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Highlights 

• Machine learning can predict response to treatment in Acute Myeloid Leukemia patients. 

• RNA sequencing data are more informative than whole exome sequencing and clinical data 

in predicting drug response in Acute Myeloid Leukemia patients. 

• Drug response predictions could be used as a health management score to rank the 

individual’s expected response to treatment. 

• We identified a more potent drug than the administered one for 88% (78 out of 89) of the 

patients examined. 
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Abstract 

Background and Objective: The standard of care in Acute Myeloid Leukemia patients has remained 

essentially unchanged for nearly 40 years. Due to the complicated mutational patterns within and 

between individual patients and a lack of targeted agents for most mutational events, implementing 

individualized treatment for AML has proven difficult. We reanalysed the BeatAML dataset 

employing Machine Learning algorithms. The BeatAML project entails patients extensively 

characterized at the molecular and clinical levels and linked to drug sensitivity outputs. Our 

approach capitalizes on the molecular and clinical data provided by the BeatAML dataset to predict 

the ex vivo drug sensitivity for the 122 drugs evaluated by the project.  

Methods: We utilized ElasticNet, which produces fully interpretable models, in combination with a 

two-step training protocol that allowed us to narrow down computations. We automated the genes’ 

filtering step by employing two metrics, and we evaluated all possible data combinations to identify 

the best training configuration settings per drug.   

Results: We report a Pearson correlation across all drugs of 0.36 when clinical and RNA sequencing 

data were combined, with the best-performing models reaching a Pearson correlation of 0.67. When 

we trained using the datasets in isolation, we noted that RNA Sequencing data (Pearson: 0.36) 

attained three times the predictive power of whole exome sequencing data (Pearson: 0.11), with 

clinical data falling somewhere in between (Pearson 0.26). Lastly, we present a paradigm of clinical 

significance. We used our models’ prediction as a health management score to rank an individual’s 

expected response to treatment. We identified 78 patients out of 89 (88%) that the proposed drug 

was more potent than the administered one based on their ex vivo drug sensitivity data.  

Conclusions: In conclusion, our reanalysis of the BeatAML dataset using Machine Learning 

algorithms demonstrates the potential for individualized treatment prediction in Acute Myeloid 

Leukemia patients, addressing the longstanding challenge of treatment personalization in this 

disease. By leveraging molecular and clinical data, our approach yields promising correlations 

between predicted drug sensitivity and actual responses, highlighting a significant step forward in 

improving therapeutic outcomes for AML patients. 
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Abbreviations 

Acute Myeloid Leukemia (AML), Allogeneic Stem Cell Transplantation (AlloSCT), hypomethylating 

agents (HMAs), Area Under the dose-response Curve (AUC), The Cancer Genome Atlas (TCGA), 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET), regularized 

regression modelling (LASSO), Drug Ranking Using ML (DRUML), Counts Per Million (CPM), Read Per 

Kilobase Million (RPKM), the Mean Square Error (MSE), AUC prediction (auc_hat), cross validated 

MSE (cvMSE), nested cross-validation (nestedcvMSE), mean nestedcvMSE (mean_nestedcvMSE), 

mean Pearson (mean_pearson) and mean Spearman (mean_spearman) 
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1. Introduction 

Acute Myeloid Leukemia (AML) is the most prevalent type of acute leukemia in adults. Over 20,000 

cases are diagnosed yearly in the United States, leading to more than 10,000 deaths. Extensive 

chromosomal translocations and/or mutations in genes involved in hematopoietic proliferation and 

differentiation, lead to poorly differentiated myeloid cells with a survival advantage (leukemic 

blasts). AML is a highly heterogeneous disease with diverse outcomes; patients are classified as 

having favourable, moderate, or high-risk disease based on their cytogenetic and molecular profile, 

with prognostic implications. The discovery of recurring genetic abnormalities, such as the FLT3-ITD, 

NMP1 and CEBPA mutations, has refined individual prognosis and improved therapeutic strategies, 

particularly in determining the role of allogeneic stem cell transplantation (AlloSCT). Even so, 

induction treatment for fit patients still entails using an anthracycline + cytarabine backbone 

followed by consolidation with further chemotherapy or AlloSCT for those with high-risk disease. 

Elderly patients receive either supportive care or low-intensity regimens, such as low-dose 

cytarabine or hypomethylating agents (HMAs) alone or combined with Venetoclax, with poor 

outcomes[1]. Due to the complicated mutational patterns within and between individual patients 

and a lack of targeted agents for most mutational events, implementing individualized treatments 

for AML has proven difficult[2].  

