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Abstract:  Integrating modern machine learning and clinical decision-making has great promise 

for mitigating healthcare's increasing cost and complexity. We introduce the Enhanced 

Transformer for Health Outcome Simulation (ETHOS), a novel application of the transformer 

deep-learning architecture for analyzing high-dimensional, heterogeneous, and episodic health 

data. ETHOS is trained using  Patient Health Timelines (PHTs)—detailed, tokenized records of 

health events—to predict future health trajectories, leveraging a zero-shot learning approach. 

ETHOS represents a significant advancement in foundation model development for healthcare 

analytics, eliminating the need for labeled data and model fine-tuning. Its ability to simulate 

various treatment pathways and consider patient-specific factors positions ETHOS as a tool for 

care optimization and addressing biases in healthcare delivery. Future developments will 

expand ETHOS’ capabilities to incorporate a wider range of data types and data sources. Our 

work demonstrates a pathway toward accelerated AI development and deployment in 

healthcare. 
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Introduction 

Healthcare in the U.S. is the world’s most expensive, and the quality and safety of care do not 

compare well to other developed countries1. While electronic healthcare records are now 

ubiquitous in the U.S., and decision-support technologies are widely implemented, most are 

rule-based, and their effectiveness so far has been limited2. Artificial intelligence has emerged 

as a technique with great potential for improving care, but most organizations are not using it to 

any major degree. Two major limiting factors have been (1)  the lack of large, labeled datasets, 

which are expensive and time-consuming to develop; and (2) limited system capacity to deliver 

recommendations to the correct clinician at the optimal time.  In this manuscript, we describe a 

novel method called the Enhanced Transformer for Health Outcome Simulation (ETHOS), which 

we believe can help address many of the limitations that have prevented widespread AI 

adoption. 

ETHOS is a novel application of the transformer deep-learning architecture, originally 

conceptualized for natural language processing3. This architecture, a cornerstone in large 

language model (LLM) development, is repurposed in ETHOS to analyze health-related data, 

moving beyond the textual focus of traditional LLMs. ETHOS is designed to process Patient 

Health Timelines (PHTs)—detailed tokenized chronological records of health-related events—to 

predict future health timelines. In PHTs, a token serves as the fundamental unit of information, 

encapsulating diverse data types such as patient admissions, administered medications, or time 

intervals. We elaborate on this pivotal aspect of our methodology in the Methods section. Our 

model takes the patient's health history, as represented by PHT, and subsequently forecasts 

future PHT (fPHT) on a token-by-token basis (refer to Fig. 1). 

ETHOS’s generative capabilities are gained in unsupervised learning. Once trained, ETHOS 

can forecast future health events without requiring task-specific training. This is done through a 
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zero-shot learning approach, making ETHOS a versatile foundation model for numerous 

healthcare applications. With appropriate modifications, ETHOS can be adapted to a broad 

range of data types, including but not limited to medical images, clinical and discharge notes, 

monitoring data, data from wearables, or omics data. 

In this research, we leverage the recently released MIMIC-IV v.2.2 dataset4,5, a rich open-

source repository accompanied by our code, allowing others to replicate our findings. MIMIC-IV 

is expansive, chronicling more than  400,000 hospitalizations in more than 200,000 patients. 

Although relatively large, we anticipate that the performance of our system will further improve 

as we expand the dataset with additional patient histories and data types.  

Importantly, we utilize the MIMIC-IV dataset in its original noisy form without any data 

modifications, cleaning, or targeted imputation for missing entries. The information is retained in 

the face of large data inconsistencies, such as discharge dates noted before admission dates. 

We operated under the assumption that, within large enough datasets and appropriate 

tokenization and training methods, ETHOS would be robust enough to handle the noisy input 

and automatically manage the noise/anomalies in the input data. The resilience of ETHOS to 

data inaccuracies and missing information has important implications for the efficiency of 

downstream model development. Healthcare data inevitably contains errors, some of which may 

not be immediately apparent or easily rectifiable. Attempts to clean large datasets can be 

impractical and may inadvertently introduce biases and errors. Our approach highlights the vital 

need for algorithms adept at managing these challenges, a prerequisite for the large-scale 

development of reliable and robust healthcare AI applications.  

