1	Validation of the performance of a point of care molecular test for leprosy:
2	from a simplified DNA extraction protocol to a portable qPCR
3	Amanda Bertão-Santos ¹ , Larisse da Silva Dias ² , Marcelo Ribeiro-Alves ³ ,
4	Roberta Olmo Pinheiro ² , Milton Ozório Moraes ^{2,†} , Fernanda Saloum de Neves
5	Manta ^{2*} , Alexandre Dias Tavares Costa ^{1*}
6	¹ Laboratório de Ciências e Tecnologias Aplicadas à Saúde (LaCTAS), Instituto
7	Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
8	² Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz
9	(FIOCRUZ), Rio de Janeiro, Brazil
10	³ Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de
11	Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de
12	Janeiro, Brazil
13	* FSNM and ADTC contributed equally to this work
14	Corresponding authors: alexandre.costa@fiocruz.br; adtcosta@gmail.com;
15	femanta@yahoo.com.br
16	† In memoriam
17	Short title: A fully portable molecular test for Mycobacterium leprae detection
18	Funding: This study was supported by grants from Carlos Chagas Filho
19	Research Support Foundation of the State of Rio de Janeiro (Faperj, E-
20	26/203.913/2022) Carlos Chagas Institute Research Stimulus Program (ICC 008
21	FIO 21 – SUB 22) and by the National Fund for Health/Brazilian Ministry of Health
22	(TED 69/2021). LSD is a CNPq fellowship holder, FSNM is a Faperj fellowship
23	holder, and ADTC is a CNPq productivity fellow (level 2).
24	Disclosure: All authors declare no conflict of interest.
25	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

26 Abstract

27 The study aimed to optimize gPCR reactions using oligonucleotides from the first Brazilian molecular diagnostic kit for leprosy on a portable platform (Q3-Plus). In 28 addition, we sought to develop a simplified protocol for DNA extraction that met 29 point-of-care criteria. During optimization on the Q3-Plus, optical parameters, 30 thresholds, and cutoffs for the 16S rRNA and RLEP targets of M. leprae were 31 established using synthetic DNA, purified DNA from M. leprae, and pre-32 characterized clinical samples. In the simplified extraction step, different lysis 33 solutions were evaluated using chaotropic agents, and purification was carried 34 35 out by depositing the lysed material on FTA cards. The complete protocol (simplified extraction + qPCR on the portable platform) was evaluated with pre-36 characterized clinical skin biopsy samples and compared with standard 37 equipment (QuantStudio-5). LOD_{95%} for the optimized reactions was 113.31 38 genome-equivalents/µL for 16S rRNA and 17.70 genome-equivalents/µL for 39 RLEP. Among the lysis solutions, the best-performing was composed of urea (2 40 M), which provided good dissolution of the skin fragment and a lower Ct value, 41 indicating higher concentrations of DNA. The complete technological solution 42 43 showed a sensitivity of 52% in reactions. Our results highlight the need for additional optimization to deal with paucibacillary samples, but also demonstrate 44 the applicability of the portable platform in the detection of M. leprae in low 45 46 infrastructure settings.

47

48 *Keywords:* diagnostic test; leprosy; point-of-care; DNA extraction; portable qPCR

49

50 Introduction

Leprosy is a chronic and progressive infectious disease with worldwide 51 distribution caused by Mycobacterium leprae or M. lepromatosis (HAN et al., 52 2008). It presents tropism for peripheral nerves and skin, although other organs 53 might also be affected. Progression of the disease might cause deformities and 54 different degrees of physical disability (FI). Given its signs and symptoms, leprosy 55 can be manifested in a broad spectrum of clinical forms, some of which often lead 56 to misdiagnosis with other dermatological, osteoarticular, or neurological 57 conditions, and even other diseases (NEVES et al., 2023; DHARMAWAN et al., 58 59 2022).

Early diagnosis is essential for proper treatment and control of the 60 disease's clinical progression and community transmission (STEINMANN et al., 61 62 2017). Due to its inability to grow in vitro, direct diagnostic techniques such as culture and isolation are not feasible (MACIEIRA, 2000). Diagnosis is usually late 63 or non-existent because it is mainly based on the patient's clinical and 64 epidemiological information, guided by anamnesis and physical examination, 65 which demands physician's expertise (WHO, 2022; HENRY et al., 2016). In the 66 67 absence of a gold standard diagnostic test, complementary tests are often employed, such as histopathology and bacilloscopy of the slit-skin smear. These 68 tests, however, exhibit variations in sensitivity accordingly the clinical form of the 69 70 disease and rely on experience for contextualization and interpretation (NEVES et al., 2023; WHO, 2022; HENRY et al., 2016). 71

Molecular tests, particularly real-time polymerase chain reaction (qPCR), are sensitive and specific, contributing to the early identification of various pathologies (MADAMET et al., 2022; RAMPAZZO et al., 2022; YU et al., 2021).

Although molecular detection tests are available, the diagnosis of leprosy continues to rely primarily on clinical diagnosis (WHO, 2022). This is due to the variations in clinical presentations, especially in multibacillary and paucibacillary cases, as the analytical sensitivity of tests varies according to the bacillary load of the infection (BARBIERI et al., 2019).

Recently, Brazilian health authorities (ANVISA) granted registration for the 80 first national qPCR NAT Hans kit (IBMP, Brazil), developed by the Oswaldo Cruz 81 Foundation (Fiocruz/RJ) (MANTA et al., 2022). This kit specifically targets the 82 genetic markers 16S rRNA and RLEP M. leprae, demonstrating sensitivity and 83 specificity of 91% and 100%, respectively. Additionally, it utilizes human 18S 84 *rRNA* as an internal control, ensuring proper DNA extraction. The incorporation 85 of this molecular test into the routine of healthcare professionals engaged in 86 active case finding for leprosy can overcome the intrinsic limitations of direct 87 diagnostic methods such as bacilloscopy, histopathology, and indirect serology 88 tests, thereby expanding the detection capacity, especially for the paucibacillary 89 (PB) clinical form (BARBIERI et al., 2019). 90

Tools that assist in population screening play a crucial role in active case 91 92 finding and early diagnosis of leprosy. Screening tests exhibit higher sensitivity. meaning they can more accurately identify positive cases for the disease of 93 interest. A positive result in a screening test should guide the patient toward 94 95 further assessments that allow for an accurate diagnostic investigation, as is done in the case of leprosy (WHO, 2020). However, the implementation of leprosy 96 97 molecular detection tests in the field faces limitations. The requirement for thermolabile reagents and robust equipment hinders access to diagnosis in 98 remote and low-infrastructure regions. Furthermore, the method requires prior 99

DNA extraction, demanding investments in costly commercial kits and time-100 101 consuming to obtain the sample (MANTA et al., 2020; ALI et al., 2017; WANG et al., 2016). Regarding nucleic acid testing (NAT) based diagnosis, the primary 102 103 challenges are related to the pre-analytical phase, including specimen collection and biological material extraction. The need for sensitive instruments, such as 104 105 centrifuges, and high-cost reagents, as well as the proper disposal of the 106 chemical residues generated in these steps, represents the primary limitations 107 for their applicability in resource-limited settings (ALI et al., 2017; DINEVA et al., 108 2007).

The aim of the study was optimizing qPCR reactions using the NAT Hans kit (IBMP, Brazil) on the portable Q3-Plus instrument, while concurrently developing a simplified DNA extraction protocol for skin samples, aiming the detection of *M. leprae* DNA. The resulting prototype enables the implementation of a leprosy screening test in remote areas, facilitating the active search of positive cases and monitoring by health authorities responsible for underserved populations.

116

117 Materials and Methods

118 Ethics Statement

The present research project was approved by the Ethics Committee of the Oswaldo Cruz Institute (CAAE: 52565521.2.0000.5248, number: 5.131.588 approved on November 26, 2021). Suspected leprosy patients attending the Souza Araújo Out-Patient Unit (ASA), a leprosy reference center from Brazilian Ministry of Health at Oswaldo Cruz Institute – Fiocruz – RJ – Brazil, provided written consent to participate in the project. In the case of minors, formal written

consent was obtained from the patient's guardian. The selection of samples wascarried out according to the occurrence of cases attended at the clinic.

