic 

variation across all assessed loci. To estimate total genetic variation, GCTA generates a ‘genetic 

relatedness matrix’ that captures overall genetic dissimilarities among individuals in the study 

cohort. This comprehensive approach provides insights into the contribution of genetic factors to 

the observed variation in eRNA expression levels, shedding light on the heritability of these 

regulatory elements. 

 

FORGE2 enrichment analysis 

We performed enrichment analysis of our eRNA-QTLs with functional annotation using the 

recently developed FORGE2 method 31 (https://forge2.altiusinstitute.org/). This method is 

proficient in identifying enrichment within epigenomic regions, encompassing Dnase I hotspots, 

histone mark broadPeaks, and hidden Markov model chromatin states. FORGE2 utilizes 

epigenetic data from ENCODE, BLUEPRINT, and Roadmap and evaluates the enrichment of 

overlap with candidate functional annotation for eRNA-QTLs compared with a matched set of 

background SNPs. To assess the enrichment of eNRA-QTLs across epigenomic regions, a 

permutation test was conducted with 1,000 iterations utilizing the regioneR package. 

 

Evaluation of eRNA-QTL sharing between tissues 
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To identify patterns of tissue sharing and tissue specificity, we performed masher analyses using 

a multivariate adaptive shrinkage approach implemented in the R package mashR 27. mashR 

computes posterior estimates of eRNA-QTL effect sizes and standard errors across tissues with 

multi-tissue eRNA-QTL summary statistics. We defined tissue sharing as an effect size within a 

factor of 0.5 in the same direction. Tissue specificity was described as a local false sign rate 

<�0.05 and z-score of at least a 2-fold difference. 

 

eRNA-QTL enrichment in genomic annotations 

To gain insights into the functional enrichment of identified eRNA-QTLs, we performed 

functional enrichment analyses using torus software 29 following a similar approach as the GTEx 

Consortium. To perform the annotations, we used datasets from various sources. ENCODE 

provided gene regulatory elements and open chromatin annotations, and Ensembl contributed 

gene body annotations. Chromatin state predictions were obtained from ROADMAP, and TF 

binding and CpG island annotations were collected from the UCSC Genome Browser. For each 

specific tissue, the torus analysis generated enrichment estimates in point estimates derived using 

maximum-likelihood estimation. These estimates represent the logarithm of the odds ratio. To 

evaluate enrichment across multiple tissues, we employed a random-effects model to model the 

single-tissue enrichment estimates (i.e., log of odds ratio). 

 

Causal inference by Bayesian networks for SNP-eRNA-gene triplets 

Bayesian networks (BNs) are a sophisticated type of probabilistic graphical model that leverages 

Bayesian inference techniques to compute probabilities. By representing conditional 

dependencies as edges and random variables as nodes in a directed acyclic graph, BNs aim to 
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model not only correlations but also causal relationships among variables. In the context of 

genetic analysis, BNs have been utilized to gain insights into the underlying network structures 

that generate observed data 48. The joint probability density in BNs can be decomposed into 

marginal probability functions for individual nodes and conditional probability functions for 

edges, capturing the probabilistic relationships between variables. Furthermore, BNs adhere to 

the local Markov property, which states that each variable is conditionally independent of its 

non-descendants given its parent variables. For this study, we employed BNs to learn causal 

relationships among triplets of variables consisting of a genetic variant, eRNA, and gene. We 

focused on three distinct network topologies relevant to the hypotheses being tested (Fig. S3A), 

which included: 1) the causal model, in which the genetic variant influences the eRNA first 

followed by the gene; 2) the reactive model, in which the genetic variant influences the gene first 

followed by the eRNA; and 3) the independent model, in which the genetic variant 

independently influences both the gene and eRNA. 

Importantly, we considered only network topologies that assumed that the signal systematically 

originates from the genetic variant. In practice, we applied BNs to data obtained from QTL 

mapping, which involved analyzing associations between eRNA-gene pairs using an approach 

similar to that described above. To account for multiple tests, we applied an FDR threshold of < 

0.05 using the ‘p.adjust’ function in R programming language. We retained only significant 

results at an FDR < 0.05. 