The BeatAML project connected the ex vivo drug sensitivity to patients' molecular and clinical 

profiles[2]. Every patient was extensively characterized at the molecular and clinical level and linked 

to drug sensitivity outputs. Specifically, BeatAML characterized 672 specimens from 562 patients 

using whole-exome sequencing, RNA sequencing, detailed clinical data, and ex vivo drug sensitivity 

analyses. The ex vivo drug sensitivity analysis was performed across 122 drugs, and the Area Under 

the dose-response Curve (AUC) metric was calculated. Furthermore, patients were chosen to 

represent a wide range of categories, encompassing demographics (sex, age groups, and ethnicities), 

various karyotypic and molecular AML subtypes, as well as different clinical scenarios including cases 

of de novo AML, secondary AML, various types of preceding hematologic malignancies, and different 

types and stages of treatment. The BeatAML data are available in dbGap. Because of this multimodal 

characterization of its participants, compared to previous efforts, including The Cancer Genome 

Atlas (TCGA), and the Therapeutically Applicable Research to Generate Effective Treatments 

(TARGET), BeatAML offers an original opportunity to create better patient stratification approaches.  

Nowadays, several efforts exist in employing machine learning to predict drug responses in AML 

using omics data. Lee et al. demonstrated a promising approach to identify robust molecular 

markers for targeted treatment of AML by introducing data from 30 AML patients, including 
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genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a 

computational method to identify reliable gene expression markers for drug sensitivity by 

incorporating multi-omics prior information relevant to each gene's potential to drive cancer[3]. 

Gerdes et al.[4] introduced Drug Ranking Using ML (DRUML) to generate organized lists of over 400 

drugs based on their effectiveness in inhibiting cancer cell proliferation using omics data. To enhance 

the reliability of predictions while reducing unwanted variations, DRUML adopts internally 

normalized distance metrics of drug responses as features for creating machine learning models 

instead of relying on individual characteristics. The training data for DRUML comprises proteomics 

and phosphoproteomics data from 48 different cell lines, and they assessed its performance using 

data from 53 cellular models obtained from 12 independent research facilities. Trac et al.[5] 

developed MDREAM (Monotherapy Drug Response prediction for AML) using integrated omics data. 

MDREAM underwent training and initial validation utilizing the BeatAML cohort. The prediction 

process involves 122 ensemble models, each corresponding to a specific drug. The authors trained 

each model using Support Vector Machines and used RNA sequencing data as the input for the 

model. Furthermore, they selected features manually, including AML subtype-specific genes, 

pathway activation score, drug-target genes, mutated genes, and other AML-relevant genes. 

Additionally, they introduced a confidence score for each patient's prediction to measure the 

prediction uncertainty for individual drugs, providing valuable guidance for practical clinical 

applications. 

In this work, we re-analysed the BeatAML[2] dataset employing generalized linear models 

(ElasticNet[6]) to predict the area under the drug response curve, AUC. ElasticNet is a parametric 

method that fits generalized linear and similar models via penalized maximum likelihood[6]. The 

method has been used extensively in predicting drug sensitivity[7] and overall survival[8]. It is one of 

the most interpretable ML methods[9], performs an internal feature selection by removing highly 

correlated features and has a fast running time. The novelty of our analysis lies in the following 

characteristics. 1) We used multiple features and datatypes (Clinical, RNA sequencing, Whole Exome 

sequencing) alone or in combinations in order to train and test our models. 2) We implemented an 

automated data-driven approach for selecting features from the RNA sequencing data, using two 

different filtering metrics, and from the Whole Exome sequencing data, using one filtering metric. 3) 

We utilized a two-step training approach to narrow down computations and identify the best 

configuration settings per drug. 4) We implemented two complementary testing scenarios. In the 

first one, the same data are available for all training and testing samples. In the second scenario, 

some datatypes are missing, and our models predicted the AUC from the available datatypes. 5) We 

demonstrated the clinical utility of our approach by ranking patients’ expected response to 
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treatment through the simultaneous use of molecular and clinical attributes.  We showed that 

alternative drugs as the prescribed ones, albeit more potent, were predicted through this ranking.  

 

2. Materials and Methods 

2.1 Data 

We trained and tested our models using the following data types. 

