Cholangiocarcinoma by Ultrasonography Surveillance:

Multicenter Retrospective Cohorts

- 5 Nittaya Chamadol^{1, 11}, Vallop Laopaiboon^{1, 11}, Apiwat Jareanrat^{2, 11} Vasin Thanasukarn^{2, 11},
- 6 Tharatip Srisuk^{2, 11}, Vor Luvira^{2, 11}, Poowanai Sarkhampee³, Winai Ungpinitpong⁴, Phummarat
- 7 Khamvijite⁴, Yutthapong Chumnanua⁵, Nipath Nethuwakul⁵, Passakorn Sodarat⁵, Samrit
- 8 Thammarit⁶, Anchalee Techasen^{7,11}, Jaruwan Thuanman^{8,11},
- 9 Chaiwat Tawarungruang^{8,11}, Bandit Thinkhamrop^{8,11}, Prakasit Sa-Ngiamwibool^{9,11},
- Watcharin Loilome^{10,11}, Piya Prajumwongs¹¹, & Attapol Titapun^{2,11,*}
- 13 Departments of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- ² Departments of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- 15 ³ Departments of Surgery, Sunpasittiprasong Hospital, Ubon Ratchathani Province, Thailand
- ⁴ Departments of Surgery, Surin Hospital, Surin Province, Thailand
- ⁵ Departments of Surgery, Roi Et Hospital, Roi Et Province, Thailand
- 18 6 Departments of Surgery, Udon Thani Hospital, Udon Thani Province, Thailand
- ⁷ Departments of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon
- 20 Kaen, Thailand

1

2

3

4

11

12

- 21 8 Data Management and Statistical Analysis Center (DAMASAC), Faculty of Public Health, Khon Kaen
- 22 University, Khon Kean, Thailand
- ⁹ Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- 24 10 Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen,
- 25 Thailand
- 26 NGTED http://propartetineproas/Removeselar/Enstriatules/Kolone/Kolentifeti byopsettye/Kolonan/Kstronu/Throtiberused to guide clinical practice.

27 * Corresponding author 28 E-mail: attati@kku.ac.th (AT) 29 **Abstract** 30 Introduction 31 Most cholangiocarcinoma (CCA) patients present with late stage of disease because of the 32 difficulty to diagnosis at an early stage, resulting in poor survival of CCA patients. The 33 Cholangiocarcinoma Screening and Care Program showed that ultrasound screening was an 34 effective tool for detecting early stage CCA. This study aims to evaluate the survival outcome 35 of patients diagnosed by ultrasound screening (US) compared to walk-in symptomatic 36 37 patients. Methods 38 5-year survival rates (5-YSR) and median survival time (MST) of CCA were calculated using 39 Log-Rank test. Multivariate analyses were performed for significant factors from univariate 40 41 analyses. Results 42 A total of 711 histologically proven CCA cases were examined including ultrasound 43 44 screening and walk-in groups. The screening group having 5-YSR was 53.9%, and MST was of 67.2 months, while walk-in group, the 5-YSR was 21.9% and MST was 15.6 months 45 (p<0.001). In addition, multivariate analyses revealed that screening program was an 46 47 independent factor to predict a good outcome of CCA patients when compared with walk-in group (p = 0.014). 48 **Conclusion** 49

US is an effective tool for detecting early stage CCA leading to improve clinical outcome of

CCA patients. Practically, US should be considered as a first tool for screening CCA in risk

populations.

Author Summary

Most cholangiocarcinoma (CCA) patients in Thailand have poor survival due to late-stage

detection and patients walk-in to hospital with any symptoms. This study purpose to evaluate

the survival outcome of CCA patients diagnosed by ultrasound screening (US). We found that

US provided early stage and improved survival of CCA patients.

Introduction

Cholangiocarcinoma (CCA) is a cancer of bile duct epithelium which the second most common primary liver cancer worldwide after hepatocellular carcinoma (HCC). CCA has a relatively rare incidence in most western countries and North America, however, it has been reported as having high incidence rates in East and Southeast Asia, especially in Thailand. The incidence of CCA in the northeast of Thailand has been recorded as the highest incidence rate worldwide with an incidence of 87.7 per 100,000 in males, and 36.3 per 100,000 in females [1]. The major risk factor of CCA in Thailand has been identified as infection by the liver fluke *Opisthorchis viverrini* (OV) which initiates the development of the normal bile duct to transform into tumor known as cholangiocarcinogenesis [2-4].

CCA patients have poor survival and high mortality rate due to late diagnosis. Diagnosis of CCA is rare at an early stage because most patients with any clinical symptoms were diagnosed at the advance or locally advance stage. Surgical resection is potentially the most curative treatment considered as a first choice for treatment in resectable patients in every type of CCA [5, 6]. Surgical resection offers the best opportunity for long-term survival with survival time approximately 17-20 months and 5-year survival rate 10-25% [7-12]. Although

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

4

surgical resection provides long-term overall survival, candidate surgical patients have been reported to be only 20%, while 80% are diagnosed at unresectable stage CCA [13]. The unresectable CCA patients suffer from several complications for instance, local tumor invasion or distant metastasis, biliary obstruction, cholangitis, pain, and malnutrition [13]. These complications reduced the quality of the patient's life, with subsequent poor survival of unresectable CCA patients. Thus, a screening test for diagnosis of CCA at an early stage of disease has diagnostic and clinical advantages for the early treatment of CCA which improves a patient's outcomes.

Trans-abdominal ultrasonography (US) is a non-invasive imaging tool to detect abnormality in the hepatobiliary system, including early stage CCA by detecting mass and/or dilatation of bile ducts. US also offers several advantages, due to its accessibility, speed, ease of performance, portability and low cost [14]. Therefore, US should be considered as the firstchoice imaging modality for screening abnormalities associated with CCA in Thailand [15-19]. Ultrasound screening was systematically applied in the Cholangiocarcinoma Screening and Care Program (CASCAP), to determine the utility of the application for early diagnosis of CCA combined with prevention, treatment, and follow-up. This prospective study consisted of two cohorts, the screening cohort included people at risk of CCA without any symptoms who received active ultrasound screening, and the patient cohort included symptomatic walk-in patients [20]. Results showed that US screening can diagnose early signs of biliary tract fibrosis (periductal fibrosis) that is associated with CCA [15] as well as detecting premalignant CCA lesions and early stage CCA [21]. Subsequently, CCA patients who were diagnosed by US screening had significantly higher proportion of early stage CCA compared to symptomatic walk-in patients [17]. Early-stage detection in the screening group may provide better survival outcomes than the walk-in group of CCA, significant benefits for early treatment and reduction of morbidity and mortality rates of CCA patients.

Therefore, this study aimed to evaluate the effectiveness of US screening by comparing the survival outcome between the screening group and symptomatic walk-in patient group.

Methods

Ethics statement and consent to participate

This study was conducted based on the principles of Good Clinical Practice, the Declaration of Helsinki, and national laws and regulations about clinical studies. All processes of this study were accepted and approved by the Khon Kaen University Ethics Committee for Human Research under the reference number HE551404. The data underwent complete anonymization before our access. Information could not identify individual participants. Clinical data and medical records of patients were retrieved through only hospital number (HN). Clinical data and medical records for this study were accessed in 30 June 2021.