 

Enrichment of eRNA-QTLs in TFBSs 

To examine the enrichment of TFBSs in eRNA-QTLs and eQTLs, we analyzed ChIP-seq data 

for 194 TFs and 17 histone marks from the ENCODE project, constructing 2×2 contingency 
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tables for each TF. We compared QTL variants to a null distribution of similar variants lacking 

regulatory associations. This null distribution was generated by sampling 1,000 random 

regulatory genetic variants for each QTL variant, matching them based on the relative distance to 

the transcription start site and minor allele frequency (within 1%). Enrichment for TFBSs was 

calculated as the proportion of regulatory associations within that TFBS compared with all 

regulatory variants relative to the same proportion in the null distribution of variants. The P-

value for this enrichment was determined using a Fisher exact test. To account for multiple tests, 

we applied an FDR threshold of < 0.05 using the ‘p.adjust’ function in R programming language.  

 

Fine mapping of GWAS loci 

Fine-mapping analysis was conducted on our curated cancer GWAS summary statistics using 

ancestry-matched linkage disequilibrium (LD) information. We utilized a recent toolkit that 

integrates three fine-mapping methods: PAINTOR (v.3.0), CAVIARBF (v.0.2.1), and FINEMAP 

(v.1.3.1). Each causal block was constrained to contain only one causal variant, and we applied 

the recommended parameters for these tools. These fine-mapping methods yield the PP of each 

variant as the causal one within a specified model. Subsequently, we identified credible sets 

consisting of variants with cumulative posterior inclusion probability (PP) values surpassing the 

95% threshold. 

 

Enrichment of eRNA-QTLs and eQTLs within cancer GWAS risk loci 

We employed fgwas (v.0.3.6) to investigate the enrichment of molecular QTLs within cancer 

GWAS risk loci. GWAS loci were annotated as eRNA-QTLs or eQTLs using a binary 

classification approach. We specifically focused on molecular QTLs that exhibited statistical 
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significance with an FDR threshold of <0.05. Additionally, we employed quantile-quantile plots 

(Q-Q plots) to visualize the P-values of cancer GWAS SNPs. These plots provide a useful visual 

representation to assess deviations from the expected null distribution, aiding in the identification 

of potential associations. To further explore the enrichment of heritability attributed to eRNA-

QTLs and eQTLs within GWAS risk loci, we applied stratified LD score regression (v1.0.1) to 

the cancer GWAS summary statistics. Our analysis integrated functional categories into the 

‘baseline-LD model’ encompassing 53 additional functional categories. Distinct binary 

annotations were created for eRNA-QTLs and eQTLs, with a value of 1 assigned to the most 

significant eRNA-QTLs and eQTLs, whereas the remaining SNPs were assigned a value of 0. 

LD scores for the SNPs were computed using genotype data from individuals of European 

ancestry obtained from the 1,000 Genome Project (phase 3), utilizing a window size of 1 cM. 

Ultimately, we calculated the heritability enrichment of each category by comparing the 

proportion of heritability explained by the category to the proportion of SNPs within that 

category. 

 

SMR analysis 

SMR analysis is a statistical method used in genetic epidemiology to investigate the causal 

relationship between a phenotype or trait and molecular phenotype. It involves the integration of 

summary-level data from GWAS and QTL studies to examine whether the effect of a genetic 

variant on the phenotype is mediated through molecular phenotypes. SMR analysis helps identify 

potential causal relationships among genetic variants, molecular phenotypes, and complex traits. 

Here, we conducted SMR analysis to test whether the effect of a common genetic variant on a 

phenotype is mediated by eRNA expression. We further performed the heterogeneity in 
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dependent instruments (HEIDI) test to detect the existence of LD in the genetic association. 

PHEIDI < 0.05 indicates that the observed genetic association could be due to LD between SNPs. 

The significance threshold of SMR was set at PSMR�<�0.05/N and PHEIDI�>�0.05, with N 

indicating the number of tests. 

 

Colocalization analyses 

We employed a Bayesian method for colocalization analysis to determine whether there is shared 

causal genetic variation between molecular traits (e.g., eRNA expression) and a disease trait. 