Whole-exome sequencing is available for 369 samples. We used the genetic variants that passed all 

the filtering steps employed by the authors of the initial publication[2]. We utilized the HGVS 

nomenclature standard information, available in the supplementary data of the original publication, 

Table S7-Variants for Analysis, column hgvsc. To select which mutation events to retain, we 

optimized a parameter named quantile_dnaseq. For more information about the whole exome 

sequencing data see supplementary data, section Data. 

RNA sequencing is available for 328 samples. We transformed the Counts Per Million (CPM) 

expression values, already available in the BeatAML dataset, according to the equation: 

𝐶𝑃𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 =  𝑙𝑜𝑔2(𝐶𝑃𝑀 +  10−6). We identified the best subset of genes by optimizing a 

parameter named quantile_rnaseq employing two filtering approaches: the mean expression or the 

variance of each gene. We used cross-validation to identify the best combination of the filtering 

method and quantile_rnaseq value; see the section Training & Testing protocol below. For more 

information about the RNA sequencing data see supplementary data, section Data. 

Clinical data are available for 409 samples. After consulting our hematology expert, we used 

categorical and numerical data. Categorical data included ethnicity, sex, FLT3-ITD, NPM1 mutation 

status, Karyotype and others. Numerical data included age, hemoglobin, white blood cell count, and 

others. The meaning of each variable can be found in Table S24-Clinical data diction of the initial 

publication[2]. For more information about the clinical data see supplementary data, section Data. 

2.2 Variable to Predict  

We used the Area Under the dose-response Curve (AUC) as the response variable, that is the variable 

we trained our models to predict. Both AUC and IC50 values are available for 410 samples and 122 

drugs. The number of available samples per drug ranges from 80 to 399. AUC captures potency 

information (EC50, IC50) and drug efficacy (Amax) by a single measure. Previous analyses showed 

AUC to be a robust metric for comparing a single drug across cell lines and a better standard of cell 

line selectivity compared to IC50[10].  
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2.3 Training and Testing Protocol 

We utilized ElasticNet to construct our models using its implementation in R's glmnet package. We 

minimized the Mean Square Error (MSE) between the predicted (auc_hat) and the true AUC value in 

order to select a) the best combination of configurations and hyperparameters during training and 

b) the best-performing model. 

In the beatAML dataset, different numbers of samples are available per drug and datatype. For 

example, the “17-AAG (Tanespimycin)” drug has been measured in 344 samples. Clinical, whole 

exome sequencing, and RNA sequencing data are available for 344, 308, and 284 samples, 

respectively. All data types are available for 251 samples.  

We set up our training-testing protocol to take into account all samples for which an AUC 

measurement is available in the data. As a result, training and testing can consider different input 

data and produce an AUC prediction (auc_hat) for every sample. We performed the following steps 

to train and test our models separately for every drug.  

1. Split the data into ten folds. All folds equally represent the initial distributions of the available 

data. For example, for the “17-AAG (Tanespimycin)” drug, 80% (284 / 344), 89% (308/344) and 

100% of the samples had RNA sequencing, whole exome sequencing and clinical data available, 

respectively. We maintained similar percentages in each fold. We selected nine folds (90% of the 

data) for training and one-fold (10% of the data), namely the outer cross-validation fold for 

testing. This data splitting aimed at a nested cross-validation protocol to estimate the 

performance of our analysis. 

2. Training. We used only the training data in the following steps. 

2.1. Two-step training. We trained our models in a two-step manner. In the first step, we 

trained three models, one for each data type (clinical, rnaseq, variants). In this step, we 

explored all possible combinations of hyperparameters to optimize; see section 2.2. We 

selected three models, one per datatype, that produced the lowest cross-validated Mean 

Square Error (cvMSE). In the second step, we stabilized all the hyperparameters identified in 

the first step except glmnet’s hyperparameters (alpha and lambda), and we trained four 

more models by integrating the available datatypes in all possible combinations. In this 

step, we re-optimized the glmnet’s hyperparameters. As the sample sizes between datasets 

differ, we used the maximum overlap every time.  

2.2. Hyperparameter optimization. Glmnet has a set of parameters called hyperparameters that 

the user needs to optimize: alpha and lambda. In this set, we included quantile_rnaseq, 

quantile_dnaseq, and tumor_only (defined above - sections RNA sequencing and whole-

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.02.29.24303536doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.29.24303536
http://creativecommons.org/licenses/by/4.0/


8 
 

exome sequencing). All hyperparameters were optimized using a 10-fold cross-

validation[9]. In the first training step, we optimized quantile_rnaseq, quantile_dnaseq, 

tumor_only, and glmnet’s alpha and lambda, and in the second training step, we kept 

quantile_rnaseq, quantile_dnaseq, tumor_only constant and we reoptimized only glmnet’s 

hyperparameters. 