127

128 Synthetic DNA

Synthetic double-stranded DNA (gBlock, IDT, USA) containing the 129 sequences of genomic markers for *M. leprae* (16S rRNA and RLEP) and the 130 131 human genomic marker (18S rRNA) was used for the optimization of qPCR reactions on the portable equipment (Q3-Plus). Paired evaluations were also 132 performed on the standard equipment (Quantstudio 5 – QS-5). The lyophilized 133 134 synthetic DNA was constituted at 10 fg/ μ L (equivalent to 10⁴ copies/ μ L). To obtain the sample at 10⁵ copies/µL, the gBlock was amplified by gPCR, and its product 135 was purified using the QIAquick PCR Purification Kit (Qiagen, Germany). The 136 137 concentration was determined by interpolating Cycle threshold (Ct) values on the standard curve. When necessary, samples were diluted in Tris-EDTA (TE) buffer 138 (pH 8.0) for standard curve analyses. 139

140

141 *M. leprae* cells

M. leprae cells (Thai-53, at 10⁶ cells/mL) obtained from nude mice footpads were kindly provided by Dr. Patricia Sammarco Rosa from Lauro de Souza Lima Institute (Bauru, São Paulo, Brazil).. The cells were diluted at 1:10 in Tris-EDTA (TE) buffer (pH 8.0) for the construction of the standard curve.

146

147

149 Determination of optical parameters, threshold, and cutoff in the 150 optimization of the portable equipment: Q3-Plus

For the determination of optical parameters corresponding to readings 151 through the FAM, VIC, and ROX channels on the Q3-Plus equipment, different 152 values of exposure time, gain, and light intensity were evaluated (TABLE 1). The 153 154 alterations aimed to improve the sensitivity of the reactions and achieve a good 155 fluorescence amplitude. To achieve this, various concentrations $(10^4 - 10^0)$ copies/µL) of synthetic DNA were evaluated using gPCR on the portable platform, 156 and based on reaction efficiency and amplification curve characteristics, the 157 158 parameters were assessed.

159

TABLE 1 – Optical parameters, including exposure time, gain and LED power,
 were assessed for reading analyses using the Q3-Plus equipment. *FAM – Probe
 to target 16S rRNA of M. leprae; VIC - probe to target RLEP of M. leprae; ROX –

163 Probe to target 18S rRNA of mammals

F	AM			VIC		ROX			
Exposure	LED Gain		Exposure	Gain	LED	Exposure	Gain	LED	
Time (s)		Power	Time (s)		Power	Time (s)		Power	
1	14	5	1/2	11	5	1	15	7	
1	14	7	1/2	15	8	-	-	-	
1	14	8	1/2	15	9	-	-	-	
1	15	7	1/2	15	10	-	-	-	
1	15	10	1	14	5	-	-	-	
-	-	-	1	14	9	-	-	-	

medRxiv preprint doi: https://doi.org/10.1101/2024.02.29.24303527; this version posted February 29, 2024. The copyright holder for this prepri e preprint in

nτ	(which was not certified by peer review) is the author/funder, who has granted medRXIV a license to display the
	perpetuity.
	It is made available under a CC-BY 4.0 International license

-	-	-	1	15	8	-	-	-
-	-	-	2	13	10	-	-	-
-	-	-	2	14	7	-	-	-
-	-	-	2	14	9	-	-	-
-	-	-	2	15	7	-	-	-
-	-	-	2	15	10	-	-	-
-	-	-	2	16	10	-	-	-

164

The baseline was automatically defined by the instrument's software (Q3-165 166 Plus V2 Suite, version 4.0, ST Microelectronics). The threshold for each target was manually set by the operator through observation of fluorescence amplitude 167 patterns and images captured by the software during reaction cycles with different 168 concentrations of synthetic DNA, purified M. leprae DNA, pre-characterized 169 170 clinical samples, as well as negative controls.

The establishment of the Ct value for the cutoff was conducted in the final 171 stage of the study. For this purpose, two groups of pre-characterized clinical 172 173 samples were analyzed: (i) The "standard" group consisted of skin biopsy 174 samples extracted using a standardized commercial kit; (ii) The second group 175 consisted of samples extracted using the protocol developed in the present study. A Bland-Altman analysis was performed (ALTMAN & BLAND, 1983). The 176 mean variations on Ct values to different equipment for the targets were added 177 to the values of cutoff already established in the NAT Hans kit (IBMP, Brazil). 178

179

180

181 Standard curve and analytical sensitivity on Q3-Plus and Quantstudio-5

182 equipment

The efficiency and determination of the detection limit for the qPCR reactions on the portable Q3-Plus instrument were obtained through a standard curve with logarithmic scale dilutions using synthetic DNA or purified *M. leprae* DNA (referred to as equivalent- genomes). The efficiency calculation for the reactions was done by substituting the slope value of the linear regression line into the efficiency formula (E=(10(-1/slope)-1).*100), following the MIQE Guidelines (BUSTIN *et al.*, 2009).

The number of equivalent genome copies was estimated by interpolating Ct values obtained from the analysis of purified *M. leprae* DNA using the equation established after linear regression of the curve performed with synthetic DNA, considering known concentrations and the number of copies (10 fg/µL equivalent to 10^4 copies/µL of synthetic DNA). For the analysis of the analytical sensitivity of the reaction, seven dilution points were considered, with a higher number of replicates (nine or ten) for the lower concentrations (BURD, 2010).

As a reference, identical analyses were performed using the standard
 Quantstudio-5 (QS-5) equipment.

199

Reproducibility and Repeatability of qPCR reactions using synthetic DNA on the portable equipment.

The reproducibility of the reaction was carried out by the independent operators over three consecutive days for concentrations ranging from 10^4 to 10^0 copies/µL. Subsequently, for three consecutive days, the same operators performed three reactions with lower concentrations ranging from 10^1 to 10^0

copies/µL. This division was due to the inherent limitation of the number of
reactions that can be analyzed per chip (six wells). For each replicate, a new
dilution was performed using synthetic DNA as the sample and Tris-EDTA buffer
(pH 8.0) as the diluent (BURD, 2010).

210

211 Clinical Samples

212 The clinical samples obtained in the present study were collected based on the occurrence of attendance at the Souza Araújo Clinic from the Oswaldo 213 Cruz Foundation (Rio de Janeiro, Brazil). Skin biopsy collections were performed 214 215 using a 3 mm surgical punch and stored in 70% ethanol until sample processing. Following clinical assessment, the samples were characterized according to 216 established protocols, including clinical evaluation, histopathology, bacilloscopy, 217 218 and singleplex qPCR (16S rRNA). Cases were classified as multibacillary (MB), paucibacillary (PB), or other dermatoses (OD) following WHO guidelines (WHO, 219 220 2018).

This study utilized 115 clinical skin biopsy samples, comprising 41 MB, 25 PB, and 49 OD (Supplemental Table S1). Of these, DNA was extracted from 62 skin biopsy samples (27 MB, 16 PB, and 19 OD) using commercial DNAeasy Blood and Tissue (Qiagen, Germany) and, 53 skin biopsy samples from leprosy patients and suspects (14 MB, 9 PB, and 30 OD) were extracted using both commercial DNAeasy Blood and Tissue (Qiagen, Germany) and the simplified DNA extraction protocol.

For the optimization of qPCR reactions on the portable equipment (Q3-Plus), exclusively samples extracted by the commercial protocol (Qiagen, Germany) were used.

231

232 Standard methods used as guides for the methods developed

As a guide method for the protocols developed in the present study, clinical samples were also subjected to DNA extraction using a commercial kit. qPCR analyses using the NAT Hans kit were performed on a standard qPCR instrument (QuantStudio-5).

237

238 Commercial DNA Extraction

DNA extraction from skin biopsy samples (3 mm) stored in 70% alcohol was performed using DNAeasy Blood and Tissue[®] extraction kit (Qiagen, Germany) according to the manufacturer protocol. DNA concentration was estimated using NanoDrop[®] (Thermo-Fisher Scientific, Waltham, MA, USA) and immediately stored at -20 °C.

244

Experimental conditions for multiplex qPCR (NAT Hans) in standard equipment: QuantStudio 5

Detection of the two M. leprae targets (16S rRNA and RLEP) and the 247 human internal control (18S rRNA) was performed as previously described by 248 MANTA et al. (2022). Reactions were performed in a standard benchtop 249 instrument (QuantStudio-5, Applied Biosystems, USA). Reactions were 250 performed using the NAT Hans kit and were analyzed as manufacturer's 251 instructions. Reactions' final volume was 25 µL, containing 5 µL of DNA. Cycling 252 conditions used in QS-5 were 95 °C for 10 minutes, 45 cycles of 95 °C for 15 253 seconds, and 60 °C for 1 minute. 254

256 Development of DNA extraction protocol and evaluation of the qPCR

257 reactions in Q3-Plus

258 Evaluation of lysis solutions utilizing the porcine skin model

Due to limitations regarding the availability of clinical samples from leprosy 259 and suspected leprosy patients, porcine skin was used as a comparative model 260 for the evaluation of six different solutions of lysis to DNA extraction protocols 261 (TABLE 2) (HWANG et al., 2021; SUMMERFIELD et al., 2015). The evaluations 262 established in two ways: (i) visual observation regarding 263 were the dissolution/reduction of the skin fragment and changes in solution turbidity, and 264 265 (ii) through gPCR for amplification of the mammalian 18S rRNA gene (MANTA et al., 2020), as an analysis of the efficiency of each protocol. For the extraction of 266 negative control, a pig skin fragment incubated with nuclease-free water was 267 268 used, which underwent the same processing protocol as the other samples.