Specifically, we used the R package ‘coloc’ 38 to assess the colocalization of cancer GWAS 

summary statistics and eRNA-QTL and eQTL signals. The coloc package calculates five 

hypotheses: H0 (no association), H1 (GWAS association only), H2 (eRNA-QTL or eQTL 

association only), H3 (both associations but not colocalized), and H4 (both associations and 

colocalized). We performed separate analyses for each cancer risk phenotype and each proximal 

eRNA or gene using default parameters. To determine whether an eRNA or gene and GWAS 

signal were colocalized, we set the threshold of the PPH4 to be > 75%. Additionally, we required 

the ratio of PPH4 to the sum of PPH3 and PPH4 (PPH4/(PPH3 + PPH4)) to be ≥ 0.9. These criteria 

helped identify cases where there was strong evidence for both the eRNA or gene and GWAS 

associations being driven by the same underlying causal variants. We employed LocusZoom 

(v.1.4) to visualize regional plots and PLINK (v.1.90) to assess the LD between the identified 

causal SNP and other SNPs. 

 

eRNA-TWAS for cancer GWAS 
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We utilized the FUSION framework to perform eRNA-TWAS. Our approach began by 

employing a mixed-linear model to estimate the heritability of the eRNA region. This estimation 

was based on SNPs with a MAF > 0.01 located within 1 Mb of the eRNA region using a 

reference panel that consisted of cohorts with matched RNA-seq and genotype data. To ensure 

robust covariate adjustment, we incorporated well-established factors utilized in the QTL 

mapping section to determine eRNA expression. Subsequently, only eRNAs with significant 

heritability estimates (cis-h2) below a Bonferroni-corrected P-value of 0.05 were retained for 

further analysis. Within the FUSION framework, we selected three different models for weight 

calculation: BLUP, ENET, and LASSO. A cross-validation approach was employed to determine 

the model with the optimal eRNA-TWAS prediction accuracy for each gene. Subsequently, we 

applied these eRNA-TWAS prediction models to GWAS summary statistics using an FDR 

threshold of 0.05.  

 

 

The identification of eRNA-link gene 

We obtained gene annotations from ENSEMBL 

(https://jul2023.archive.ensembl.org/index.html), GENCODE 

(https://www.gencodegenes.org/human/release_38.html), and UCSC 

(https://genome.ucsc.edu/index.html) and integrated them. The expression matrix of these genes 

across human tissues was collected from the GTEx portal, and across cancer types from TCGA. 

Putative target genes of eRNAs were identified by assessing proximity (≤ 1MB) and co-

expression (Spearman’s correlation coefficient Rs�≥�0.8 and FDR�<�0.05) between 

individual eRNAs and their target genes across various tissues and cancer types. To ensure 
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accuracy, eRNAs located within intronic regions of the target genes were excluded from the 

correlation analysis. 

 

Annotation of cancer susceptibility eRNA-link genes in cancer-relevant gene databases 

To ascertain the intersection between our cancer susceptibility eRNA-link genes and established 

cancer-related genes, we compiled cancer-related gene sets from reputable sources, including the 

Molecular Signatures Database (MSigDB), DORGE, and Catalogue of Somatic Mutations in 

Cancer (COSMIC) Gene Census (https://cancer.sanger.ac.uk/census). We identified putative 

cancer-related genes by annotating with specific key phrases, such as ‘breast cancer’ and 

‘prostate cancer’. 

 

Gene set enrichment analysis 

We selected pan-cancer identified cancer susceptibility eRNA-link genes, filtering for those that 

encode HLA genes within MHC regions. We performed gene set enrichment analysis (GSEA) 

between the two groups to identify significantly altered Gene Ontology (GO) pathways utilizing 

GSEA software (v4.3.2) 49. GSEA is a widely utilized software package that utilizes gene sets to 

discern different biological functions between two groups. GO analysis encompasses biological 

processes, cellular components, and molecular functions. The statistical significance of 

enrichment was determined using the hypergeometric distribution. P-values generated by 

hypergeometric tests were FDR-corrected for multiple testing, and a P <�0.05 was considered 

statistically significant. The integrative network graphs were visualized using Cytoscape, a 

software tool for visualizing and analyzing biological networks. 
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Cell line maintenance and generation  