After training, we had seven models for each drug: three that employed only one data modality 

and four that employed their combinations. 

3. Testing. After training, we calculated the performance of our models in the outer cross-

validation fold using Mean Square Error (nestedcvMSE), Pearson, and Spearman correlations 

between the true AUC and the auc_hat prediction. We performed the testing using two 

complementary ideas, namely same_input and different_input. We evaluated the seven models 

separately in the same_input case, where the input is the same in the training and testing phase. 

In the different_input case, we evaluated the performance of the models considering all samples 

in the outer cross-validation fold. Each sample could have one or all data types available in this 

case. We predicted auc_hat using the best out of the available models. We identified the best 

model using their cvMSE performance. For example, if a sample has all datatypes, clinical, 

RNAseq, whole exome, available, we predicted its auc_hat using the best out of the seven 

models, clinical, rnaseq, variants, clinical+rnaseq, clinical+variants, clinical+rnaseq+variants. If a 

sample had only clinical and RNAseq data available, we predicted its auc_hat using the best 

model out of the three available, clinical, rnaseq, clinical+rnaseq. 

4. We performed steps 2 and 3, 10 times moving the testing fold across the several data splits, 

resulting in a ten-fold nested cross-validation scheme that has been proven to provide robust 

and unbiased performance estimates[11]. 
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3. Results 

3.1 Performance 

3.1.1 OVERFITTING EVALUATION  

First, we evaluated if our models overfitted the training set by comparing the models’ MSE during 

cross-validation (cvMSE) with the MSE in the outer holds of the nested cross-validation 

(nestedcvMSE). Specifically, cvMSE is the cross-validation MSE achieved by the model during 

training, and nestedcvMSE is the MSE achieved by the model in the outer-unseen set during the 

nested cross-validation. We calculated the mean cvMSE (mean_cvMSE) and the mean nestedcvMSE 

(mean_nestedcvMSE) across the ten nested cross-validation folds per datatype and drug and 

compared the two metrics. The median of the mean_nestedcvMSE’s distribution is slightly higher 

than the median of the mean_cvMSE’s distributions, which is expected for all datatypes and 

datatype combinations, Figure 1. Furthermore, the two metrics are highly correlated, with their 

Pearson correlations being higher than 0.96 in all cases, Supplementary Figure 1. 

 

 

Figure 1. Overfitting Evaluation. We evaluated overfitting by comparing mean_cvMSE and 

mean_nestedcvMSE across all drugs, datatypes and datatype combinations. In all cases, our models 

show a good generalization performance.  
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3.1.2. SAME INPUT SETUP 

In the same_input setup idea, we emulated the case where the same datatype or datatype 

combinations are available for all samples employed in training and testing. We wanted to evaluate 

the question of how well a model performs if only one type of data was available, clinical, rnaseq, 

variants versus their combinations, clinical+rnaseq, clinical+variants, rnaseq+variants, 

clinical+rnaseq+variants. In all cases, we used the maximum shared number of available samples. 

Per drug, we trained seven models, predicted the auc_hat of the outer cross-validation test set, and 

calculated the Pearson and Spearman correlation between auc_hat and the true AUC. We 

performed this process ten times and calculated the mean Pearson (mean_pearson) and mean 

Spearman (mean_spearman) across these runs.  

Variants showed the worst performance with a median mean_pearson of 0.112 across all drugs, 

Figure 2, with all the observed differences to be statistically significant (Wilcoxon test, 

Supplementary Table 1). Clinical+variants and clinical came right after with a median mean_pearson 

performance of 0.258 and 0.26, respectively. The difference between them is not statistically 

significant (Wilcoxon test, supplementary Table 1). Adding the RNAseq data in the mix boosted the 

performance above 0.3, Figure 2. Rnaseq+variants and clinical+rnaseq+variants have a median 

mean_pearson of 0.328 and 0.341, respectively. RNAseq (rnaseq) data alone come second from the 

top with a median mean_pearson of 0.357, and the best is the clinical+rnaseq with a median 

mean_pearson of 0.360, Figure 2. The differences observed within the models using RNAseq data 

were not statistically significant. However, all the observed differences between models with and 

without RNAseq data were statistically significantly different, supplementary Table 1. 
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Figure 2. Pearson and Spearman correlation performance. Mean_pearson and mean_spearman 

across the various datatypes and datatype combinations for all drugs. X axis is sorted from the 

lowest to the highest performing datatype or datatype combinations except for all_data(same_input) 

and all_data(diff_input), on the right of the dashed grey vertical line. 