TABLE 2 – Lysis solutions were assessed in protocols aimed at developing a simplified extraction method. Shown are the protocols
 and reagents with their respective concentrations and volumes necessary for the preparation of lysis solutions evaluated in DNA
 extraction from 6 mm skin biopsies.

Solution	Skin Biopsy	PBS	Guanidine	РК	Urea	NH₄OH	Tx100	SDS	Nuclease -free water	Total	[F	inal]	
[Stock]		5.8 mM	6 M	20 mg/mL	8 M	71 mM	10%	10%			Guanidine	Urea	NH₄OH
1	6 mm	200 µL	200 µL	8 µL	160 µL	-	32 µL	-		600 µL	2	2	-
2	6 mm	366 µL	-	14.6 µL	146 µL	-	-	-	73.4 µL	600 µL	-	2	-
3	6 mm	-	286 µL	29 µL	286 µL	-	-	-		600 µL	3	4	-
4	6 mm	-	428 µL	34 µL	-	-	138 µL	-		600 µL	4	-	-
5	6 mm	-	540 µL	60 µL	-	-	-	-		600 µL	5	-	-
6	6 mm	-	-	-	-	540 µL	-	60 µL		600 µL	-	-	0.06

Fragments of porcine skin, approximately 3 mm, were placed in 273 274 microtubes containing each of the evaluated lysis solutions (TABLE 2). Subsequently, each sample was gently macerated using a sterile microtubes 275 pestle and incubated at 56 °C for 30 minutes in a heating block, with additional 276 maceration and vortex agitation every ten minutes. Subsequently, 200 µL of the 277 supernatant was deposited onto FTA Elute Micro Card TM (Flinders Technology 278 279 Associates – FTA, GE Whatman, Maidstone, Kent, United Kingdom) cards and stored at room temperature (21 – 23 °C) until completely dry to proceed with the 280 purification and elution step. 281

282

283 Clinical sample (biopsy) preparation and application onto FTA Micro 284 Elute® card

285 Upon establishing the optimal skin biopsy DNA extraction protocol, a subsequent phase of clinical sample assessment was undertaken. To refine and 286 appraise the streamlined protocol, the biopsy specimen was introduced into a 1.5 287 mL microtube, containing 146 µL of denaturing solution (8 M urea solution), 14.6 288 µL of proteinase K (20 mg/µL) (Roche, Germany), 366 µL of phosphate-buffered 289 saline (PBS) (5.8 mM), and 73.4 µL of nuclease-free water (SOLUTION 2- TABLE 290 2). Following this, employing a sterile microtube pestle, the sample was 291 meticulously macerated and then subjected to a 30-minute incubation at 56 °C 292 within a thermal block. Additional rounds of maceration and vortex agitation were 293 performed at ten-minute intervals. Subsequently, 200 µL of the resulting 294 supernatant was meticulously deposited onto an FTA Elute Micro Card[™], where 295 it was diligently preserved at ambient temperature (21 – 23 °C) until complete 296 desiccation. 297

298 **DNA elution protocols**

299 Ten elution protocols were evaluated using clinical skin biopsy samples with lysis solution (urea solution) stored on FTA cards (FIGURE 1). The first 300 parameter assessed was the size of the FTA fragment to be punched out: both 3 301 mm and 6 mm fragments were evaluated. Subsequently, direct elution by TE 302 buffer (pH 8.0) and the implementation of a washing step were examined. The 303 304 commercial FTA wash buffer (200 µL, Qiagen, Germany) and nuclease-free water (500 µL) were tested for washing. Finally, the addition of 50 µL and 100 µL 305 of elution buffer TE (pH 8.0), followed by incubation at 95 °C for 5 min, 10 min 306 307 and 15 min were evaluated. The eluate containing the extracted DNA obtained with each protocol was subjected to a qPCR reaction to detect the 16S rRNA and 308 RLEP targets of *M. leprae* and the human 18S rRNA internal control using the 309 310 NAT Hans kit (IBMP, Brazil).

311

Fig 1. Flowchart displaying the elution protocols from FTA cards evaluated in the extraction of *Mycobacterium leprae* DNA from skin biopsy samples

314

Experimental conditions for qPCR multiplex in a portable instrument (Q3 Plus)

The reactions for detection of *M. leprae* targets (*16S rRNA* and RLEP) and the human internal control (*18S rRNA*) were performed on the Q3-Plus instrument used the GoTaq Probe qPCR Master Mix (2X) (Promega, USA) and the same oligonucleotides described by Manta et al. (2022), which are used in the NAT Hans kit. For the *16S rRNA* target at concentrations of 0.75 μ M for the forward and reverse oligonucleotides, and 0.3 μ M for the probe; for the RLEP target, 0.4

³²³ μ M for the forward and reverse oligonucleotides, and 0.2 μ M for the probe; and ³²⁴ the *18S rRNA* target, 0.2 μ M for both forward and reverse, and 0.1 μ M for the ³²⁵ probe. Despite this, due to the specificities of the portable instrument, it was ³²⁶ necessary to replace the Cy5 fluorophore with ROX, which is the probe used for ³²⁷ the detection of the *18S rRNA* gene. On the portable platform, the reactions were ³²⁸ standardized to a final volume of 5 μ M, containing 2 μ M of DNA.

Optical parameters for the FAM channel were exposure time 1 second, 329 gain 14, and light power 8; for the VIC channel, parameters were exposure time 330 1 second, gain 14, and light power 9; finally, for the ROX channel, optimized 331 332 parameters were exposure time 1 second, gain 15, and light power 7. The baseline was defined automatically by the instrument software (Q3-Plus V2 Suite, 333 version 4.0, ST Microelectronics), and the established threshold was 36 arbitrary 334 335 units (a.u.) for the target 16S rRNA, 150 u.a. for RLEP and 21 u.a. for 18S rRNA defined according to fluorescence amplitude patterns observed at different 336 concentrations of gBlock, from *M. leprae* genome-equivalents, negative controls, 337 and pre-characterized clinical samples. 338

339 Cycling conditions were 95 °C for 2 minutes, 45 cycles of 95 °C for 15 340 seconds, and 64 °C for 1 minute. The total reaction time on the portable 341 equipment was approximately 1 hour and 40 minutes.

342

343 Statistical analysis

Diagnostic parameters such as reaction's efficiency, sensitivity, specificity, reproducibility, and repeatability were evaluated for the best experimental protocol using qPCR carried out on both instruments (QuantStudio-5 and Q3-Plus). The detection limit with 95% confidence interval (LOD_{95%}) was calculated

using the Probit model using RStudio version 4.1.0 software (downloaded from
http://www.Rproject.org/). The evaluation of the agreement between the different
instruments was carried out using the Bland-Altman method (ALTMAN & BLAND.
1983).

This study follows the STARD guidelines for reporting diagnostic accuracy studies (COHEN et al., 2016). The minimum information for publication of quantitative real-time PCR experiments (MiQE) (BUSTIN et al., 2009), as well as the STARD checklist, are presented as Supplemental Tables S2 and S3.

356

357 **Results**

358 Optimization of reactions for detection of *M. leprae* DNA in the portable 359 instrument

360

Optical parameters and efficiency of reactions

Different values of optical parameters were evaluated in the optimization of reactions in the Q3-Plus instrument (TABLE 1). The alterations sought to increase the sensitivity and efficiency in the reactions by the instrument, through the greater amplitude of fluorescence. For FAM exposure time 1, gain 14, and light power 8 was set, while for the channel VIC the parameters were exposure time 1, gain 14, and light power 9, and for the channel ROX the optimized parameters were exposure time 1, gain 15, and light intensity 7.

The fluorescence threshold for each target was set at 36 a.u. for the *16S rRNA* target (FAM), 150 a.u. for the RLEP target (VIC) of *M. leprae*, and 21 a.u. for the *18S rRNA* target (ROX), the human internal control.

The efficiency was calculated based on a dilution curve $(10^5 - 10^0$ copies/µL) of synthetic DNA (gblock) results. For Q3-Plus equipment the

373	efficiency was 109% for the 16S rRNA gene and 108% for the RLEP target. The
374	standard QS-5 equipment showed 102% efficiency for 16S rRNA and 94% for
375	RLEP (FIGURE 2).