Overview of study design

A total of 766 CCA patients were included in this study who underwent surgery and CCA was confirmed by pathologists in 11 hospitals over the period of 1 October 2013 to 30 June 2021, namely: (1) Srinagarind Hospital, Khon Kaen University; (2) Sunpasittiprasong Hospital; (3) Surin Hospital; (4) Udon Thani Hospital; (5) Roi Et Hospital; (6) Udonthani Cancer Hospital; (7) Maharaj Nakorn Chiang Mai Hospital; (8) Buri Ram Hospital; (9) Ubonratchathani Cancer Center; (10) Khon Kaen Hospital and (11) Maharat Nakhon Ratchasima Hospital. Demographic and pathological data that were recorded by the Cholangiocarcinoma Research Institute (CARI), Khon Kaen University were reviewed. Patients in this study were separated into two groups: the screening group (n = 163) comprised

Fig 1. The schematic of the study.

Diagnosis and treatment

Patients in screening groups who underwent abdominal US examination and confirmed by CT/MRI. US and CT/MRI images of both groups were reviewed by radiologist (NC and VL). Intraoperative findings and operative procedure were reviewed.

Histopathological diagnosis and tumor morphology of both groups were reviewed by pathologists (PS). Tumor staging was recorded according to AJCC 8th edition. Adjuvant chemotherapy was provided to patients by attended oncologists or by a multidisciplinary team conference at each treatment center. Patients were followed up with CT/MRI and tumor markers every 3-6 months. If recurrence of disease occurred, a different chemotherapy regimen was considered and applied for appropriate patients.

Data management and statistical analysis

The demographic characteristics of the patients were presented as the mean and standard deviation for continuous variables and frequency counts with their percentages for categorical variables. Both of these were presented for each comparison group and as a total for the

early stage CCA was calculated by using the number of patients whose stage was 0, I, or II as

the numerator and the total number of patients as the denominator.

Survival analysis was calculated by Kaplan-Meier method. Survival time was defined as from the date of surgery to the date of the patient's death. Patients who survived after the end of study date (30th December 2021) were defined as censor. Median survival times and survival rates are presented with 95%CI and the comparison between groups was analyzed by log rank test. Univariable and multivariable analyses were performed to identify prognostic factors using the Cox regression model. A *p*-value of less than 0.05 was considered significant. All analyses were performed using the IBM SPSS Statistics version 26.

Results

149

150

151

152

153

154

155

156

157

158

159

160

161

162

164

165

166

167

168

169

171

172

Patient's characteristics and overall survival of CCA patients

between screening and walk-in

The number and proportion of CCA patients who received curative surgery in 11

hospitals are as follows: (1) Srinagarind Hospital, Khon Kaen University, n = 493 (69.3%);

(2) Sunpasittiprasong Hospital, n = 62 (8.7%); (3) Surin Hospital, n = 48 (6.7%), (4) Udon

Thani Hospital, n = 44 (6.2%); (5) Roi Et Hospital, n = 41 (5.8%); (6) Udonthani Cancer

Hospital, n = 8 (1.1%); (7) Maharaj Nakorn Chiang Mai Hospital, n = 7 (1%); (8) Buri

Ram Hospital, n = 4 (0.6%); (9) Ubonratchathani Cancer Center, n = 2 (0.3%); (10)

Khon Kaen Hospital, n = 1 (0.15%) and (11) Maharat Nakhon Ratchasima Hospital, n =

170 1 (0.15%).

A total of 711 cases of CCA patients were included in this study and separated into 2

groups namely, 154 (21.7%) cases for the screening group and 557 (78.3%) cases for the

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

walk-in group. The median age of patients was 61 years, where the majority were found to be male 451 (63.4%). Intrahepatic CCA (iCCA) 349 (49.3%) cases were found to be the highest in this study, followed by perihilar (pCCA) and distal (dCCA) CCA 282 (39.9%) and 76 (10.8%) cases, respectively. The screening groups had significantly higher proportions of iCCA than the walk-in groups, while pCCA and dCCA were found to be significantly greater in the walk-in group (p < 0.001). Results of tumor morphology showed that the mass-forming types were the major subtypes 300 (43.0%) cases in both groups. For tumor staging according to the AJCC/UICC staging system, tumor stage was categorized into two groups, early stage (0-II), 254 (35.7%), and late stage (III-IV), 457 (64.3%). Interestingly, tumor staging was separated based on programs to detect CCA. Result showed that screening groups had significantly higher CCA patients with early stage CCA 130/154 (84.4%) than walk-in groups with 124/557 (22.3%) cases (p < 0.001) (Supplementary Table 1). The survival analysis was performed to calculate 5-year survival rate (5-YSR) and median survival time (MST) presenting by month. The overall survival of 711 patients of this study showed that MST was 19.9 months, and 5-YSR was 28.8% (Supplementary Fig 1). Age, gender, and anatomical locations had no significant effect on the 5-YSR and MST in this study. However, tumor morphology showed that patients with ID had significantly better survival than PI, MF, and mixed type (5-YSR = 47.7 vs. 27.1, 24.0 and 22.9%; MST = 44.3 vs. 20.2, 14.3 and 23.7 months; HR = 1.62, 1.89 and 1.66, p = 0.001, < 0.001 and 0.012, respectively). The comparison of the survival in early and late stage showed that patients with stage had markedly greater survival than patients with late stage (5-YSR = 54.7)early MST = 78.4 vs. 12.3 months; HR = 3.40, p < 0.001). Interestingly, vs. 14.4%; patients in the walk in group had significantly greater 5-YSR and MST than the walk in group (5-YSR = 53.9 vs. 21.9%); MST = 67.2 vs. 15.6 months; HR =2.61, p < 0.001) (Table 1 and Fig 2).

Table 1. Univariate and multivariate analysis of the survival of CCA patients.

Variable	n	5-YSR (%) (95%CI)	MST (month) (95%CI)	Univa	riate	Multivariate	
				HR (95%CI)	<i>p</i> -value	HR (95%CI)	<i>p</i> -value
Age, years							
< 61	326	26.4	19.0	1		-	
		(22.2-30.6)	(15.5-22.5)				
≥ 61	385	30.9	20.3	0.93	0.378	-	-
		(26.7-35.1)	(16.1-24.4)	(0.78-1.09)			
Gender							
Male	451	29.7	20.1	1		-	
		(25.9-33.5)	(17.1-23.1)				
Female	260	27.3	18.4	0.95	0.542	-	-
		(22.5-32.1)	(13.9-22.8)	(0.79-1.13)			
Tumor							
Location ^a							
dCCA	76	36.8	22.4	1		-	
		(26.5-47.1)	(18.7-26.1)				
iCCA	349	30.4	19.6	1.23	0.147	-	-
		(26.1-34.7)	(15.6-23.6)	(0.92-1.71)			
pCCA	282	25.2	18.9	1.36	0.054	-	-
1		(20.8-29.6)	(15.7-22.0)	(0.99-1.86)			
Tumor							
Morphologya							
ID	128	47.7	44.3	1		1	
		(39.4-56.0)	(17.9-70.7)				
PI	221	27.1	20.2	1.62	0.001*	1.25	0.126
		(21.7-32.5)	(16.4-24.1)	(1.45-2.45)		(0.94-1.65)	
MF	300	24.0	14.3	1.89	< 0.001*	1.36	0.025*
		(19.9-28.1)	(10.8-17.8)	(1.23-2.13)		(1.04-1.78)	
Mix	48	22.9	23.7	1.66	0.012*	0.96	0.847
		(15.0-30.8)	(11.5-35.8)	(1.12-2.47)		(0.64-1.44)	
TNM stage							
Early (0-II)	254	54.7	78.4	1		1	
			1	1	1	1	1