 

Furthermore, instead of using the same datatype or datatype combination across all drugs, we 

selected the best datatype or datatype combination per drug using the cvMSE and evaluated if this 

approach would increase the performance. Similarly, we calculated the performance utilizing the 

mean_nestedcvMSE, mean_pearson and mean_spearman metrics. We achieved a median 

mean_nestedcvMSE equal to 1733.6046, Figure 1, a median mean_pearson equal to 0.327, and a 

median mean_spearman of 0.319, Figure 2. Only the differences between all_data(same_input) and 

variants, clinical+variants, and clinical are statistically significant. The performance of the selected 

models ranged from a median mean_pearson and mean_spearman of -0.075  and -0.0683 with the 

best to have median mean_pearson and mean_spearman correlations equal to 0.67 and 0.63, 

respectively, Figure 2, boxplots above “all_data(same_input)” label. We noted that based on the 

performance of the external sets, this approach came fifth using the mean_nestedcvMSE or the 

mean_pearson metrics and fourth using the mean_spearman without the observed differences 
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being statistically significant, supplementary Table 1. However, based on the cvMSE metric we used 

to select the best models, this approach produced the lowest median mean_cvMSE, Figure 1. All 

drugs with their respective nested cross-validation Pearson correlations are available in 

Supplementary Figure 2.  

3.1.3. DIFFERENT INPUTS SETUP 

In the different_input setup idea, we evaluated the scenario where different types of data were 

available per sample, and we provided one prediction from the best available model. Specifically, 

different types of data are available per sample and drug. For example, clinical data are available for 

79 samples in the case of Entrectinib but 398 in the case of Imatinib, as shown in Figure 3 and 

Supplementary Table 2. The more data types we merged, the fewer samples we had available. For 

example, in the case of A.674563 drug, 355, 319, 293, and 258 samples are available for clinical, 

clinical+variants, clinical+rnaseq, and clinical+rnaseq+variants, respectively. We observed similar 

patterns for the other drugs. Thus, to provide an auc_hat prediction for all samples in the outer 

cross-validation test set, we predicted auc_hat employing the best available model (see methods, 

section Training & Testing protocol). In this case, the median mean_pearson correlation is 0.322, and 

the median mean_spearman is 0.304, Figure 2, boxplot with x-axis label all_data(diff_input). Only 

the observed differences between the all_data(diff_input) and variants, clinical+variants and clinical 

were statistically significantly different. For the per-drug Pearson correlation across the 10-fold 

nested cross-validation, see Supplementary Figure 3. 

 

 

Figure 3. Diverse numbers of samples are available per drug and datatype.  
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3.2 Model interpretation 

In this part, we interpreted our models concerning the datatypes and the respective configurations 

selected across drugs. 

3.2.1. DIFFERENT DATATYPES OR DATATYPE COMBINATIONS SELECTED FOR EACH DRUG 

In the case of the same_input setup, we allowed our algorithm to select the best datatype or 

datatype combination per drug. The clinical+rnaseq datatype combination was selected most of the 

times, 298 out of the 1220 runs (10-fold nested cross-validation * 122 drugs). Rnaseq was selected 

268 times and the use of all datatypes, clinical+rnaseq+variants was selected 218 times. The 

rnaseq+variants, clinical+variants, clinical, and variants datatypes were selected in 176, 151, 86, and 

23 runs, respectively, Figure 4. It is worth noting that clinical and variants, the datatypes currently 

employed in clinical practice, were selected the least times and showed the worst performance. 