HEK293T cells were cultivated in Dulbecco’s Modified Eagle Medium (Gibco, cat #: 

C11995500BT) supplemented with 1% penicillin/streptomycin and 10% fetal bovine serum 

(FBS; Gibco, cat #: C10010500BT), 100 IU/mL penicillin, and 100 μg/mL streptomycin (Gibco, 

cat #: 15140-122) and were incubated in 5% CO2 at 37�. HEK293T cells were seeded onto 6-

well plates and transfected with BE4max-NG or SpRY-BE4max and sgRNA plasmids using 

EZtrans (Shanghai Life iLab Biotech, cat #: AC04L099) according to the manufacturer's 

instructions. Synthesized oligos (Table S6) were annealed and ligated into the Bsa1-digested 

pGL3-U6-pGK-puro vector. To screen cells expressing pGL3-U6-sgRNA-pGK-puro, puromycin 

(2.5 µg/ml; Merck, cat #: 540411) was added to cells after transfection for 24 h and then 

collected at 48 h post-treatment. Transfected cells with high mutation efficiency were seeded 

onto a 96-well plate with about 60 cells. After 12 days of cultivation, single clones were 

subjected to DNA extraction and genotyping. Clones with expected mutations were passaged for 

subsequent experiments. 

PC-3 cells obtained from the Cell Resource Center of Shanghai Institutes for Biological 

Sciences (Chinese Academy Science, Shanghai, China) were cultured in RPMI-1640 (Gibco, cat 

#: C22400500BT) supplemented with 10% FBS, 100 IU/mL penicillin, and 100 μg/mL 

streptomycin. Lentivirus was produced by cotransfecting HEK293T cells with transfer plasmids 

and standard packaging vectors pMD2.G and psPAX2 using PEI according to the manufacturer's 

instructions. To generate PC-3 cells stably expressing CRISPRi effectors, PC-3 cells were 

infected with lentivirus containing Zim3-KRAB-dCas9 (pLX303) at low multiplicity of infection 

followed by 3 days puromycin selection.  
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Genomic DNA extraction and genotyping 

Transfected HEK293T cells were treated with lysis buffer consisting of 1.5 mM MgCl2, 10 mM 

Tris-HCl (pH 8.0), 50 mM KCl, 0.5% Tween-20, 0.5% Nonidet P-40, and 100 μg/ml proteinase 

K (ThermoFisher Scientific). DNA fragments containing the targeting sites amplified by PCR 

with Phanta Max Super-Fidelity DNA polymerase (Vazyme; P505) were subjected to Sanger 

sequencing for genotyping. The primers used for PCR are listed in Table S6. 

 

Assessing transcriptional effects via targeted enhancer repression 

Two guide RNA oligos per enhancer were inserted into the pBA900 (pU6-sgRNA EF1Alpha-

puro-T2A-BFP) at the Blp1 and BstX1 restriction sites. gRNA constructs and control vector 

were separately packaged into lentivirus, which was subsequently transduced into PC-3 cells 

stably expressing Zim3-KRAB-dCas9. Ten days post-infection, transduced cells were sorted via 

flow cytometry using a BD FACS Aria3. Total RNA was extracted using the Quick-RNA™ 

Miniprep Kit (cat#: R1055; Zymo Research), and cDNA was generated using the Hifair® � 1st 

Strand cDNA Synthesis Super Mix for qPCR (gDNA digester plus) kit (Yeasen, cat #: 

11141ES60). Quantitative PCR was performed using the Hieff® qPCR SYBR Green Master Mix 

(Yeasen, cat #: 11203ES08) on a CFX96 machine (BIO-RAD, Hercules, CA, USA). 

Experiments measuring the expression of each gene were repeated at least three times, with 

GAPDH used as the internal reference for expression. The gRNA oligos and primers used for 

qPCR are listed in Table S6. 