Our research showcases the zero-shot learning capabilities of ETHOS in predicting inpatient 

and ICU mortality, estimating ICU length of stay (LOS), and determining readmission 

probabilities. Additionally, we illustrate the model's versatility by performing a regression task to 
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estimate the first-day Sequential Organ Failure Assessment (SOFA) score4,6 at the time of ICU 

admission using information before admission (see example in Figure 1). The SOFA score is a 

critical tool for monitoring a patient's condition in the ICU, evaluating organ function or failure 

across six systems—respiratory, cardiovascular, hepatic, coagulation, renal, and neurological—

with each system scored from 0 to 4, culminating in a total possible minimum score of 0 and 

maximum score of 24. Furthermore, we predict Diagnostic-Related Group (DRG) classifications, 

encompassing over 771 categories, at the time of hospital discharge. The DRG system 

categorizes hospital cases into standardized case complexity-based Medicare and Medicaid 

payment groups, encouraging efficient patient care without compromising quality. The diversity 

of tasks ETHOS can perform, from mortality predictions and LOS estimation to SOFA scoring 

and DRG classification, highlights its broad applicability and zero-shot learning efficiency.  

ETHOS is a foundation model7, introducing a novel approach in the landscape of data analysis 

within the healthcare domain. The other foundational models developed recently have fallen into 

two broad categories. The first of these categories encompasses Clinical Language Models 

(CLaMs), a specialized subset of large language models (LLMs)8 tailored for processing clinical 

and biomedical text data. These models are typically trained on extensive datasets containing 

clinical notes, biomedical literature, and other healthcare-related text sources. CLaMs are 

proficient in various clinical tasks such as extracting drug names, summarizing medical 

dialogues, predicting clinical outcomes, and responding to patient queries9–13. The second 

category comprises Foundation Models for Electronic Medical Records (FEMRs), representing 

another class of clinical foundation models tailored specifically for EMR data analysis. FEMRs 

undergo training on the extensive medical histories of patients, covering both structured data 

(such as demographics and lab results) and unstructured data (including progress notes and 

radiology reports). Unlike CLaMs, FEMRs are not designed to generate clinical text. Instead, 

they produce machine-understandable representations of patient data, facilitating tasks such as 
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patient phenotyping and outcome prediction12,14–16. Similarly, data that chronicles human lives, 

akin to EMR, can also be modeled effectively in this manner (12,14–16).  

The primary distinction between ETHOS and previously published methods lies in our approach, 

which eliminates the need for fine-tuning or labeled data to produce accurate inferences or 

predictions. We demonstrate inference across a wide array of tasks without task-specific 

training. Moreover, the ability of ETHOS to forecast future PHTs opens the door to a wide array 

of bespoke and innovative applications, facilitating its use in unique scenarios in healthcare, 

some of them explored in the discussion section. Unlike many studies, which often apply 

specific criteria for selecting data for training and testing, our methodology imposes no such 

limitations. This feature is crucial for considering the scalability of the ETHOS  approach to data 

sets comprising millions or even hundreds of millions of patients.  

 

Results 

Tokenization of MIMIC data and training of ETHOS 

Figure 2a summarizes some statistics of the tokenization process, including the number of 

tokens generated and other details. Figure 2b presents visualizations of the 768-dimensional 

embeddings reduced to a 2D plane using Principal Component Analysis (PCA) for quantile 

tokens, which encode all quantitative values in the data. The tokens are arranged from Q1 (the 

lowest quantile) to Q10 (the highest quantile). This suggests that the transformer model has 

learned a sequential relationship between the tokens that mirrors their natural order, 

ascertaining this order from the data during the training process. The proximity between points 

could reflect the model's differentiation among the quantiles. We observe that the gaps between 

Q4, Q5, and Q6 are narrower than those between Q9 and Q10. This may suggest that the 

model deems the variance between population-average values to be less substantial than that 
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of extremely high values. For example, the difference in clinical significance between a blood 

pressure reading of 110 mmHg (Q5) and one of 130 mmHg (Q6) is less pronounced than the 

difference between 140 mmHg (Q9) and 160 mmHg (Q10), which could account for the greater 

disparity in the embedding vectors of high quantiles. 