		(48.6-60.8)	(59.7-97.2)				
Late (III-IV)	457	14.4	12.3 3.40		< 0.001*	2.76	< 0.001*
		(11.8-16.9)	(10.5-14.1)	(2.76-4.18)		(2.15-3.55)	
Diagnostic							
methods							
Screening	154	53.9	67.2	1		1	
		(46.1-61.7)	(44.1-90.2)				
Walk-In	557	21.9	15.6	2.61	< 0.001*	1.44	0.014*
		(18.9-24.9)	(13.4-17.9)	(2.05-3.34)		(1.10-1.92)	

n, Number; CI, Confidence interval; 5-YSR, 5-year survival rate; MST, median survival time; HR, hazard ratio; dCCA, distal cholangiocarcinoma; iCCA, Intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; ID, intraductal; PI, periductal infiltrating; MF, mass-forming; TNM, tumor node metastasis from 8th AJCC/UICC staging system.

Fig 2. The survival of CCA patients in screening and walk-in groups.

The significant factors of the survival determined by univariate investigations were further analyzed to identify any independent factor(s) for use as prognostic prediction of the outcome of CCA patients which was composed of tumor morphology, staging and diagnostic methods. The multivariate analysis showed that MF morphology, late CCA stage and the walk-in group were statistically independent factors for poor prognosis (HR = 1.36, p = 0.025; HR = 2.76, p < 0.001; and HR = 1.44, p = 0.014, respectively) (Table 1).

Subgroup analysis of screening and walk-in groups on the

survival outcomes of CCA patients.

Subgroup analysis of each variable in both screening and walk-in groups showed no difference in the survival outcome by age and gender.

^a The data was not available in some case

^{*} Indicates a *p*-value < 0.05 (statically significant)

Tumor morphology comparisons showed ID had better survival than PI, MF, and mixed type in both the screening and walk in group. Early stage of disease was factor in good survival of patients in both groups. There was a different outcome in tumor location, where results showed that iCCA and pCCA had a good 5-YSR than dCCA (52.4 and 65.9 vs. 22.2%, p < 0.05, respectively). In contrast, the in walk in group, dCCA had better 5-YSR than iCCA and pCCA (38.8 vs. 21.1 and 18.3%, p < 0.001, respectively) (Table 2 and Fig 3).

Table 2. The comparison of the survival in CCA patients between screening and walk in methods.

Variable		Scre	ening group		Walk in group			
	n	5-YSR	HR	<i>p</i> -value	n	5-YSR	HR	<i>p</i> -value
	(154)	(%)	(95%CI)		(557)	(%)	(95%CI)	
Age, years								
< 61	74	50.0	1		252	19.4	1	
≥ 61	80	57.5	0.94	0.791	305	23.9	0.89	0.224
			(0.60-1.48)				(0.74-1.07)	
Gender								
Male	100	56.0	1		351	22.2	1	
Female	54	50.0	0.91	0.686	206	21.4	0.95	0.620
			(0.57-1.44)				(0.79-1.15)	
Tumor								
location								
dCCA	9	22.2	1		67	38.8	1	
iCCA	103	52.4	0.39	0.021*	246	21.1	1.83	< 0.001*
			(0.18-0.87)				(1.31-2.56)	
pCCA	41	65.9	0.28	0.005*	241	18.3	1.72	0.002*
			(0.12-0.68)				(1.23-2.41)	
Tumor								
Morphologya								
ID	33	72.7	1		95	37.9	1	
PI	56	53.6	1.81	0.096	165	18.2	1.63	0.001*
			(0.90-3.64)				(1.21-2.20)	
MF	59	44.1	2.25	0.020*	241	19.1	1.78	< 0.001*
			(1.14-4.44)				(1.34-2.37)	
Mix	3	66.7	1.13	0.907	45	20.0	1.40	0.109
			(0.15-8.77)				(0.93-2.11)	

Tumor								
staging								
Early	130	63.8	1		124	48.4	1	
Late	24	16.7	3.90	< 0.001*	433	14.3	2.73	< 0.001*
			(2.30-6.60)				(2.11-3.55)	

- n, Number; CI, Confidence interval; 5-YSR, 5-year survival rate; HR, hazard ratio; dCCA, distal cholangiocarcinoma; iCCA, Intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; ID, intraductal; PI, periductal infiltrating; MF, mass-forming.
- ^a The data was not available in some case
- * Indicates a *p*-value < 0.05 (statically significant)

Fig 3. Subgroup analysis of the survival in screening and walk in group. (A) Survival curve of tumor location in screening and (B) walk in, (C) tumor morphology in screening and (D) walk in and (E) tumor staging in screening and (F) walk in.

Discussion

Cholangiocarcinoma (CCA) is most common primary malignancy of bile duct epithelia in the biliary tract. The northeast of Thailand has the highest incidence of CCA in the world [22]. Most CCA patients are diagnosed at a late stage of the disease leading to poor survival of patients due to cancer metastasis. Studies have shown that approximately 20,000 CCA patients die in northeast Thailand per year leading to a significant socioeconomic burden for the affected families [23]. Therefore, early diagnosis is important to enable appropriate early treatment plan to be implemented, and hence, improve patient outcomes.

A previous report by Luvira V *et al* showed that only 20% of CCA patients were treated with surgical resection, while 80% of CCA patients were unresectable cases who had palliative treatments such as symptomatic treatment, chemotherapy, palliative drainage and biliary stent insertion [13]. Unfortunately, despite these palliative measures overall survival is still poor due to the advanced stage of disease leading to cancer metastasis [13, 24]. In addition, several

obstructive jaundice and cholangitis which reduce quality of life of patients [13, 25-27]. Our

study showed that patients with late stage CCA was still currently high at approximately 64.3%

while patients with early stage CCA was 35.7%. The overall survival rate and median survival

time of CCA patients after curative surgery was 28.8% and 18.5 months which was concordant

with the range of survival outcome of CCA patients in previous reports of approximately 10-

25% and 17-20 months, respectively [7-12].

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

In 2020, Khuntikeo et al evaluated the efficiency of different methods for CCA detection by comparing of screening programs using US by the CASCAP program (screening group) and participant walk-in with clinical symptom hospital group in 762 histologically proven CCA cases. Results showed that the proportion of early stage CCA in the screening group (0-II) was 84.5%, while it was 21.6% in walk-in group. The comparison suggested that US via active screening improves early-stage detection and was significantly higher than the walk-in group, hence US is an effective tool for detecting early-stage disease of CCA [17]. The present study was a retrospective study incorporating 11 hospitals in Thailand to compare monitoring methods comprising the screening group and a walk-in group. The 11 hospitals conducted consensus procedures for US screening the suspected patients in high-risk areas, while patients who came to hospital with any symptoms were classified into the walk-in group. Subsequently, all patients in both groups were enroll for curative treatment by surgical resection, and comparison of the survival outcomes of CCA between the screening group and a walk-in group was undertaken. The results showed that screening groups provided significantly better survival rate and median survival than the walk-in groups (53.9 vs 21.9% and 67.2 vs 15.6 months, respectively (Table 1). This good survival outcome was concordant with the higher proportion of early stage CCA in the screening groups (84.4%) than the walkin groups (22.3%) by around 4-fold (Supplementary Table 1). Moreover, the walk-in groups

The screening group provides a greater number of early stage CCA patients than walking group because in the US-screening program by the CASCAP, suspected CCA cases without symptoms in the high risk CCA endemic area are screened early by US, therefore, premalignant lesions or early stage is usually found at the earliest possible detection time. Conversely, in the walk-in group, patients present to hospital with abnormality or clinical symptoms. These clinical symptoms are frequently correlated with CCA at an advanced stage and recorded as abnormal at the hospital admission [17, 25, 27, 28]. Therefore, results from our study show that early screening is most important to enable detection of early stage of the disease which can then provide appropriate early treatment and surveillance of patients to improve their overall survival outcome.