 

RNA-seq and analysis  
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Total RNA extracted from HEK293T cells was subjected to strand-specific RNA sequencing 

using the Illumina nova seq 6000 platform at Berry Genomics Co, Ltd (Beijing, China). Briefly, 

strand-specific RNA-seq libraries were prepared by combining the Ribo-Zero rRNA Removal 

Kit (Epicentre, Madison, WI, USA) and dUTP method to ensure strand specificity. RNA 

samples, namely, four samples from HEK293T cell lines under two conditions (control: wild-

type; case: heterogenous) with two biological replicates per condition, were obtained in FASTQ 

format. For each FASTQ file, quality checks were conducted using FastQC 50. Contaminating 

data, such as low-quality reads, adaptor sequences, and poor-quality bases, were removed with 

Trimmomatic software 51. Trimmed reads were mapped to the human reference genome 

(GRCh38) using STAR 42 and then sorted by SAMtools 52.  

 

Statistical analysis  

All results are presented as the mean ± 95% confidence interval. Statistical analysis was 

performed using R Studio (version 4.1.0). Differences between two groups were analyzed using 

unpaired two-tailed Student’s t-tests or Wilcoxon signed-rank tests. For multiple comparisons, 

one-way analysis of variance (ANOVA) with post hoc Tukey HSD tests were used. P-values < 

0.05 were considered statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 

0.0001. 

 

eRNA-QTL atlas for exploration and analysis of genetic effects on eRNA 

To enhance accessibility to eRNA-QTL information, we developed an intuitive and user-friendly 

database (eRNA-QTL atlas, http://bioinfo.szbl.ac.cn/eRNA-QTL-atlas/). We implemented the 

eRNA-QTL search and query functionality within our robust database infrastructure, enabling 
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users to conduct searches across 49 distinct human tissues. This advanced capability allows users 

to thoroughly explore the functional specific characteristics of eRNA-QTLs by eRNA IDs (e.g., 

ENSR00000069687), thereby identifying associations with eRNA-QTLs of particular interest 

(Fig. S7A). Furthermore, direct retrieval of eRNA-QTLs is also included, which provides 

researchers with a sophisticated tool for their investigations. We then employed a genome 

browser to visualize and explore the eRNA-QTL genomic landscape surrounding target eRNAs 

by their genome positions or adjacent genes of target eRNAs. For example, eRNA-QTLs in a 

specific tissue or all tissues for ENSR00000253886 can be shown by searching for its adjacent 

gene TBX15, which is positioned upstream of the adjacent region of ENSR00000253886 (Fig. 

S7B). These browsers provide an intuitive interface for navigating genomic regions and 

visualizing annotations, including gene structures, GWAS catalog risk SNPs 53, and eRNA-QTLs 

among all 49 human tissues. By integrating the retrieved eRNA-QTL data and genome browser 

visualizations, we construct a comprehensive profile of the target eRNAs, shedding light on their 

potential function. In addition to these features, we offer the ‘GWAS-eRNA-QTLs 

Colocalization Event Visualization’ section by R package LocusComparer 54. This feature helps 

researchers conveniently visualize colocalization events between GWAS data and eRNA-QTLs. 

An illustrative instance of the colocalization plot depicts the region surrounding enhancer 

ENSR00000089936, along with GWAS and eRNA-QTLs P-values, specifically in nerve tibial 

tissue (Fig. S7C). Furthermore, a compilation of eRNA-QTLs associated with GWAS allows 

users to delve deeper into the underlying mechanisms of eRNA-QTLs in association with human 

traits and diseases. This compilation includes full information on 1,625 traits/diseases from the 

GWAS catalog across all 49 tissues (Fig. S7D). As an example, we present an instance of eRNA-

QTLs associated with the trait of telomere length in adipose subcutaneous tissue. Finally, the 
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download page allows users to download all eRNA-QTL results across 49 human tissues for 

further custom analysis (Fig. S7E). A comprehensive help page provides guidance for the 

effective utilization of these functionalities with a series of detailed, step-by-step instructions 

(Fig. S7F). Altogether, using the eRNA-QTL atlas, researchers and investigators can efficiently 

access and analyze eRNA-QTL data, empowering them to make informed decisions and gain 

valuable insights into the regulatory mechanisms underlying their studies related to eRNAs. Thus, 

our platform provides a powerful and scientifically rigorous experience for the exploration of 

eRNA-QTL information. 
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Figures and Tables 