376

377 Fig 2. Standard curve of qPCR reactions analyzed by QuantStudio and Q3-

378 Plus equipment for the detection of *Mycobacterium leprae* 16S *rRNA* and

379 **RLEP targets from synthetic DNA**

(A) Reactions on QuantStudio 5; (B) Reactions on portable platform Q3-Plus.

Linear regressions were obtained from no less than 4 independent experiments

382

The same analyzes were performed from reactions with DNA samples of the genome- equivalent to 10^6 cells/µL of *M. leprae*. The efficiency of 131% for the reactions of the *16S rRNA* target and 105% for the RLEP target were observed in the Q3-Plus equipment, and an efficiency was 101% for *16S rRNA* and 100% for RLEP in the QS-5 equipment (FIGURE 3).

388

389 Fig 3. Standard curve of qPCR reactions analyzed by QuantStudio and Q3-

390 Plus equipment for the detection of *Mycobacterium leprae 16S rRNA* and

391 **RLEP targets using purified DNA from** *M. leprae*

(A) Reactions on QuantStudio 5; (B) Reactions on portable platform Q3-Plus.
 Linear regressions were obtained from no less than 4 independent experiments.

394

395

397 Analytical sensitivity

398 The limit of detection (LOD $_{95\%}$) on the Q3-Plus equipment using synthetic DNA was 13.86 copies/µL for the 16S rRNA and RLEP targets. On the QS-5 399 equipment, the respective values were found to be 12.45 copies/µL for 16S rRNA 400 and 20.44 copies/µL for RLEP. When using purified *M. leprae* DNA, the LOD_{95%} 401 on the Q3-Plus instrument was 113.31 genome-equivalents/µL for the 16S rRNA 402 403 gene and 17.70 genome-equivalents/µL for the RLEP (Fig 4). On the standard equipment (QS-5), the values were 205.26 genome-equivalents/µL for 16S rRNA. 404 and 15.34 genome-equivalents/µL for the RLEP. 405

406

Fig 4. Analytical sensitivity of qPCR reactions for the targets 16S rRNA and
 RLEP of Mycobacterium leprae performed on the portable Q3-Plus
 equipment. (A) LOD95% 16S rRNA; (B) LOD95% RLEP.

410

411 **Reproducibility and repeatability in the portable equipment**

412 Results obtained in the intra- and inter-operator replicate series are shown in TABLE 2 and show the coefficients of variation observed in the intra-operator 413 reactions at the lowest concentrations $(10^1 - 10^0 \text{ copies/}\mu\text{L})$. Although these 414 values are greater than 5%, they are lower than 10%, thus being non-significant 415 416 for both the 16S rRNA and RLEP targets. In the inter-operator analyses the coefficient of variation values between concentrations was between 0.05 and 417 418 3.09% for the 16S rRNA gene. For the RLEP target, values ranged from 0.55 to 419 3.10%. The analysis of variance (ANOVA) performed for the results obtained by the different operators, assuming a confidence interval of 95%, corroborated the 420

- previous analyses, showing no significant inter-operator difference (p-value = 421
- 0.994 for 16S rRNA, and p-value = 0.992 for RLEP) (TABLE 3). 422

424 TABLE 3 – Repeatability and reproducibility analyses, including the respective coefficients of variation, were determined in qPCR

reactions targeting *Mycobacterium leprae 16S rRNA* and RLEP on the Q3-Plus equipment.

Target	Synthetic		Repeatability								F	Reprod	ucibilit	ty			
larget	DNA Operator 1						Oper	ator 2			Oper	ator 3			Interoperator		
	Copies/µL	mean	desv	desv	%rRSD	mean	desv	desv	%rRSD	mean	desv	desv	%rRSD	mean	desv	desv	%rRSD
				pad				pad				pad				pad	
Mean Ct	1,00E+04	22.83	0.25	0.32	1.41	22.78	0.26	0.35	1.55	22.66	0.10	0.15	0.68	22.76	0.06	0.09	0.39
16S	1,00E+03	26.61	0.11	0.15	0.55	26.60	0.12	0.16	0.61	26.62	0.07	0.09	0.35	26.61	0.01	0.01	0.05
rRNA	1,00E+02	30.05	0.30	0.39	1.31	29.75	0.14	0.19	0.65	30.16	0.30	0.43	1.43	29.99	0.16	0.21	0.71
	1,00E+01	33.71	0.91	1.18	3.49	34.07	1.34	1.97	5.80	34.40	0.60	0.60	1.73	34.06	0.23	0.34	1.01
	1,00E+00	34.65	0.51	0.74	2.13	36.47	1.14	1.44	3.96	36.67	2.39	3.39	9.23	35.93	0.85	1.11	3.09
	1,00E+04	28.77	0.23	0.32	1.13	29.19	0.96	1.27	4.34	28.56	0.51	0.68	2.38	28.84	0.23	0.32	1.11
Maan Ct	1,00E+03	31.84	0.21	0.28	0.87	32.36	0.61	0.80	2.46	32.03	0.18	0.24	0.76	32.07	0.19	0.26	0.82
	1,00E+02	35.20	0.26	0.34	0.97	34.90	0.25	0.35	1.00	35.30	0.51	0.67	1.91	35.13	0.15	0.21	0.59
	1,00E+01	38.75	0.92	1.07	2.75	38.72	1.24	1.61	4.17	39.10	0.17	0.26	0.66	38.86	0.16	0.21	0.55
	1,00E+00	40.44	1.46	2.06	5.10	38.11	*	*		38.70	0.94	1.33	3.44	39.08	0.91	1.21	3.10

427

Evaluation of the portable qPCR using DNA from skin biopsies

A difference in the Ct value was observed for the same 95 samples 428 extracted by commercial kit when analyzed on different instruments. The mean 429 Ct difference for the same samples between the instruments resulted in an 430 increase of 1.40 cycles for the Q3-Plus instrument to 16S rRNA target and an 431 increase of 5.15 cycles for the RLEP target when compared to that obtained in 432 the standard instrument analysis (Supplemental Figure S1 and S2). In the internal 433 control (18S rRNA) there was a mean increase of 1.42 cycles on Q3-Plus analysis 434 (Supplemental Figure S3). Cycle values above these means were mainly 435 436 observed in samples classified as PB, where a lower concentration of the target DNA is expected. 437

To determine the cutoff to reactions on Q3-Plus, the mean difference 438 observed between the instruments for the different targets was added to the 439 values established for the NAT Hans kit. In this protocol, the cutoff values for 440 targets are Ct 35.5 for 16S rRNA; and Ct 34.5 for RLEP. Therefore, for the 441 reactions analyzed in Q3-Plus the Ct cutoffs established for the 16S rRNA target 442 was 36.9, and for the RLEP target it was 39.6. Consequently, for samples that 443 444 exhibited amplification for both targets, with values below 36.9 and 39.6 for the 16S rRNA and RLEP, respectively, they were classified as positive on the Q3-445 Plus equipment. For those samples that displayed Ct values above the cutoff 446 447 point or absence of amplification, a classification of negative assigned. Moreover, samples that exhibited amplification in only one of the targets (16S rRNA or 448 RLEP) were classified as indeterminate. In these cases, a retest of the sample 449 and patient follow-up is recommended. In this study, of all 95 samples analyzed, 450

43% (41/95) were considered qPCR positive for the presence *M. leprae* DNA,
43% (41/95) negative, and 14% (13/95) indeterminate.

453 On the standard equipment (QS-5), the same samples evaluated using 454 the NAT Hans kit were classified as positive, negative, or indeterminate according 455 to the recommendation cutoff of the commercial kit protocol. Following the 456 analysis, 47% (45/95) of the samples were determined as positive, while 40% 457 (38/95) were negative for the agent. The remaining 13% (12/95) of the samples 458 were classified as indeterminate.