In addition, a significant finding of this study was survival outcomes concerning tumor location which was obviously different. For the screening group, patients with iCCA and pCCA had longer survival times than dCCA of approximately 2-fold, while in walk in groups, we found that patients with dCCA had better survival than iCCA and pCCA of around 2-fold. These results can be explained because US has an effective capability for detection of early lesion in liver parenchyma, such as small nodules, periductal fibrosis, focal duct dilatation, however, but some limitation of US to detect distal bile duct lesions was observed. Distal bile duct tumor can be detected by US by detecting common bile duct dilatation while most of patients with common bile duct dilatation were not an early stage or had obstructive symptom already.

According to several publications, most CCA patients in Thailand were iCCA and pCCA, and they come to hospital with symptoms which are diagnosed as late or advance stage

of disease, such as severe extension, lymph node and distant metastasis [29-31]. Our results also showed that generally 64.3% of patients present at late stage disease. In contrast, although dCCA is also present at late stage, it causes a symptom more readily. Therefore, a 5-YSR for patients with dCCA (38.8%) was significantly better than iCCA (21.1%) and pCCA (18.3%) as presented in walk in groups (Table 2). US screening has been reported as a tool for the early detection of premalignant lesions and early stage of CCA [15-21]. The suspected CCA cases without symptoms from preliminary detection were diagnosed as all types of CCA, especially iCCA and pCCA for which there are no symptoms until advanced stage, resulting in early treatment, surveillance, and improvement of overall survival. Our results showed that a 5-YSR of patients with iCCA and pCCA was markedly better than patients in walk in group. Furthermore, since early monitoring was performed in screening group, almost all of the CCA patients, especially those with iCCA and pCCA, had good survival than patients in the walkin group, which leads to improved effective treatment, surveillance, and survival outcome in CCA patients.

Additionally, we found that patients with early stage in screening group had 5-YSR better than walk in group (63.8 vs 48.4%, respectively) and received early management and treatment plan. Conversantly, patients having early stage in the walk-in group have some symptoms such as sepsis, malnutrition, poor physical status [17, 25, 27, 28]. These symptoms may result in poorer outcomes despite patients being in the early stage of disease. However, in the late stage of disease there were no differences in the survival outcome of both groups as several independent factors can affect on the survival of patients.

Tumor staging is well known to have an affect on the patient' survival outcome. Tumor morphology is also a potential factor to predict the survival outcome of CCA patients. Tumor morphology has been classified into four types, mass-forming (MF), periductal-infiltrating (PI), intraductal (ID), and mixed types. Basically, ID is represented as good survival in tumor

patients [12, 21, 32-38]. This information has recently been confirmed and shows that tumor

morphology relates and predicts the survival outcome of all types of CCA after curative

surgical treatment. Results from our study also showed that tumor morphology could be a

predictor of survival outcomes. For instance, ID was obviously associated with longer survival

than PI and MF. Moreover, subgroups analysis of tumor morphology for patient's survival of

screening and walk-in groups also showed a similar outcome of ID having better survival than

PI and MF. This result could explain that screening programs had no effect on changing biology

of tumor morphology to impact on CCA patient's survival. Nevertheless, results of the

screening group highlight that all types of tumor morphology had markedly better 5-YSR than

those in walk-in group.

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

Although this study showed several advantages of US in suspected cases who may be CCA, there is some limitation in an imbalance of numbers and variables between screening and walk in groups.

In summary, this finding revealed that ultrasound screening for CCA is an effective tool for detecting early stage CCA, and significantly improves survival outcome of CCA patients. Therefore, a comprehensive population-based programs using US for screening early stage CCA in areas of high incidence throughout Thailand and elsewhere in Southeast Asia should be undertaken.

Acknowledgements

All authors are truly thankful Prof. Narong Khuntikeo at Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, Cholangiocarcinoma Research Institute (CARI), Khon Kaen University, Khon Kaen, Thailand and Cholangiocarcinoma Screening and Care Program (KKU), Khon Kaen University, Khon Kaen, Thailand for helpful

discussions. We are also indebted to all members of CASCAP, particularly the cohort members, and researcher at CARI, Faculty of Medicine, Khon Kaen University for collecting and proofing of CCA patient data. In addition, we also thank Professor Ross H. Andrew for editing the MS via the Publication Clinic KKU, Thailand.

Author Contributions

362

363

364

365

366

367

368

- 369 **Conceptualization:** Nittaya Chamadol, Watcharin Loilome, Attapol Titapun.
- Funding acquisition: Nittaya Chamadol, Watcharin Loilome, Attapol Titapun.
- 371 Sample collection and diagnosis: Nittaya Chamadol, Vallop Laopaiboon, Apiwat Jareanrat,
- Vasin Thanasukarn, Tharatip Srisuk, Vor Luvira, Poowanai Sarkhampee, Winai
- Ungpinitpong, Phummarat Khamvijite, Yutthapong Chumnanua, Nipath Nethuwakul,
- Passakorn Sodarat, Samrit Thammarit, Prakasit Sa-Ngiamwibool, Attapol Titapun.
- Analysis and interpretation of data: Jaruwan Thuanman, Chaiwat Tawarungruang, Bandit
- Thinkhamrop, Piya Prajumwongs, Attapol Titapun.
- 377 **Project administration:** Nittaya Chamadol, Watcharin Loilome, Attapol Titapun.
- 378 **Supervision:** Nittaya Chamadol, Watcharin Loilome, Attapol Titapun.
- Validation: Nittaya Chamadol, Vallop Laopaiboon, Apiwat Jareanrat, Vasin Thanasukarn,
- Tharatip Srisuk, Vor Luvira, Poowanai Sarkhampee, Winai Ungpinitpong, Phummarat
- Khamvijite, Yutthapong Chumnanua, Nipath Nethuwakul, Passakorn Sodarat, Samrit
- Thammarit, Anchalee Techasen, Jaruwan Thuanman, Chaiwat Tawarungruang, Bandit
- Thinkhamrop, Prakasit Sa-Ngiamwibool, Watcharin Loilome, Piya Prajumwongs,
- 384 Attapol Titapun.

385

Writing original draft: Nittaya Chamadol, Watcharin Loilome, Piya Prajumwongs.

Writing review and editing: Nittaya Chamadol, Anchalee Techasen, Watcharin Loilome,

Piya Prajumwongs, Attapol Titapun. All authors approved the final version of the

manuscript.

386

387

388

389

390

392

Conflicts of interest

The authors report no conflicts of interest in this work.