Furthermore, our algorithm selected different datatype combinations during the 10-fold nested 

cross-validation procedure for the same drug, Figure 5. For example, for the Afatinib-BIBW-2992 

drug, our algorithm deviated a lot in the datatype selections. It selected clinical+rnaseq two times, 

clinical+rnaseq+variants two times, clinical+variants two times, rnaseq+variants one time and 

variants three times. On the other side of the spectrum, for the GDC-0879, our algorithm selected 

the clinical data all ten times. Our algorithm selected different datatypes across the 10-fold nested 

cross-validation for most drugs. We clustered the datatypes and the drugs, employing hierarchical 

clustering with Euclidean distance and the complete clustering algorithm, based on the frequency 

that each datatype was selected for model building for each drug, see Figure 5. Datatypes produced 

four main clusters when we cut at height equal to 36. The first cluster consisted of clinical, variants 

and clinical+variants, the second of clinical+rnaseq, the third of clinical+rnaseq+variants and 

rnaseq+variants and the fourth of rnaseq. Drugs generated five main clusters when we cut at height 

equal to 12. Starting from the top of figure 5, the first group contained drugs that mainly used 

clinical data. Drugs in the second group were more likely to use clinical+variants, whereas drugs in 

the third, fourth, and fifth groups were more likely to use clinical+rnaseq, rnaseq, and 

clinical+rnaseq+variants and rnaseq+variants, respectively, Figure 5. 
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Figure 4. Datatypes selection summary. Number of times a datatype or datatype combination was 

selected by the best models during the nested cross-validation process across all drugs. 
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Figure 5. Datatype’s selection. The number 

of times a datatype combination was 

selected for a drug for model building during 

the ten-fold nested cross-validation. Yellow 

corresponds to zero times and dark red to 

ten times. Datatypes produced four main 

clusters that were separated by white 

vertical lines. Drugs generated five main 

clusters that were separated by white 

horizontal lines.  

 

 

 

 

 

 

 

 

 

Furthermore, we mapped the drugs to their corresponding drug families as provided in the initial 

publication[2] and evaluated if any patterns emerged. We noted that seventy-one drugs belong to 

one family each, and the remaining fifty-one belong to several families. The number of families in 

some cases reached seven, eight, or nine, Supplementary Figure 4. Also, the number of drugs per 

family differs. Ten families have one drug, four have two, and some have up to 25 drugs, 

Supplementary Figure 5. To normalize for these differences, we calculated the fraction of the times a 

datatype was selected by a specific family during the ten-fold nested cross-validation. We did not 

observe any patterns that could be due to the drug family and not the individual drug present in the 

data, Supplementary Figure 6. For example, the GSK3 family showed a distinctive pattern where only 
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clinical data were selected across all runs. However, only one drug corresponds to the GSK3 family. 

Similarly, families with one or few drug members achieved higher maximum fractions than families 

with many. The Spearman correlation between the number of drug family members and the 

maximum fraction achieved is -0.63, which is statistically significant (p-value: 1.59e-05), 

Supplementary Figure 7. For a detailed analysis of the RNAseq and whole exome sequencing 

configurations selected for each drug see supplementary data, sections Different RNASeq 

configurations selected for each drug and Different Whole Exome configurations selected for each 

drug, respectively.  

3.3. Clinical implications 

Lastly, we evaluated the practical utility of models that predict the response to treatment. To this 

end, we utilized the AUC predictions as a health management score to rank an individual’s expected 

response to treatment. Based on this score we suggested alternative drugs that are expected to be 

more effective than the administered ones. To perform this analysis, we selected drugs that are 

present in the patients' cumulative treatment regimen, for which the response measurements (AUC) 

are available for the same patients. Eighty-nine patients and seven drugs fulfilled these 

requirements, namely Crenolanib, Dasatinib, Imatinib, Lenalidomide, Midostaurin, Sorafenib and 

Sunitinib. We noted that each administered drug has a specific number of alternatives based on the 

availability of ex vivo drug sensitivity data.  

For example, in the case of Sorafenib, 52 patients were eligible for this analysis, Supplementary 

Figure 15, and the number of alternative drugs for each patient ranged from eight to one hundred 

three, Supplementary Figure 16. The same applies to the other drugs. Then, for every patient, we 

suggested, as an alternative drug, the drug with the lowest auc_hat prediction. We calculated the 

difference between the true AUC of the recommended and the true AUC of the administered drug, 

Figure 6. For four drugs (Crenolanib, Imatinib, Lenalidomide and Sunitinib), all patients showed a 

lower true AUC on the suggested versus the administered drugs. For three drugs (Dasatinib, 

Midostaurin and Sorafenib), the majority of the patients showed the same trend. The respective 

AUC distributions of the recommended versus the administered drugs are in Supplementary Figure 

17.  
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Figure 6. Clinical implications paradigm. The difference between the true AUC of the alternative 

drugs minus the true AUC of the administered drugs. Every point in the graph corresponds to a 

patient, 89 patients in total. For 78 patients, points below zero (grey reference line), the alternative 

drug has a lower AUC (more drastic) than the administered ones, x-axis. 