The NAT Hans reactions on Q3-Plus equipment demonstrated a sensitivity 459 460 of 73% and specificity of 85%. However, out of the 95 samples analyzed, 14% (13/95) yielded indeterminate results. The same reactions conducted on the 461 standard equipment (QS-5) showed a sensitivity of 77%, specificity of 77%, and 462 463 13% (12/95) of samples with indeterminate results (TABLE 4). The positive predictive values for the Q3-Plus equipment were 88%, and for the QS-5, it was 464 82%. The negative predictive values were 68% and 71% for Q3-Plus and QS-5 465 equipment, respectively. Regarding the accuracy of the tests, it was 78% for Q3 466 equipment and 77% QS-5. 467

468

469

470

471

472

473

474

- 476 TABLE 4 Comparison of molecular diagnostic parameters in clinical biopsies
- 477 extracted by commercial protocol and evaluated in ABI7500, QuantStudio-5 and
- 478 Q3-Plus platforms

Parameters	Commercial extraction						
i didinotoro	Quantstudio 5	Q3-Plus					
Sensitivity	77%	73%					
Specificity	77%	85%					
Accuracy	77%	78%					
PPV	82%	88%					
NPV	71%	68%					

479

480 Analysis of extractions protocols

481

Evaluation of Lysis Solutions for Porcine Skin Models

Several different lysis solutions devised to simplify the DNA extraction 482 483 process from skin samples were evaluated visually and by qPCR using porcine skin as model tissue (HWANG et al., 2021; SUMMERFIELD et al., 2015). TABLE 484 485 5 summarizes all six protocols that were evaluated and the corresponding mean 486 Ct for qPCR detection of the mammalian 18S rRNA gene. A mixture consisting of urea (2 M), proteinase K (0.5 mg/mL), and PBS pH 7.4 (3.5 mM) yielded the 487 best results in the visual evaluations regarding the turbidity of the solution and 488 489 reduction/dissolution of the fragment of skin (FIGURE 5), and in the detection of the 18S rRNA gene by gPCR in terms of fluorescence amplitude and Ct. In the 490

491	porcine tissue used as a comparative model the mean Ct was 18.74 (range 17.45
492	to 19.40) in the detection of the 18S rRNA gene.
493	
494	FIGURE 5. Demonstration of the simplified extraction protocol in clinical
495	biopsy sample
496	After each 10-minute step, a reduction in skin fragments and a change in the
497	turbidity of the solution were observed.
498	
499	TABLE 5 – Results of Ct and average Cts obtained from evaluations for definition
500	of the lysis solution for each simplified extraction protocol, derived from the
501	detection of the mammalian 18S rRNA target by qPCR in porcine skin samples.
502	Protocol numbers are summarized as 1 - Guanidine (2 M) and Urea (2 M); 2 –
503	Urea (2 M); 3 – Guanidine (3 M) and Urea (4 M); 4 – Guanidine (4 M); 5 –
504	Guanidine (5 M); 6 – NH_4OH (0.06 M); NC – Negative control.

E	Evaluated protocols – Molecular detection of the 18S rRNA target								
Protocols	1	2	3	4	5	6	NC		
	30.75	21.87	23.69	24.77	28.11	23.93	29.50		
Ct	26.57	21.16	23.11	23.03	28.81	31.68	29.78		
	29.08	22.08	24.26	23.62	27.76	25.01	29.27		
Mean Ct	28.80	21.70	23.69	23.81	28.23	26.87	29.52		

505

506

508 Evolution of elution protocols

509 Among the various elution protocols, the best outcomes, also assessed 510 through amplification of the *18S rRNA* gene, were achieved using the 6 mm 511 puncher, along with two washing steps employing 500 μ L of nuclease-free water, 512 and subsequent incubation with 100 μ L of TE (pH 8.0) at 95 °C for 5 minutes in 513 a thermal block. A schematic representation of the final comprehensive protocol 514 is illustrated in FIGURE 6.

515

FIGURE 6. Schematic representation of the simplified DNA extraction
 protocol for *Mycobacterium leprae* from clinical skin biopsy samples.
 (Credit: Created in BioRender.com).

519

520 Analysis of clinical samples (skin biopsy) using a developed 521 extraction protocol and portable platform (Q3-Plus)

The entire methodology developed, from DNA extraction using the simplified extraction protocol (SOLUTION 2 - TABLE 2) to qPCR analysis for the detection of *M. leprae* targets on the portable platform, was evaluated using clinical skin biopsy samples from patients with leprosy (MB and PB) and patients with other dermatoses (OD).

527 During visual assessment while extracting genetic material, a reduction in 528 the skin biopsy fragment or its complete dissolution was observed, resulting in a 529 visibly altered solution turbidity. Successful detection of the *18S rRNA* gene was 530 also achieved. In reactions conducted on the standard equipment (QS-5), the 531 mean Ct was 21.12 (ranging from 17.24 to 28.43), while on the Q3-Plus 532 equipment, the mean Ct was 22.46 (ranging from 19.02 to 30.54).

In a Bland-Altman test conducted based on the same group of samples, with 95% confidence the *16S rRNA* target, presented the mean threshold cycle variation between paired samples was 1.29 cycles above on the Q3-Plus equipment (Supplemental Figure S4). For the detection of the *M. leprae* RLEP target, a mean variation of 4.44 threshold cycles above was observed for the Q3-Plus equipment (Supplemental Figure S5). Finally, for the 18S rRNA, a mean variation of 1.34 threshold cycles was observed (Supplemental Figure S6).

The qPCR reaction using the NAT Hans kit on the Q3-Plus equipment yielded positivity for *M. leprae* in 26% (14/53) of the samples, while 57% (30/53) of the samples tested negative for the agent, and 17% (9/53) of samples with indeterminate results.

544 For those analyses conducted on the standard equipment (QS-5), 30% 545 (16/53) tested positive for the *M. leprae* agent, while 66% (35/53) yielded negative 546 results. On this equipment, 4% (2/53) of the samples produced indeterminate 547 results.

As for the sensitivity and specificity parameters of the testes, the portable 548 platform (Q3-Plus) exhibited 52% and 87%, respectively. The reaction analyzed 549 550 by the standard equipment (QS-5) showed 64% sensitivity and 93% specificity. Regarding the accuracy of the tests, it was 70 % for the Q3-Plus equipment and 551 80% for the QS-5 equipment. The positive predictive value (PPV) for the analyses 552 conducted on the Q3-Plus equipment was 79%, whereas on the QS-5 equipment 553 it was 88%. The negative predictive value (NPV) was 67% and 77% for the Q3-554 Plus and QS-5 equipment, respectively (TABLE 6). 555

556

557

TABLE 6 – Comparison of molecular diagnostic parameters in clinical biopsies
 extracted using both commercial and simplified protocols across different
 platforms

Parameters	Commercial extraction ABI7500	Simplified protocol Quantstudio-5	Simplified protocol Q3-Plus
Sensitivity	74%	64%	52%
Specificity	65%	93%	87%
Accuracy	69%	80%	70%
PPV	70%	88%	79%
NPV	69%	77%	67%

561

The standard analysis (commercial extraction method and standard thermocycler instrument) in the same group of the samples presented 38% (20/53) positives, 30% (16/53) negatives, and 32% (17/53) indeterminate results. Parameters of sensibility and specificity demonstrate 74% and 65%, respectively. Accuracy was estimated at 69%. Positive predictive value and negative predictive value were 70% and 69%, respectively.

568

569 Discussion

The utilization of screening tests in settings with restricted resources, along with their contribution to active case detection, holds paramount significance in achieving reduced leprosy incidence rates (BRASIL, 2022; STEINMANN et al., 2017). Considering the absence of a definitive gold standard test, the inherent constraints of adjunctive assays, and the clinical nuances of the disease, the advancement of assays characterized by high sensitivity and

specificity on portable platforms, accompanied by cost reduction and technique
streamlining, facilitates the adoption of preventive and control interventions within
the disease transmission continuum.

In the present study, the optimization of gPCR reactions on a portable 579 580 analysis platform (Q3-Plus) was established using the oligonucleotides included in the first national diagnostic kit for leprosy, approved by ANVISA (kit NAT Hans 581 582 - IBMP). Being a point-of-care device due to its compact dimensions, reaction volumes were optimized to 5 µL, requiring minor adjustments to oligonucleotide 583 concentrations and master mix composition. Nevertheless, the Q3-Plus exhibited 584 585 excellent efficiency values, closely approaching those of the standard equipment Quantstudio-5, highlighting the applicability of the platform in analytical contexts. 586

The efficiency of reaction is linked to the exponential amplification of the 587 588 target material throughout the analysis. Factors such as the purity and concentration of the target in the sample and reagents, as well as the final volume 589 of the qPCR reaction, are known determinants of the technique's efficiency 590 (SVEC et al., 2015). Although the final reaction volume in the Q3-Plus equipment 591 is five times smaller than that used in reactions analyzed in the standard 592 593 equipment, the efficiency values remained close to 100%, which is desirable for this type of analysis (SVEC et al., 2015). Previous studies on reaction 594 optimization for molecular detection of *Plasmodium* spp., *Trypanosoma cruzi*, 595 596 and Mycobacterium tuberculosis had already noted higher efficiencies in the portable device when compared to the standard (ABI7500) (ALI et al., 2020; 597 598 RAMPAZZO et al., 2019), as observed in the current study. This reinforces the possibility of this parameter being an anticipated trait of the Q3-Plus equipment. 599

The determination of the fluorescence threshold is an important tool to ensure that non-specific amplifications or other interferents do not generate false results in molecular qPCR tests. This parameter can be determined through numerical analysis or visually by the operator (CARAGUEL et al., 2011). Despite its subjectivity, in the present study, this parameter was manually defined by the operator through the observation of the fluorescence amplitude in known samples.