   

Fig. 1. QTL mapping on eRNA transcriptome profiles across 48 tissues. (A) Overview of the

study and data. We integrated RNA-seq and genotype data from GTEx and TCGA to develop a

reference panel for eRNA-QTL analysis and eRNA-TWAS modeling. We then employed eRNA-

TWAS analysis to identify cancer susceptibility eRNA-link genes using cancer GWAS summary

statistics and eRNA-TWAS models. The biological functions of these cancer susceptibility
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eRNA-link genes were further validated by data analysis and experimental approach. (B) 

Average fraction of eRNA variations that could be explained by eRNA-QTLs. The y-axis 

represents the proportion of eRNAs across all human normal (GTEx) tissues and tumor (TCGA) 

types studied. (C) Proportion of independent eRNA-QTLs across all human normal (GTEx) 

tissues and tumor (TCGA) types. (D) Pairwise eRNA-QTL sharing by magnitude among tissues. 

eRNA-QTL sharing patterns were assessed pairwise across various tissues by examining the 

Spearman correlation between mashR effect sizes for each tissue pair. The results are displayed 

in matrix format, with each cell representing the correlation value for a particular tissue pair. To 

identify shared eRNA-QTLs between two tissues, the top eRNA-QTLs that attained significance 

(local false sign rate < 0.05) in at least one of the two tissues were selected. The proportion of 

shared eRNA-QTLs was then plotted, whereby only those with effect estimates of the same sign 

and within a factor of 2 in size were included. The hierarchical clustering algorithm was utilized 

to arrange the tissues based on their similarity in eRNA-QTL sharing patterns. (E) Proportion of 

tissues sharing lead eRNA-QTLs/eQTLs across all 49 examined tissues, among non-brain tissues 

(F) and brain tissues (G).
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Fig. 2. Functional annotation of eRNA-QTLs. (A) Enrichment of eRNA-QTLs and eQTLs for 

different genome annotations. Each dot in the figure represents the log-transformed odds ratio 

(OR), and the lines indicate the corresponding 95% confidence interval. Enrichment was 

assessed using all SNPs through torus based on the eRNA-QTL results obtained using QTLtools 

and the eQTL results obtained from the GTEx Portal. The peak files of histone modification 

markers were downloaded from the Roadmap Epigenomics Project. (B) eRNA-QTL were 

enriched in TFBSs across tissues. The enrichment values correspond to the maximum-likelihood 
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estimated log(OR), and the whiskers on the plot indicate values below the significant FDR 

threshold of 0.05. (C) The genome browser displays histone modification data, CAGE data, and 

CTCF binding site data within the NENF eRNA (NENFe) locus. Histone modification data were 

downloaded from the Roadmap Epigenomics Project, CAGE data were obtained from 

FANTOM5, and CTCF binding site data were acquired from Cistrome. A DNA logo is presented 

representing the CTCF-binding motif based on previously reported consensus CTCF binding 

sites 55. The height of each letter in the logo indicates the relative frequency of occurrence of the 

corresponding nucleotide at that specific position. (D) The A allele of rs6703982 was observed 

to downregulate the expression of NENF eRNA (NENFe) and its target gene NENF. 
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Fig. 3. Contribution of eRNA-QTLs to cancer heritability. (A) Cancer causal variants were 

more significantly enriched in eRNA regions. To investigate the genomic distributions of 

disease-associated fine-mapped variants (95% credible sets), we conducted an analysis of these 

variants within eRNA regions across various disease domains sourced from CAUSALdb. (B) 

The highest PP of a causal variant for prostate cancer was observed in eRNA regions. The 

GATA2 eRNA (GATA2e) region contained eight causal SNPs associated with prostate cancer. 
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Notably, rs4857906 (red color), an SNP located within the GATA2e region, exhibited the highest 