 

4. Discussion 

In this study, we reanalysed the beatAML dataset and generated machine-learning models that 

predict the expected response to treatment in the Area Under the drug response Curve (AUC) units. 

For model building, we utilized all available data types, namely clinical, RNA, and Whole Exome 

sequencing, in isolation and all possible combinations. Our analysis showed similar overall 

performance compared to previous efforts[5]. Specifically, Quang et al.[5] used a single hold-out 

approach to evaluate performance and reported a median correlation of 0.35. Even though they 

used information from the Whole Exome and RNA sequencing data, they utilized only the RNA 

sequencing as input in the training process. Our median correlation across a ten-fold nested cross-

validation using only RNAseq is 0.357. When we used both RNAseq and clinical data, we achieved a 

median correlation of 0.360. In addition, Quang et al. reported an extensive feature extraction 
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process by employing prior knowledge and a data-driven approach. In our analysis, we automated 

this part by optimizing two parameters: the quantile_rnaseq, which identified the best proportion of 

genes to retain based on the RNA sequencing data, and the quantile_dnaseq, which identified the 

best subset of mutation events to include based on their frequency in the Whole Exome sequencing. 

Importantly, ElasticNet produces fully interpretable models compared to Support Vector 

Machines[9]. Models’ interpretability is of critical importance in clinical applications. 

Furthermore, we used two different scenarios in our analysis. In the same_input setup, we assumed 

all data were available for all samples. In the different_input setup, our implementation predicted 

AUC for all samples given the available data. Through the same_input scenario, we observed that the 

Whole Exome sequencing data showed the worst performance compared to RNAseq or clinical data 

alone. Interestingly, and as it has been shown in previous studies, RNA sequencing data perform 

better in drug response prediction tasks[7]. In this analysis, RNA sequencing data performed three 

times better than the Whole Exome data. By the different_input scenario, we estimated a more 

realistic performance in the clinical settings where some data might be missing for some patients. 

Our median correlation was 0.322, as it is a combination of predictions of models that use any type 

of data combinations.  

In addition, we discuss a possible application of this type of analysis in a clinical support decision 

system setting. To highlight this idea, we analyzed 89 patients who were administered a drug for 

which alternative drugs are available in the data. By alternative drugs, we mean drugs whose ex vivo 

drug sensitivity (AUC) is available for the same patients. We predicted auc_hat using their molecular 

and clinical profile, and we employed this prediction as a health management score to rank an 

individual’s expected response to treatment. We identified 78 patients (88%) for whom the 

alternative drug was more drastic than the administered one based on their ex vivo drug sensitivity 

data. 

Our implementation has several limitations and possible extensions. We focused our analysis on 

using ElasticNet. We did not evaluate the performance of other machine learning methods 

commonly employed in drug response prediction tasks, such as Random Forest, Support Vector 

Machines, Deep Learning, and others. For example, the poor performance of the Whole Exome 

sequencing data could be due to the selected method to build the models or the way we encoded 

that information. In the future, we will evaluate the performance of other methods and try different 

normalizations and encodings for the RNA and the Whole Exome sequencing data. About the clinical 

utility of these methods, our analysis assumed a monotherapy scenario where one drug is 

administered to a patient. However, in the clinical setting, a combination of drugs (for example, 7+3 
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(Cytarabine, Idarubicin)|MiDAC|AC220 (Ambit), etc.) is utilized in the different stages of the disease 

(e.g., Initial Acute Leukemia Diagnosis, Relapse, Post-Chemotherapy, Residual Disease, Unknown, 

Post-Transplant, Residual Relapse, Post-DLI). Future machine learning models could consider drug-

to-drug interactions and suggest possible drug combinations that target dysregulated 

complementary disease pathways based on a patient's molecular profile. 

In conclusion, our study represents a significant step towards overcoming the longstanding 

challenges in Acute Myeloid Leukemia treatment by integrating advanced Machine Learning 

techniques with rich molecular and clinical datasets. The potential for personalised treatment 

strategies based on ex vivo drug sensitivity predictions open new avenues for improving therapeutic 

outcomes, and it marks a promising direction for future research and clinical applications in Acute 

Myeloid Leukemia. 
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