The reactions from synthetic DNA (gBlock®) in both instruments exhibited 607 linearity up to 10¹ copies/µL, and beyond this range, amplifications started to 608 609 occur stochastically. In the analyses of equivalent genome/µL of M. leprae, linearity in the instruments extended up to 10^2 equivalent genomes/µL; however, 610 beyond this range, the Q3-Plus instrument lost analytical sensitivity for 16S rRNA 611 612 target, while the QS-5 began to exhibit random amplifications. For the RLEP target, amplifications persisted beyond the linear range in both instruments. 613 614 Given that this is a multicopy target, higher analytical sensitivity is expected (COLE et al., 2001). The loss of reaction linearity implies the occurrence of 615 616 random amplifications, which could interfere particularly in cases classified as 617 paucibacillary due to low bacillary load (MARTINEZ et al., 2014).

Through the analysis of the limit of detection $(LOD_{95\%})$, it was possible to confirm greater sensitivity for the RLEP target. Reactions with purified *M. leprae* DNA yielded LOD values of 113.31 genome-equivalents/µL for the *16S rRNA* gene and 17.70 genome-equivalents/µL for RLEP on the Q3-Plus instrument. In a previous study by MANTA et al. (2020), the authors reported LOD values of 126 genome-equivalents/reaction for the *16S rRNA* and 1.3 genomeequivalents/reaction for the RLEP target, using the NAT Hans kit in a standard

thermocycler (ABI7500). This proximity of values ensures the good analytical sensitivity of the portable instrument. It is important to emphasize that the difference in $LOD_{95\%}$ values between the targets is expected, as RLEP is a repetitive element in the genome with approximately 36 copies (MANTA et al., 2022; COLE et al., 2001).

Analysis intra and inter-operator show very good results. All coefficients of variation were found to be below 5%. The three data points from intra-operator assessments that exceed this variation might be explained as they correspond to the lowest concentrations of the target DNA, falling outside or at the limit of the reaction, where the probability of amplification decreases and becomes stochastic.

In Bland-Altman analyses on pre-characterized clinical samples, a mean 636 637 variation of approximately 1.40 cycles higher for the 16S rRNA target was observed on the Q3-Plus equipment compared to QS-5. For the RLEP target, the 638 observed variation was approximately 5.15 cycles higher in the Q3-Plus 639 evaluated samples. These values closely align with those reported by 640 RAMPAZZO et al. (2019) from the optimization of the Q3 equipment for molecular 641 642 detection of *T. cruzi* and *Plasmodium* spp. The disparity noted by these authors amounted to an increase of 2 to 4 Cts in Q3-Plus reactions. 643

The results obtained from optimization of reactions on the portable platform, concerning optical parameters, reaction efficiency, and analytical sensitivity, were confirmed in pre-characterized clinical samples extracted using the commercial kit (Qiagen). Analyses of sensitivity, specificity, and accuracy comparable to those of established qPCR tests on the standard equipment confirm the applicability of point-of-care testing. The occurrence of false

negatives is observed especially in paucibacillary cases (MARTINEZ et al., 2011;
ROSA et al., 2013). The low bacterial load hinders the detection of these cases.
However, qPCR is still considered the best technique to be used as a screening
test complementary diagnostic due to its high sensitivity and specificity,
particularly in detecting PB cases (MARTINEZ et al., 2011; WICHITWECHKARN
et al., 1995).

Among the evaluated extraction protocols, certain chaotropic agents such as urea, guanidine, and ammonium hydroxide (NH₄OH) were considered. In this study the FTA cards aided in the isolation and purification steps of the genetic material. Due to their affinity for the cellulose fibers in the card, DNA recovery was feasible after the washing steps (DAIRAWAN & SHETTY, 2020).

FTA cards (Whatman[®]) are composed of cellulose fibers or other materials 661 662 with affinity for genetic material (DNA). Their composition may include reagents capable of assisting in the cellular lysis and protein denaturation steps, such as 663 sodium dodecyl sulfate (SDS) and sodium lauroyl sarcosinate (SLS), facilitating 664 DNA exposure. They were developed to streamline sample transport and storage 665 666 at room temperature, while ensuring DNA viability for molecular analyses of 667 interest (BURGOYNE et al., 2003; AYE et al., 2011). They require minimal space for storage and have low risk of cross-contamination (SANTOS, 2018). 668

Regarding the application of urea solution (8 M) for DNA extraction from tissue samples, the results concerning the enhanced dissolution of skin fragments may be linked to the improved activity of proteinase K facilitated by high urea concentrations. Additionally, urea may have contributed to the preservation of the obtained genetic material, as reported in previous studies (AHMED, 1993; HILZ et al., 1975). Improved dissolution guality was also

observed through qPCR for the human *18S rRNA* target, as the Ct values were
earlier than those found in extractions using other protocols and more consistent
across replicates.

Regarding the analyses for *M. leprae* targets (16S rRNA and RLEP), there 678 was a loss of sensitivity in the reactions from the simplified protocol-extracted 679 samples, as evidenced by the increased Ct value in the 16S rRNA target when 680 681 compared to the standard test performed by kit NAT Hans in samples extracted by commercial method (Qiagen).. Therefore, it is suggested that greater 682 interference may be linked to the quality of genetic material extraction from the 683 684 bacillus or residual extraction components that were not adequately removed 685 during the purification/washing steps.

This decrease in sensitivity affects the detection of paucibacillary cases, as observed in the study samples. The reported sensitivity range varies (36.4% to 85%) in studies using qPCR for different targets and biological materials. In these studies, lower sensitivity is also observed for PB cases, demonstrating the intrinsic limitation in detecting this clinical form (BRAET et al., 2021; BARBIERI et al., 2019; MANTA et al., 2019; CHENG et al., 2019; AZEVEDO et al., 2017).

The results of the present study demonstrate the need for further protocol optimization to improve the detection of PB cases. However, the results presented are promising. The complete technological platform can serve as an auxiliary tool in detecting leprosy cases in remote regions and vulnerable populations. Social vulnerability, particularly observed in areas with low infrastructure, is relevant in perpetuating the disease transmission chain (de SOUZA et al., 2019; CABRAL-MIRANDA et al., 2014).

Furthermore, the possibility of using molecular tests may reduce recurring 699 700 misdiagnoses in leprosy (NEVES et al., 2023; MANTA et al., 2020). Ensuring diagnosis for all populations is essential, and decentralizing access to it, as 701 702 facilitated by active case finding, is pivotal for leprosy to discontinue being considered a public health problem in Brazil (BARBIERI et al., 2016). The Global 703 704 Leprosy Strategy 2021-2030, published by the World Health Organization (WHO) 705 (WHO, 2021), aims to eliminate the disease by interrupting transmission. However, there is a consensus that this goal will only be achieved with the 706 improvement of the current strategies of complementary diagnosis, with an 707 708 emphasis not only on developing strategies to increase the sensitivity of current tests, but also to increase access to available tests. The portable platform serves 709 710 as a tool that, by adhering to the principles of the point-of-care testing concept. 711 can contribute to overcoming some of the limitations in leprosy diagnosis.

As a limitation of this study, it should be considered that the samples were collected based on their occurrence in the clinic. The final clinical outcome of cases will be determined after one year of follow-up. Additionally, molecular test positivity can also occur in cases under treatment, where residual bacillus DNA may be present.

717

718 Conclusion

The optimization of qPCR reactions on the portable Q3-Plus platform for aiding leprosy diagnosis has shown promising potential for the full application of this technology as an auxiliary tool for healthcare professionals in suspected cases. Concerning the evaluated lysis solutions, the urea solution (2 M) demonstrated the best outcomes both visually, regarding fragment dissolution

and alteration of medium turbidity, and through qPCR assessment for the detection of the human *18S rRNA* gene.

The complete technological solution (DNA extraction using a simplified protocol and qPCR analysis on the portable platform) yielded promising results. However, concerning the test's sensitivity, further optimization will be needed to enhance the detection of paucibacillary cases.

730

731 Acknowledgments

The authors are grateful to the entire team of dermatologists, nurses and technicians that collaborate at the Souza Araújo Clinic from the Leprosy Laboratory at the Oswaldo Cruz Institute. We especially thank Raquel Barbieri, Alexsandro Cruz Barreto and Cristiane Domingues for all the technical and administrative assistance.