References

- 393 1. Khuhaprema T SP, Attasara P, Sriplung H, Wiangnon S, Y S. Cancer in Thailand Vol.V,
- 394 2001–2003. Bangkok: 2010.
- 395 2. Haswell-Elkins MR, Satarug S, Tsuda M, Mairiang E, Esumi H, Sithithaworn P, et al. Liver
- 396 fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation
- in human carcinogenesis. Mutat Res. 1994;305(2):241-52. Epub 1994/03/01. doi: 10.1016/0027-
- 398 5107(94)90244-5. PubMed PMID: 7510035.
- 399 3. Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, et al. Liver fluke induces
- 400 cholangiocarcinoma. PLoS Med. 2007;4(7):e201. Epub 2007/07/12. doi:
- 401 10.1371/journal.pmed.0040201. PubMed PMID: 17622191; PubMed Central PMCID:
- 402 PMCPMC1913093.
- 403 4. Yongvanit P, Pinlaor S, Bartsch H. Oxidative and nitrative DNA damage: key events in
- opisthorchiasis-induced carcinogenesis. Parasitol Int. 2012;61(1):130-5. Epub 2011/06/28. doi:
- 405 10.1016/j.parint.2011.06.011. PubMed PMID: 21704729.
- 406 5. Khuntikeo N, Pugkhem A, Titapun A, Bhudhisawasdi V. Surgical management of perihilar
- 407 cholangiocarcinoma: a Khon Kaen experience. J Hepatobiliary Pancreat Sci. 2014;21(8):521-4. Epub
- 408 2014/01/28. doi: 10.1002/jhbp.74. PubMed PMID: 24464976.
- 409 6. Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic
- 410 cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after

- 411 resection. Ann Surg. 2008;248(1):84-96. Epub 2008/06/27. doi: 10.1097/SLA.0b013e318176c4d3.
- 412 PubMed PMID: 18580211.
- 413 7. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al.
- 414 Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg.
- 415 2007;245(5):755-62. Epub 2007/04/26. doi: 10.1097/01.sla.0000251366.62632.d3. PubMed PMID:
- 416 17457168; PubMed Central PMCID: PMCPMC1877058.
- 417 8. Waseem D, Tushar P. Intrahepatic, perihilar and distal cholangiocarcinoma: Management and
- outcomes. Ann Hepatol. 2017;16(1):133-9. doi: 10.5604/16652681.1226927. PubMed PMID:
- 419 28051802; PubMed Central PMCID: PMCPMC5630455.
- 420 9. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al.
- 421 Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol
- 422 Hepatol. 2020;17(9):557-88. Epub 2020/07/02. doi: 10.1038/s41575-020-0310-z. PubMed PMID:
- 423 32606456; PubMed Central PMCID: PMCPMC7447603 Sirtex, Novartis, Mylan and Delcath;
- speaker honoraria from Merck, Pfizer, Ipsen and Incyte; and advisory honoraria from EISAI, Nutricia
- and QED; she is also a member of the Knowledge Network and NETConnect Initiatives funded by
- 426 Ipsen, J.W.V. declares consulting or advisory roles for Agios, AstraZeneca, Delcath Systems, Keocyt,
- 427 Genoscience Pharma, Incyte, Ipsen, Merck, Mundipharma EDO, Novartis, PCI Biotech, Pfizer, Pieris
- 428 Pharmaceuticals, QED and Wren Laboratories; Speakers' Bureau for Imaging Equipment Limited,
- 429 Ipsen, Novartis and Nucana; and travel grants from Celgene and Nucana. J. Bridgewater declares
- 430 consulting or advisory roles for Merck Serono, SERVIER, Roche, Bayer, AstraZeneca, Incyte and
- Basilea; travel support from MSD Oncology, Merck Serono, Servier and BMS. J.M.B. is scientific
- advisor to OWL Metabolomics. M.M. is speaker for Intercept Pharma and advisor to IQVIA srl and
- 433 Simon & Cutcher Ltd. M.S. is a member of the Advisory Board for Bayer, Esiai/Merk and Engitix.
- 434 A.F. received lecture fees from Bayer, Gilead and MSD; and consultancy fees from Bayer,
- 435 AstraZeneca and Guerbert. J. Bruix received consultancy lecture fees from Bayer, Gilead and MSD;
- consultancy fees from Bayer, AstraZeneca and Guerbert; research grants from Bayer, BTG;
- educational grants from Bayer, BTG; conferences fees from Bayer, BTG and Ipsen; and fees for talks
- from Bayer-Shering Pharma, BTG- Biocompatibles, Eisai, Terumo, Sirtex and Ipsen. P.I. receives

- funding from AMAF Monza ONLUS and AIRCS. The remaining authors declare no competing
- 440 interests.
- Le VH, O'Connor VV, Li D, Melstrom LG, Fong Y, DiFronzo AL. Outcomes of neoadjuvant
- therapy for cholangiocarcinoma: A review of existing evidence assessing treatment response and R0
- resection rate. J Surg Oncol. 2021;123(1):164-71. doi: 10.1002/jso.26230. PubMed PMID: 32974932.
- Chansitthichok S, Chamnan P, Sarkhampee P, Lertsawatvicha N, Voravisutthikul P,
- Wattanarath P. Survival of Patients with Cholangiocarcinoma Receiving Surgical Treatment in an O.
- viverrini Endemic Area in Thailand: A Retrospective Cohort Study. Asian Pac J Cancer Prev.
- 2020;21(4):903-9. Epub 2020/04/27. doi: 10.31557/APJCP.2020.21.4.903. PubMed PMID:
- 448 32334449; PubMed Central PMCID: PMCPMC7445979.
- 449 12. Kunprom W, Aphivatanasiri C, Sa-Ngiamwibool P, Sangkhamanon S, Intarawichian P,
- 450 Bamrungkit W, et al. Prognostic Significance of Growth Pattern in Predicting Outcome of
- 451 Opisthorchis viverrini-Associated Distal Cholangiocarcinoma in Thailand. Front Public Health.
- 452 2022;10:816028. Epub 2022/06/03. doi: 10.3389/fpubh.2022.816028. PubMed PMID: 35651852;
- PubMed Central PMCID: PMCPMC9149579.
- 454 13. Luvira V, Nilprapha K, Bhudhisawasdi V, Pugkhem A, Chamadol N, Kamsa-ard S.
- 455 Cholangiocarcinoma Patient Outcome in Northeastern Thailand: Single-Center Prospective Study.
- 456 Asian Pac J Cancer Prev. 2016;17(1):401-6. Epub 2016/02/04. doi: 10.7314/apjcp.2016.17.1.401.
- 457 PubMed PMID: 26838246.
- Hakansson K, Ekberg O, Hakansson HO, Leander P. MR and ultrasound in screening of
- patients with suspected biliary tract disease. Acta Radiol. 2002;43(1):80-6. Epub 2002/04/26. doi:
- 460 10.1080/028418502127347493. PubMed PMID: 11972468.
- 461 15. Chamadol N, Pairojkul C, Khuntikeo N, Laopaiboon V, Loilome W, Sithithaworn P, et al.
- 462 Histological confirmation of periductal fibrosis from ultrasound diagnosis in cholangiocarcinoma
- 463 patients. J Hepatobiliary Pancreat Sci. 2014;21(5):316-22. Epub 2014/01/15. doi: 10.1002/jhbp.64.
- 464 PubMed PMID: 24420706.
- 465 16. Khuntikeo N, Loilome W, Thinkhamrop B, Chamadol N, Yongvanit P. A Comprehensive
- Public Health Conceptual Framework and Strategy to Effectively Combat Cholangiocarcinoma in