PP with prostate cancer. (C) Tissues with eRNA-QTL enrichment but no eQTL enrichment for 

breast cancer. Enrichment values (i.e., effect size) were calculated using functional GWAS 

quantifying relationships between trait-associated variants and eRNA-QTLs/eQTLs. A positive 

value indicates that variants with stronger association evidence in GWAS are more likely to be 

eRNA-QTLs/eQTLs. Estimated lower- and upper-bound 95% confidence intervals for 

enrichment values are also shown. (D) Example quantile-quantile plot (QQ plot) showing the 

nominal P-values of breast cancer GWAS SNPs, which were primarily annotated by eRNA-

QTLs (yellow) and eQTLs (blue). Each dot represents a GWAS SNP. All breast cancer GWAS 

nominal P-values are also shown as controls (black). (E) Tissues with eRNA-QTL enrichment 

but no eQTL enrichment for gastric cancer. (F) Example QQ plot showing the nominal P-values 

of gastric cancer GWAS SNPs. (G) A significant contribution to the heritability of cancers by 

eRNA-QTL/eQTL. Cancer types were grouped on the x-axis. For each cancer type, the yellow 

and blue colors indicate the contribution of eRNA-QTLs and eQTLs to the heritability of 

cancers, respectively. 
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Fig. 4. Locus colocalization and SMR analyses. (A) Number of colocalization events for 

eRNA-QTL and eQTL. Cancer types are grouped on the x-axis. For each cancer type, yellow and 

blue colors indicate that the colocalization events could be explained by eRNA-QTL or eQTL, 

respectively. (B) Scatter plot showing colocalization PPs for significant genes and eRNA, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2024. ; https://doi.org/10.1101/2024.02.29.24303580doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.29.24303580
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                             Page 8 of 58 
 

respectively. eRNA-QTLs/eQTLs were considered be to colocalized with GWAS results if PPH4 

exceeded 75% and PPH4/(PPH3 + PPH4) was ≥ 0.9. PPH3: independent causal variants; PPH4: 

colocalized causal variants. Examples of colocalization events that could only be explained by 

eRNA-QTL are marked in yellow, and examples of colocalization events that could be explained 

by both eRNA-QTL and eQTL are marked in red. (C) Independent eRNA-QTLs depict variants 

with regulation on the eRNA level but not the mRNA displayed by the significant SNP-eRNA 

pair rs6866783-CLPTM1Le. Variants are represented by points colored relative to LD with the 

candidate variant rs6866783 (red, ≥ 0.8; orange, 0.6–0.8; green, 0.4–0.6; light blue, 0.2–0.4; dark 

blue, < 0.2). LD data from 1,000 Genomes (phase 3). (D) Independent eRNA-QTLs depict 

variants with regulation on the eRNA level but not the mRNA level displayed by the significant 

SNP-eRNA pair rs62431527-CNR1e. (E) Distribution of PP for all fine-mapped GWAS variants 

(95% credible set in GWAS, GWAScred) that were also fine-mapped eRNA-QTL variants 

(eRNA-QTLcred) vs. GWAScred variants only. Mann-Whitney P-value is shown. (F) Integration 

of cancer-credible GWAS variants with credible sets from colocalizing eRNA-QTLs increased 

fine-mapping resolution. The bar plot shows the proportion of independent loci identified as 

candidate causal variants before and after restricting for QTL variants. The credible set sizes are 

binned into three groups (1, 2-10, and > 10).  
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Fig. 5. Landscape of cancer susceptibility eRNAs across 23 cancer types. (A) The eRNA-

TWAS models successfully identified 626 cancer susceptibility eRNAs and 1,011 eRNA-linked 

cancer susceptibility genes across 23 cancer types. Notably, among the 1,011-cancer 

susceptibility eRNA-link genes, 54.90% were not detected by eTWAS. (B) A Manhattan plot 

was meticulously constructed to visually represent TWAS findings for both breast and prostate 

cancer. eRNAs identified via eRNA-TWAS are marked in yellow for easy visual identification, 

whereas genes uncovered through eTWAS are marked in blue. Each dot signifies the negative 

logarithm (to base 10) of the P-value associated with each eRNA and gene identified through 

eRNA-TWAS and eTWAS, respectively, plotted along the y-axis. (C) Box plots displaying data 

from the Sanger DepMap Project Score highlighting cancer susceptibility eRNA-link genes 

contributing to cell proliferation. In this context, ‘significant eRNA-TWAS genes’ refers to 

eRNA-linked genes identified as being associated with cancer through eRNA-TWAS. 