This study was supported by grants from Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (E-26/203.913/2022) Carlos Chagas Institute Research Stimulus Program (ICC 008 FIO 21 – SUB 22) and by the National Fund for Health/Brazilian Ministry of Health (TED 69/2021). LSD is a CNPq fellowship holder, FSNM is a Faperj fellowship holder, and ADTC is a CNPq productivity fellow (level 2).

743

744 **References**

Ahmed FE. Urea facilitates quantitative estimation of DNA damage in Situ by
preventing its degradation. Anal Biochem. 1993 May 1; 210(2): 253-257. doi:
10.1006/abio.1993.1192

Ali N, Bello GL, Rossetti MLR, Krieger MA, Costa ADT. Demonstration of a fast and easy sample-to-answer protocol for tuberculosis screening in point-of-care

750 settings: A proof of concept study. PLoS ONE. 2020 Dec 14; 15 (12): e0242408.

751 doi: 10.1371/journal.pone.0242408

Ali N, Rampazzo RDCP, Costa ADT, Krieger MA. Current Nucleic Acid Extraction

753 Methods and Their Implications to Point-of-Care Diagnostics. BioMed Res Int.

754 2017 Jul 12; 2017. doi: <u>10.1155/2017/9306564</u>

755 Altman DG, Bland JM. Measurement in Medicine: The Analysis of Method

756 Comparison Studies. Statistician. 1983; 32(3): 307-317. doi: <u>10.2307/2987937</u>

757 Aye KS, Matsuoka M, Kai M, Kyaw K, Aye A, Shwe MM, et al. FTA card utility for

PCR detection of *Mycobacterium leprae*. Jpn J Infect Dis. 2011; 64(3): 246-248.

759 doi: 10.7883/yoken.64.246

Azevedo MDCS, Ramuno NM, Fachin LRV, Tassa M, Rosa PS, Belone AFF,
Diório SM, Soares CT, Garlet GP, Trombone APF. qPCR detection of *Mycobacterium leprae* in biopsies and slit skin smear of different leprosy clinical
forms. Braz J Infect Dis. 2017 Feb; 21(1):71-78. doi: <u>10.1016/j.bjid.2016.09.017</u>

Barbieri RR, Manta FSN, Moreira SJM, Sales AM, Nery JAC, Nascimento LPR,
et al. Quantitative polymerase chain reaction in paucibacillary leprosy diagnosis:
A follow-up study. PLoS Negl Trop Dis. 2019 Mar 5; 13(3): e0007147. doi:
10.1371/journal.pntd.0007147

Barbieri RR, Sales AM, Hacker MA, Nery JAC, Duppre NC, Machado AM, et al.
Impact of a reference center on leprosy control under a decentralized public
health care policy in Brazil. PLoS Negl Trop Dis. 2016 Oct 12;10(10): e0005059.

771 doi: <u>10.1371/journal.pntd.0005059</u>

Rosa FB, Souza VC, Almeida TAP, Nascimento VA, Vásquez FG, Cunha MGS,

et al. Detection of *Mycobacterium leprae* in saliva and the evaluation of oral

sensitivity in patients with leprosy. Memorias do Instituto Oswaldo Cruz, 2013

Aug; 108(5): 572-577. doi:10.1590/0074-0276108052013006

- Braet SM, Van Hooij A, Hasker E, Fransen E, Wirdane A, Baco A, et al. Minimally
- invasive sampling to identify leprosy patients with a high bacterial burden in the
- ⁷⁷⁸ Union of the Comoros. PLoS Negl Trop Dis. 2021 Nov 10; 15(11): e0009924. doi:
- 779 <u>10.1371/journal.pntd.0009924</u>

780 BRASIL. Protocolo Clínico e Diretrizes Terapêuticas da Hanseníase. Brasil,
781 2022. Publicado em: 20 jul. 2022.

Burd EM. Validation of laboratory-developed molecular assays for infectious
diseases. Clin Microbiol Rev. 2010 Jul 1; 23(3): 550-576. doi:
10.1128/crm.00074-09

Burgoyne LA, Smith M, Butt N. Dry solid medium for storage and analysis of
genetic material. US 6627226B2. Deposit: 2001 Mar 13. Concession: 2003 Sep
30.

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The
MIQE Guidelines: minimum information for publication of quantitative real-time
PCR experiments. Clin Chemistry. 2009 Apr 1; 55(4): 611-622. doi:
10.1373/clinchem.2008.112797

Cabral-Miranda W, Chiaravalloti Neto F, Barrozo LV. Socio-economic and
environmental effects influencing the development of leprosy in Bahia,
north-eastern Brazil. Trop Med Int Health. 2014 Sep 22; 19(12):1504-1514. doi:
10.1111/tmi.12389

796 Caraguel CGB, Stryhn H, Gagné N, Dohoo IR, Hammell KL. Selection of a cutoff

value for real-time polymerase chain reaction results to fit a diagnostic purpose:

Analytical and epidemiologic approaches. J Vet Diagn Invest. 2011 Jan 1;23(1):

799 2-15. doi: <u>10.1177/104063871102300102</u>

800 Cheng X, Sun L, Zhao Q, Mi Z, Yu G, Wang Z, et al. Development and evaluation

of a droplet digital PCR assay for the diagnosis of paucibacillary leprosy in skin

biopsy specimens. PLoS Negl Trop Dis. 2019 Mar 18; 13(3): e0007284. doi:

803 <u>10.1371/journal.pntd.0007284</u>

Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, et al.
STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation
and elaboration. BJM open. 2016; 6(11): e012799. doi: 10.1136/bmjopen-2016012799

Cole ST, Supply P, Honour N, Colston OJ. Repetitive sequences in *Mycobacterium leprae* and their impact on genome plasticity. Lepr Rev. 2001
Dec 1; 72(4):449-461.

Dairawan M, Shetty PJ, The evolution of DNA extraction methods. Am J Biomed
Sci Res. 2020 Mar 11; 8(1): 39-45. doi: 10.34297/AJBSR.2020.08.001234

de Souza CDF, Rocha VS, Santos NF, Leal TC, de Paiva JPS, Oliveira CCC, et
al. Spatial clustering, social vulnerability and risk of leprosy in an endemic area
in Northeast Brazil: an ecological study. J Eur Acad Dermatol Venereol. 2019.

816 doi: <u>10.1111/jdv.15596</u>

⁸¹⁷ Dharmawan Y, Fuady A, Korfage IJ, Richardus JH. Delayed detection of leprosy

cases: A systematic review of healthcare-related factors. PLoS Negl Trop Dis.

819 2022 Sep; 16(9): e0010756. doi: <u>10.1371/journal.pntd.0010756</u>

Dineva MA, Mahilum-Tapay L, Lee H. Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst. 2007 Oct 1; 132(12): 1193-1199.

Han XY, Seo YH, Sizer KC, Schoberle T, May GS, Spencer JS, et al. A new *Mycobacterium* species causing diffuse lepromatous leprosy. Am J Clin
Pathol. 2008 Jan 12; 130(6): 856-864. doi: 10.1309/AJCPP72FJZZRRVMM.

826 Henry M, Galan N, Teasdale K, Prado R, Amar H, Rays M S, et al. Factors 827 contributing to the delay in diagnosis and continued transmission of leprosy in

828 Brazil – an explorative, quantitative, questionnaire based study. PLoS Negl Trop

Dis. 2016 Mar 15; 10(3): e0004542. doi: <u>10.1371/journal.pntd.0004542</u>

Hilz H, Wiegers U, Adamietz P. Stimulation of Proteinase K Action by Denaturing
Agents: Application to the Isolation of Nucleic Acids and the Degradation of
'Masked' Proteins. Eur J Biochem. 1975 Aug; 56(1): 103-108. doi:

833 <u>10.1111/j.1432-1033.1975.tb02211.x</u>

834 Hwang JH, Jeong H, Lee N, Hur S, Lee N, Han JJ, et al. Ex vivo live full-thickness

porcine skin model as a versatile in vitro testing method for skin barrier research.

836 Int J Mol Sci. 2021 Jan 11; 22(2): 657. doi: <u>10.3390/ijms22020657</u>

Macieira S. Aspectos microbiológicos do *Mycobacterium leprae*. Noções de
hansenologia. Bauru: Centro de estudos Dr Reynaldo Quagliato. Instituto Lauro
de Souza Lima. 2000; 13-17.