- 467 Thailand. PLoS Negl Trop Dis. 2016;10(1):e0004293. Epub 2016/01/23. doi:
- 468 10.1371/journal.pntd.0004293. PubMed PMID: 26797527; PubMed Central PMCID:
- 469 PMCPMC4721916.
- 470 17. Khuntikeo N, Koonmee S, Sa-Ngiamwibool P, Chamadol N, Laopaiboon V, Titapun A, et al.
- 471 A comparison of the proportion of early stage cholangiocarcinoma found in an ultrasound-screening
- 472 program compared to walk-in patients. HPB (Oxford). 2020;22(6):874-83. Epub 2019/10/31. doi:
- 473 10.1016/j.hpb.2019.10.010. PubMed PMID: 31662222.
- Thinkhamrop K, Khuntikeo N, Chamadol N, Suwannatrai AT, Phimha S, Kelly M.
- 475 Associations between ultrasound screening findings and cholangiocarcinoma diagnosis in an at-risk
- 476 population. Sci Rep. 2022;12(1):13513. Epub 2022/08/07. doi: 10.1038/s41598-022-17794-9.
- PubMed PMID: 35933509; PubMed Central PMCID: PMCPMC9357059.
- 478 19. Chamadol N, Laopaiboon V, Srinakarin J, Loilome W, Yongvanit P, Thinkhamrop B, et al.
- 479 Teleconsultation ultrasonography: a new weapon to combat cholangiocarcinoma. ESMO Open.
- 480 2017;2(3):e000231. Epub 2017/12/07. doi: 10.1136/esmoopen-2017-000231. PubMed PMID:
- 481 29209530; PubMed Central PMCID: PMCPMC5703390.
- 482 20. Khuntikeo N, Chamadol N, Yongvanit P, Loilome W, Namwat N, Sithithaworn P, et al.
- 483 Cohort profile: cholangiocarcinoma screening and care program (CASCAP). BMC Cancer.
- 484 2015;15:459. Epub 2015/06/10. doi: 10.1186/s12885-015-1475-7. PubMed PMID: 26054405;
- 485 PubMed Central PMCID: PMCPMC4459438.
- 486 21. Sungkasubun P, Siripongsakun S, Akkarachinorate K, Vidhyarkorn S, Worakitsitisatorn A,
- Sricharunrat T, et al. Ultrasound screening for cholangiocarcinoma could detect premalignant lesions
- and early-stage diseases with survival benefits: a population-based prospective study of 4,225 subjects
- in an endemic area. BMC Cancer. 2016;16:346. Epub 2016/06/03. doi: 10.1186/s12885-016-2390-2.
- 490 PubMed PMID: 27251649; PubMed Central PMCID: PMCPMC4890519.
- 491 22. Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, et al. Expert
- 492 consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus
- 493 statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev

- 494 Gastroenterol Hepatol. 2016;13(5):261-80. Epub 2016/04/21. doi: 10.1038/nrgastro.2016.51. PubMed
- 495 PMID: 27095655.
- 496 23. Bundhamcharoen K, Odton P, Phulkerd S, Tangcharoensathien V. Burden of disease in
- Thailand: changes in health gap between 1999 and 2004. BMC Public Health. 2011;11:53. Epub
- 498 2011/01/27. doi: 10.1186/1471-2458-11-53. PubMed PMID: 21266087; PubMed Central PMCID:
- 499 PMCPMC3037312.
- 500 24. Park J, Kim MH, Kim KP, Park DH, Moon SH, Song TJ, et al. Natural History and
- Prognostic Factors of Advanced Cholangiocarcinoma without Surgery, Chemotherapy, or
- Radiotherapy: A Large-Scale Observational Study. Gut Liver, 2009;3(4):298-305. Epub 2010/05/01.
- doi: 10.5009/gnl.2009.3.4.298. PubMed PMID: 20431764; PubMed Central PMCID:
- 504 PMCPMC2852727.
- 505 25. Plentz RR, Malek NP. Clinical presentation, risk factors and staging systems of
- 506 cholangiocarcinoma. Best Pract Res Clin Gastroenterol. 2015;29(2):245-52. Epub 2015/05/13. doi:
- 507 10.1016/j.bpg.2015.02.001. PubMed PMID: 25966425.
- 508 26. Suzuki S, Sakaguchi T, Yokoi Y, Okamoto K, Kurachi K, Tsuchiya Y, et al.
- 509 Clinicopathological prognostic factors and impact of surgical treatment of mass-forming intrahepatic
- 510 cholangiocarcinoma. World J Surg. 2002;26(6):687-93. Epub 2002/06/08. doi: 10.1007/s00268-001-
- 511 0291-1. PubMed PMID: 12053220.
- 512 27. Alvaro D, Bragazzi MC, Benedetti A, Fabris L, Fava G, Invernizzi P, et al.
- 513 Cholangiocarcinoma in Italy: A national survey on clinical characteristics, diagnostic modalities and
- treatment. Results from the "Cholangiocarcinoma" committee of the Italian Association for the Study
- of Liver disease. Dig Liver Dis. 2011;43(1):60-5. Epub 2010/06/29. doi: 10.1016/j.dld.2010.05.002.
- 516 PubMed PMID: 20580332.
- 517 28. Ito Y, Shibutani S, Egawa T, Hayashi S, Nagashima A, Kitagawa Y. Utility of Intraductal
- 518 Ultrasonography as a Diagnostic Tool in Patients with Early Distal Cholangiocarcinoma.
- 519 Hepatogastroenterology. 2015;62(140):782-6. Epub 2016/02/24. PubMed PMID: 26902000.

- 520 29. Sirica AE. Cholangiocarcinoma: molecular targeting strategies for chemoprevention and
- 521 therapy. Hepatology. 2005;41(1):5-15. Epub 2005/02/04. doi: 10.1002/hep.20537. PubMed PMID:
- 522 15690474.
- 523 30. Mihalache F, Tantau M, Diaconu B, Acalovschi M. Survival and quality of life of
- 524 cholangiocarcinoma patients: a prospective study over a 4 year period. J Gastrointestin Liver Dis.
- 525 2010;19(3):285-90. Epub 2010/10/06. PubMed PMID: 20922193.
- 526 31. Thunyaharn N, Promthet S, Wiangnon S, Suwanrungruang K, Kamsa-ard S. Survival of
- 527 cholangiocarcinoma patients in northeastern Thailand after supportive treatment. Asian Pac J Cancer
- 528 Prev. 2013;14(11):7029-32. Epub 2014/01/01. doi: 10.7314/apjcp.2012.14.11.7029. PubMed PMID:
- 529 24377644.
- Hwang S, Lee YJ, Song GW, Park KM, Kim KH, Ahn CS, et al. Prognostic Impact of Tumor
- Growth Type on 7th AJCC Staging System for Intrahepatic Cholangiocarcinoma: a Single-Center
- 532 Experience of 659 Cases. J Gastrointest Surg. 2015;19(7):1291-304. Epub 2015/03/31. doi:
- 533 10.1007/s11605-015-2803-6. PubMed PMID: 25820487.
- 33. Aishima S, Oda Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma:
- different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary
- Pancreat Sci. 2015;22(2):94-100. Epub 2014/09/03. doi: 10.1002/jhbp.154. PubMed PMID:
- 537 25181580.
- 538 34. Dodson RM, Weiss MJ, Cosgrove D, Herman JM, Kamel I, Anders R, et al. Intrahepatic
- cholangiocarcinoma: management options and emerging therapies. J Am Coll Surg. 2013;217(4):736-
- 540 50 e4. Epub 2013/07/31. doi: 10.1016/j.jamcollsurg.2013.05.021. PubMed PMID: 23890842.
- 35. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014;383(9935):2168-79. Epub
- 542 2014/03/04. doi: 10.1016/S0140-6736(13)61903-0. PubMed PMID: 24581682; PubMed Central
- 543 PMCID: PMCPMC4069226.
- Tawarungruang C, Khuntikeo N, Chamadol N, Laopaiboon V, Thuanman J, Thinkhamrop K,
- et al. Survival after surgery among patients with cholangiocarcinoma in Northeast Thailand according
- to anatomical and morphological classification. BMC Cancer. 2021;21(1):497. Epub 2021/05/05. doi:

- 547 10.1186/s12885-021-08247-z. PubMed PMID: 33941120; PubMed Central PMCID:
- 548 PMCPMC8094526.
- 549 37. Sa-Ngiamwibool P, Aphivatanasiri C, Sangkhamanon S, Intarawichian P, Kunprom W,
- Thanee M, et al. Modification of the AJCC/UICC 8th edition staging system for intrahepatic
- 551 cholangiocarcinoma: proposal for an alternative staging system from cholangiocarcinoma-prevalent
- Northeast Thailand. HPB (Oxford). 2022;24(11):1944-56. Epub 2022/07/10. doi:
- 553 10.1016/j.hpb.2022.06.004. PubMed PMID: 35810105.
- 554 38. Aphivatanasiri C, Sa-Ngiamwibool P, Sangkhamanon S, Intarawichian P, Kunprom W,
- Thanee M, et al. Modification of the eighth AJCC/UICC staging system for perihilar
- 556 cholangiocarcinoma: An alternative pathological staging system from cholangiocarcinoma-prevalent
- Northeast Thailand. Front Med (Lausanne). 2022;9:893252. Epub 2022/10/18. doi:
- 558 10.3389/fmed.2022.893252. PubMed PMID: 36250068; PubMed Central PMCID:
- 559 PMCPMC9561347.

561

567

569

570

Supporting information captions

- 562 S1 Table. Patient characteristics. n-Number; CI-Confidence interval; 5-YSR-5-year
- survival rate; dCCA-distal cholangiocarcinoma; iCCA-Intrahepatic cholangiocarcinoma;
- pCCA-perihilar cholangiocarcinoma; ID-intraductal; PI-periductal infiltrating; MF-mass-
- forming. ^a The data was not available in some case. ^{\$} Indicates the data were testes by Fisher's
- exact test. * Indicates a *p*-value < 0.05 (statically significant).
- 568 S1 Fig. Overall survival of CCA patients in the study.