Conversely, ‘Null distribution’ refers to eRNA-linked genes unrelated to cancer. CERES scores 

were used to assess the essential levels of genes considering the computational effects of copy 

number and depletion of gene-targeting guide RNAs. Red dashes represent the median CERES 

score cutoff value of < -0.5, indicating a crucial role in cell proliferation. (D) Proportion of cell 

lines exhibiting CERES scores < -0.5 for genes associated with eRNA-linked breast cancer 

susceptibility (top panel) and the top 20 cancer susceptibility eRNA-linked genes with the lowest 

CERES scores evaluated in breast cell lines (bottom panel). BRCA1, a well-established breast 

cancer susceptibility gene, was used as a positive control. (E) Proportion of cell lines exhibiting 

CERES scores < -0.5 for genes associated with eRNA-linked prostate cancer susceptibility (top 

panel) and the top 20 cancer susceptibility eRNA-linked genes with the lowest CERES scores 

evaluated in prostate cell lines (bottom panel). CCND1, a well-known oncogene in prostate 
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cancer, was used as a positive control. (F) Intersection between cancer susceptibility eRNAs 

identified through colocalization analysis and eRNA-TWAS. (G) Correlation between the 

absolute effect sizes (z-scores) as assessed by eRNA-TWAS and the PPs (PPH4) derived from 

colocalization analysis for significant eRNAs linked to prostate cancer susceptibility. Points 

highlighted in red denote eRNAs with both high PP in colocalization analysis and substantial 

effect sizes in eRNA-TWAS, underscoring the eRNAs that exhibit strong evidence of association 

with prostate cancer susceptibility. (H) LocusZoom plot illustrating the association of prostate 

cancer GWAS SNPs and eRNA-QTLs at the SNAPC1 eRNA (SNAPC1e) locus. Notably, a 

concurrent association was identified between the variant rs11158314 with both the risk of 

prostate cancer (first panel) and the expression level of SNAPC1e (second panel). Manhattan plot 

depicting prostate cancer GWAS signals before and after conditioning on SNAPC1e expression 

(third panel). Genome browser visualization highlights the landscape of histone modifications 

and ATAC-seq peaks at the SNAPC1e locus in the PC3 cell line (bottom panels). Histone 

modification and ATAC-seq data were obtained from the ENCODE Project, providing a 

comprehensive view of the regulatory elements influencing the SNAPC1e locus. (I) LocusZoom 

plot illustrating the association of prostate cancer GWAS SNPs and eRNA-QTLs at the CCND1 

eRNA (CCND1e) locus. Notably, a concurrent association was identified between the variant 

rs12799883 with both the risk of prostate cancer (first panel) and the expression level of 

CCND1e (second panel). Manhattan plot depicting cancer GWAS signals before and after 

conditioning on CCND1e expression (third panel). Genome browser visualization highlights the 

landscape of histone modifications and ATAC-seq peaks at the CCND1e locus in the PC3 cell 

line (bottom panels). Histone modification and ATAC-seq data were obtained from the 

ENCODE Project, providing a comprehensive view of the regulatory elements influencing the 
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CCND1e locus. (J) Repression of SNAPC1e mediated by Zim3-KRAB-dCas9 resulted in 

decreased expression of SNAPC1 as determined by quantitative PCR analysis in PC3 cells. This 

observation was statistically validated using a two-sided t-test, based on data from three 

independent experiments, with results presented as mean ± standard error. The term ‘sgRNA’ 

refers to single guide RNA. (K) Repression of CCND1e mediated by Zim3-KRAB-dCas9 

resulted in a decreased expression of CCND1 as determined through quantitative PCR analysis in 

PC3 cells.  
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Fig 6. Integrative network analysis of cancer susceptibility eRNA-link genes. Integrative 

network analysis revealed that cancer susceptibility eRNA-link genes converge in shared 

pathways (yellow color), including the apoptotic process. 
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