Madamet M, Amalvict R, Benoit N, Pradines B. Assessment of a Commercial

841 Real-Time PCR Assay (Vitassay qPCR Malaria 5 Test) to Detect Human Malaria

Infection in Travelers Returning to France. Diagnostics. 2022 Nov 10; 12(11):

843 2747. doi: 10.3390/diagnostics12112747

Manta FSN, Jacomasso T, Rampazzo RCP, Moreira SJM, Zahra NM, Cole ST,

- et al. Development and validation of a multiplex real-time gPCR assay using
- GMP-grade reagents for leprosy diagnosis. PLoS Negl Trop Dis. 2022 Feb 18;
- 16(2): e0009850. doi: <u>10.1371/journal.pntd.0009850</u>
- 848 Manta FSN, Leal-Calvo T, Moreira SJM, Marques BLC, Ribeiro-Alves M, Rosa
- 849 PS, et al. Ultra-sensitive detection of *Mycobacterium leprae*: DNA extraction and
- 850 PCR assays. PLoS Negl Trop Dis. 2020 May 26; 14(5): e0008325. doi:
- 851 <u>10.1371/journal.pntd.0008325</u>
- 852 Martinez AN, Ribeiro-Alves M, Sarno EN, Moraes MO. Evaluation of qPCR-
- 853 Based assays for leprosy diagnosis directly in clinical specimens. PLoS Negl Trop
- ⁸⁵⁴ Dis, 2011 Oct 11;5(10): e1354. doi: 10.1371/journal.pntd.0001354
- 855 Martinez AN, Talhari C, Moraes MO, Talhari S. PCR-Based Techniques for
- Leprosy Diagnosis: From the Laboratory to the Clinic. PLoS Negl Trop Dis. 2014

Apr 10;8(4): e2655. doi: <u>10.1371/journal.pntd.0002655</u>

- Neves KVRN, Machado LMG, Lisboa MN, Steinmann P, Ignotti E. Self-reported
 clinical history of misdiagnosed leprosy cases in the State of Mato Grosso, Brazil,
 2016-2019. Cad. Saude Publica. 2023 Jul 17; 39: 6. doi: 10.1590/0102-
- 861 311XEN279421
- Rampazzo RCP, Graziani AC, Leite KK, Surdi JA, Biondo CA, Costa MLN, et al.
 Proof of Concept for a Portable Platform for Molecular Diagnosis of Tropical
 Diseases: On-Chip Ready-to-Use Real-Time Quantitative PCR for Detection of *Trypanosoma cruzi* or *Plasmodium* spp. J Mol Diag. 2019 Sep;21(5): 839-851.
 doi: 10.1016/j.jmoldx.2019.04.008

Rampazzo RCP, Zambenedetti MR, Alexandrino F, Jacomasso T, Tschá MK, de
Fillipis AMB, et al. Development, verification, and validation of an RT-qPCRbased protocol for Yellow Fever diagnosis. Int J Infect Dis. 2022 Jun; 119: 34-37.
doi: 10.1016/j.ijid.2021.12.361
Santos GC. FTA cards for preservation of nucleic acids for molecular assays a
review on the use of cytologic/tissue samples. Archives of Pathology and
Laboratory Medicine. Arch Pathol Lab Med. 2018 Mar 1; 142(3): 308-312. doi:

874 10.5858/arpa.2017-0303-RA

Steinmann P, Reed SG, Mirza F, Hollingsworth TD, Richardus JH. Innovative

tools and approaches to end the transmission of *Mycobacterium leprae*. Lancet

Infect Dis. 2017 Sep; 17(9): e298-e305. doi: 10.1016/S1473-3099(17)30314-6

878 Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and

its value as a model for human skin. Mol Immunol. 2015 Jul; 66(1): 14-21. doi:

880 <u>10.1016/j.molimn.2014.10.023</u>

Wang S, Lifson MA, Inci F, Liang L-G, Sheng Y-F, Demirci U. Advances in
addressing technical challenges of point-of-care diagnostics in resource-limited

883 settings. Expert Rev Mol Diagn. 2016 Feb 24; 16(4): 449-459. doi:

884 <u>10.1586/14737159.2016.1142877</u>

885 WHO. World Health Organization Leprosy. World Health Organization. 2022.

WHO. World Health Organization. Guidelines for the diagnosis, treatment and
prevention of leprosy. OMS. 2018.

- WHO. World Health Organization. Screening programmes: a short guide.
 Increase effectiveness, maximize benefits and minimize harm. Copenhagen:
 WHO Regional Office for Europe. 2020 Feb 6.
- WHO. World Health Organization. Towards zero leprosy. Global leprosy
 (Hansen's Disease) strategy 2021-2030. 2021.
- 893 Wichitwechkarn J, Karnjan S, Shuntawuttisettee S, Sornprasit C, Kampirapap K,
- 894 Peerapakorn S. Detection of Mycobacterium leprae infection by PCR. J Clin
- Microbiol. 1995 Jan 1;33(1):45-49. doi: <u>10.1128/jcm.331.45-49.1995</u>
- 896 Yu CY, Chan KG, Yean CY, Ang GY. Nucleic acid-based diagnostic tests for the
- detection SARS-CoV-2: An update. Diagnostics. 2021; 11(1): 53. doi:
 10.3390/diagnostics11010053
- 899
- 900 List of Supplementary Material
- 901 Supplemental Table S1. Information regarding clinical samples, gender, age
- and clinical diagnosis collected at the Hansen's disease Laboratory of Oswaldo
- 903 Cruz Institute Fiocruz RJ. Key: PB Paucibacillary; MB Multibacillary; OD
- 904 Other dermatoses.
- 905 Supplemental Table S2. MIQE checklist.
- 906 **Supplemental Table S3.** STARD checklist.

Supplemental Figure S1. Bland-Altman analysis for the *16S rRNA* target
detected in the portable instrument versus the benchtop instrument. The mean
difference it was 1.40 cycle of threshold between instruments. The upper limit of

agreement with 95% confidence interval was 9.40 and the lower limit ofagreement was -6.61.

Supplemental Figure S2. Bland-Altman RLEP (Optimization multiplex qPCR
Q3-Plus). Bland-Altman analysis in RLEP target. The mean difference it was
5.15 cycle of threshold between the equipment in 95% confidence interval. The

⁹¹⁵ upper limit of agreement was 10.59 and the lower limit of agreement was -0.28.

916 Supplemental Figure S3. Bland-Altman 18S rRNA (Optimization multiplex

917 qPCR Q3-Plus). Bland-Altman analysis in 18S rRNA target. The mean

difference it was 1.42 cycle of threshold between the equipment in 95%

confidence interval. The upper limit of agreement was 3.25 and the lower limit of

agreement was -0.40.

921 Supplemental Figure S4. Bland-Altman 16S rRNA (Evaluated simplified

extraction protocol in clinical samples analyzed in Q3-Plus). Bland-Altman

analysis in 16S rRNA target. The mean difference it was 1.29 cycle of threshold

between the equipment in 95% confidence interval. The upper limit of

agreement was 12.39 and the lower limit of agreement was -9.81.

Supplemental Figure S5. Bland-Altman RLEP (Evaluated simplified extraction
protocol in clinical samples analyzed in Q3-Plus). Bland-Altman analysis in
RLEP target. The mean difference it was 4.44 cycle of threshold between the
equipment in 95% confidence interval. The upper limit of agreement was 11.91
and the lower limit of agreement was -3.04.

931 **Supplemental Figure S6.** Bland-Altman *18S rRNA* (Evaluated simplified

extraction protocol in clinical samples analyzed in Q3-Plus). Bland-Altman

analysis in 18S rRNA target. The mean difference it was 1.34 cycle of threshold

934	between the equipment in 95% confidence interval.	The upper limit of
-----	---	--------------------

agreement was 6.90 and the lower limit of agreement was -4.22.

936

937	Author contribution list			
938		Spec	ific Contributions:	
939	1.	ABS	(Lead Author)	
940		a.	Collected and analyzed the data;	
941		b.	Drafted the initial manuscript.	
942	2.	LSD		
943		a.	Laboratory support	
944	3.	MRA		
945		a.	Responsible for statistical analyses	
946		b.	Revised the manuscript;	
947	4.	RPO		
948		a.	Revised the manuscript;	
949		b.	Provided funding	
950	5.	FSN	Л	
951		a.	Design of the study ;	
952		b.	Supervised sample collection;	
953		C.	Performed, and analyzed same experiments;	
954		d.	Contributed to the interpretation of results;	
955		e.	Revised the manuscript;	
956	6.	ADT	2	
957		a.	Design of the study;	
958		b.	Conceptualized the study	
959		C.	Contributed to the interpretation of results;	
960		d.	Supervised lab data collection	
961		e.	Provided funding	
962		f.	Critically reviewed intellectual content.	

963 MOM

- a. Provided funding;
- b. Conceptualized the study