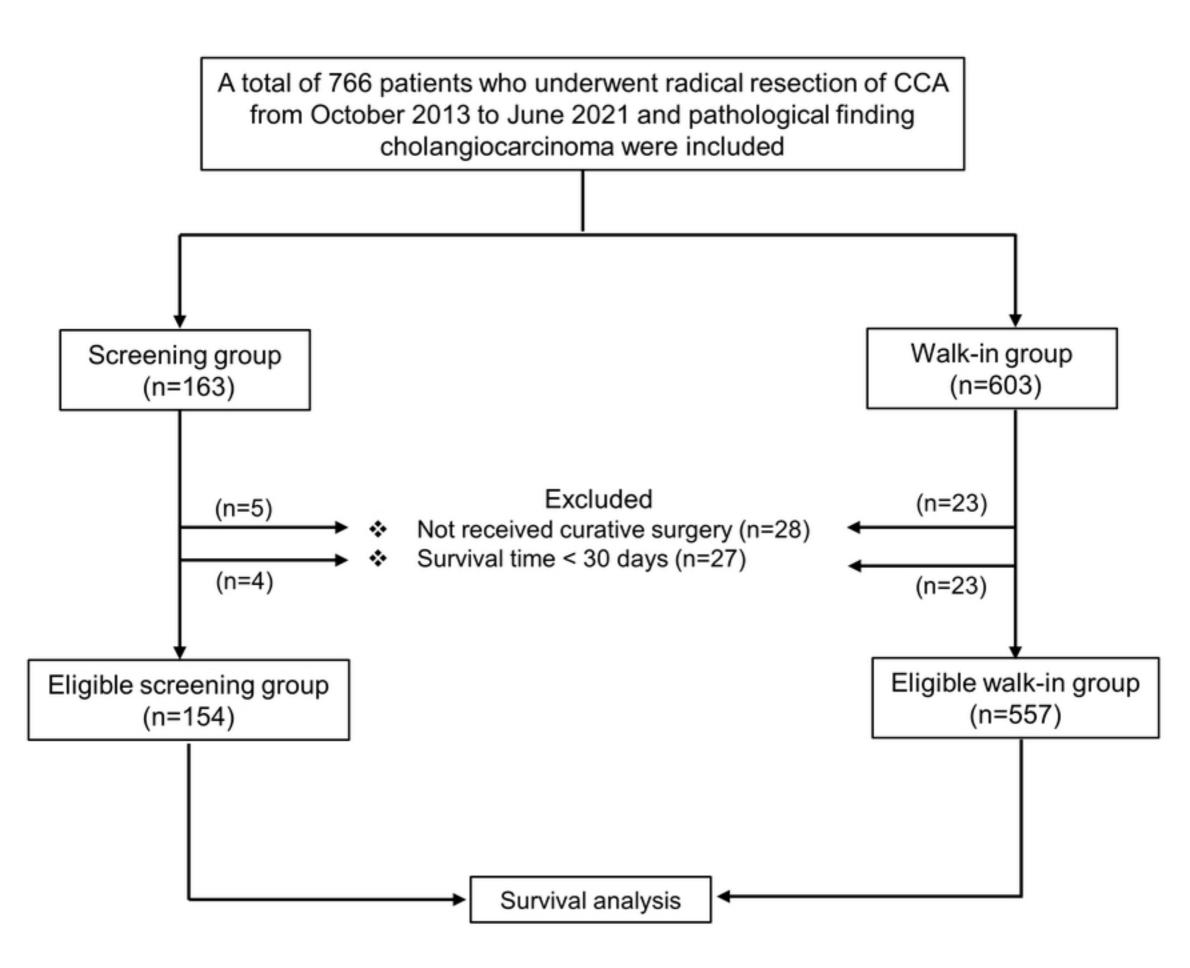


Figure 1

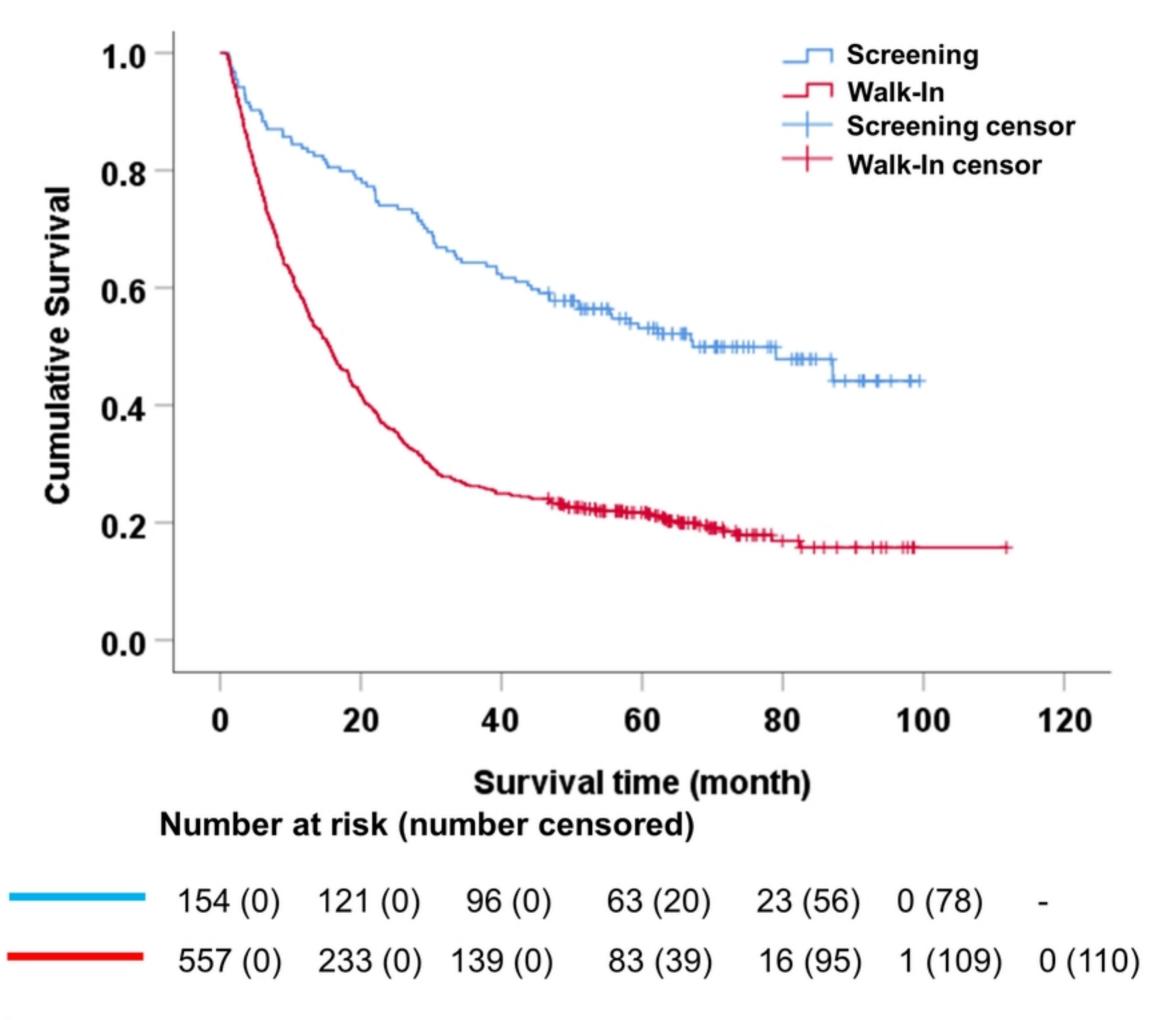


Figure 2

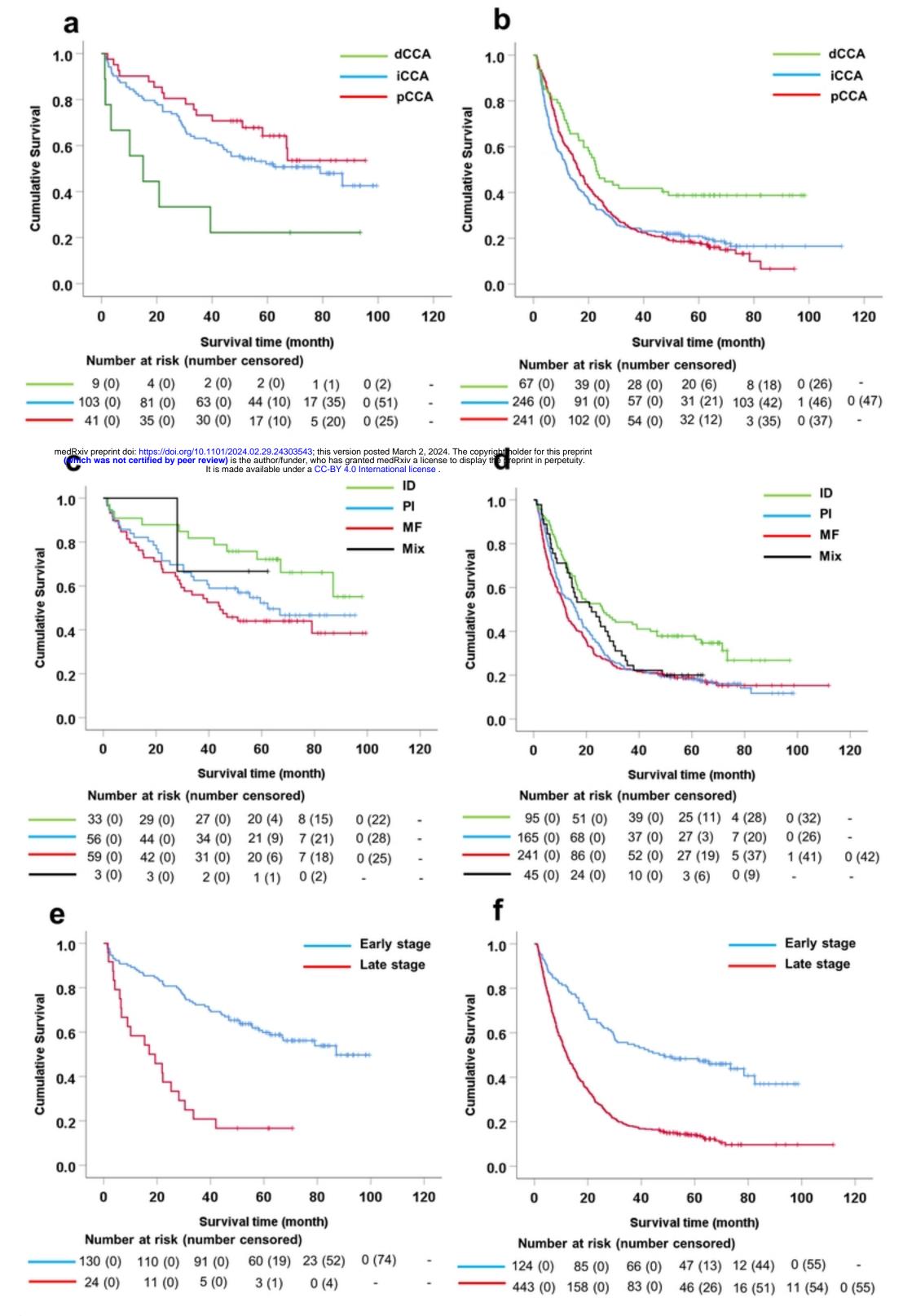


Figure 3