The embeddings for time-interval tokens, representing the approximate durations between 

different tokenized events in PHT, are illustrated in Figure 2c. These embeddings display a 

pattern analogous to that observed for Q tokens, where ETHOS systematically arranged them 

according to the actual time values they represent. Remarkably, the model perceives the two 

shortest (5m-15m, 15m-1h), and two longest (3m-6m, 6m) intervals as relatively similar.   

ETHOS inferences 

In our study, we conducted zero-shot inferences for a diverse array of classification tasks, 

including readmission to the ICU, inpatient mortality, ICU mortality, combined inpatient and ICU 

mortality in patients with sepsis, readmission to the ICU for patients with intracerebral 

hemorrhage, assignment of DRG class assessed at inpatient discharge. We also demonstrate 

regression of first-day SOFA score at the time of ICU admission and regression of the length of 

stay in ICU in days assessed upon admission. The results corresponding to these tasks are 

summarized in Figure 3. 

To situate our results within the broader scientific discourse, we conducted a literature 

review, concentrating on contemporary studies that utilized the MIMIC-III and MIMIC-IV 

datasets for similar tasks and reported their outcomes. A notable observation from our review is 

that many of these studies either lacked publicly available source code or implemented specific 

exclusion criteria for their data selection. Such practices pose challenges for directly comparing 

their results with our approach. Nonetheless, we posit that the numerical outcomes reported in 

these works provide a valuable benchmark for assessing the performance of ETHOS. 
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Furthermore, we conducted a direct comparative analysis of ETHOS against specialized 

algorithms developed in-house, with these findings detailed in the supplementary materials. 

We conducted an analysis focusing on risk estimation for inpatient and ICU mortality, 

calculated at the respective points of patient admission to the hospital and ICU. The test set 

comprised 43,309 hospital admissions with a 2.0% mortality and 7,483 ICU admissions with a 

7.0% mortality. The ETHOS model demonstrated robust performance, achieving an AUC of 

0.912 (95% CI: 0.898-0.922) for hospital mortality and 0.927 (95% CI: 0.914-0.938) for ICU 

mortality. Comparatively, in the ICU mortality risk prediction domain, the highest performance 

identified in our literature review was an AUC of 0.918 (95% CI: 0.915-0.922) reported by Pang 

et al. (2022)17 using the XGBoost model. On the lower end, Chen et al. (2023)18 reported an 

AUC of 0.642 ± 0.101. Within a specific subgroup of the test set of 3,324 patients with sepsis 

with 10.8% mortality prevalence, ETHOS's prediction of ICU mortality exhibited an AUC of 0.889 

(95% CI: 0.870-0.906), which is a better performance than obtained in a study by Pan et al. 

(2023)19, which estimated ICU mortality in adult sepsis patients using SOFA and additional 

features, achieving an AUC of 0.762 ± 0.006. We also estimated performance for a task of ICU 

mortality estimation for patients remaining in ICU for at least 24 hours in which we obtained an 

AUC of 0.928 (95% CI: 0.916-0.939).  

Furthermore, ETHOS estimated the length of stay (LoS) in the ICU with a mean absolute 

error (MAE) of 2.262 days (95% CI: 2.161-2.355 days). These results paralleled those of18, who 

reported an MAE of 2.42 ± 0.10 days. ICU LoS prediction and mortality risk, underscoring the 

competitive zero-shot performance of ETHOS across multiple key healthcare metrics. 

For the ICU readmission task, ETHOS’ AUC of 0.807 (95% CI: 0.786-0.827) is slightly 

smaller than the AUC of 0.82 obtained using knowledge graph embeddings20 and is higher than 

the AUC of 0.791 (95% CI, 0.782–0.800) using LSTMs based on MIMIC-III data21. Additionally, 
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we applied our method to a task characterized by a relatively low prevalence, specifically 

focusing on only 174 cases of patients with hemorrhage admitted to the ICU present within our 

test set. The prediction of readmission by ETHOS yielded an AUC of 0.667 (95% CI: 0.402-

0.839), comparable to the AUC of 0.736 (95% CI: 0.668-0.801) achieved by previous studies22 

using LightGBM. For hospital readmission, ETHOS achieved an AUC of 0.749 (95% CI: 0.743-

0.755), lower than the AUC of  0.791 [0.766-0.816] obtained by Tang et al. 202323. It's important 

to recognize that although MIMIC offers a wealth of data on acute care, it might not encompass 

all the subtleties necessary for readmission research, including comprehensive post-discharge 

outcomes or data on readmissions to various hospitals. Consequently, the accuracy of results 

for tasks related to readmission may be limited, regardless of the method employed. 

We explored the task of predicting the first-day SOFA score at the time of admission. 

Given that the SOFA score is a critical indicator of survival, particularly in sepsis6,24, this 

prediction can serve as a valuable indirect prognostic marker of ICU patient health status. We 

achieved a SOFA score estimation with an MAE of 1.502 (95% CI: 1.475-1.534). To our 

knowledge, no prior literature predicts first-day SOFA at the time of admission. 

For the DRG assignment, we observed a top-1 (out of 771 classes) accuracy rate of 

84.8% (95% CI: 84.4%-85.2%) in 28,932 hospitalizations using our methodology, a significant 

improvement over the 52% reported by Wang et al. (2024)13, who explored DRG estimation 

using LLMs from discharge notes. This marked enhancement in performance can be attributed 

to the comprehensive nature of ETHOS, which incorporates a wide array of clinical events 

leading up to discharge within the PHT. In contrast, the approach taken by Wang et al. (2024)13  

relies solely on discharge notes, which may not encompass the breadth of information captured 

by PHT, thus potentially explaining the disparity in accuracy rates.  
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We want to reiterate an important point: all comparisons presented in this section are 

made between ETHOS, trained indiscriminately on the entire test population and task-specific 

algorithms developed using much smaller MIMIC data subsets obtained after data curation. In 

addition to the results in this section, in supplementary materials, we benchmark the 

performance of ETHOS against XGBoost25, recurrent neural networks, and logistic regression.  
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Discussion 

This work introduces an innovative approach to developing a Foundational Model for medical 

data derived from EMRs, designed to execute zero-shot inferences across a diverse range of 

tasks. Our model generates interpretable, causally forecasted future patient health timelines. 

We applied and evaluated this model using the MIMIC-IV EMR datasets, comparing its 

performance with the results of methods published in the literature for the same tasks. Our 

objective, however, was not merely to surpass the performance of these specialized SOTA 

implementations. Instead, we aimed to demonstrate that ETHOS, a single foundation model 

trained just once with zero-shot derived inference, can achieve performance levels comparable 

to that of multiple models optimized for various tasks. This underscores the potential of ETHOS 

to streamline the application of AI in healthcare by leveraging a single unified model 

development architecture and set of methods for multiple prediction tasks, thereby greatly 

enhancing medical data model development efficiency and scalability. 

The application of patient timelines for generating insights has been established in 

existing research12,14–16;26, as has the implementation of foundational models7. Our methodology 

sets itself apart by integrating a zero-shot capability, obviating the need for additional training 

beyond the initial model. Moreover, ETHOS is specifically engineered to produce causal 

predictions in the form of future timelines, ensuring they are inherently comprehensible to 

human users. This is achieved through a novel tokenization process for medical data, a 

distinctive feature of our work.  

Another highly distinctive capability of ETHOS is the potential to generate individualized 

care-integrated PHT-based projected healthcare expenditures. This capability is exemplified 

through the prediction of Diagnosis-Related Group (DRG) codes but is not limited to this 

application. Specifically, ETHOS can model future PHTs at critical decision-making junctures in 
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patient care. For instance, ETHOS can model outcomes for administering either drug A or B, 

considering the patient's unique conditions (such as sex, age, race, gender, income, etc.) to 

determine which path might yield better clinical and cost outcomes. In this regard, ETHOS has 

the potential to revolutionize medical decision-analytic modeling science by incorporating a level 

of personalization previously unavailable in conventional decision-analytic models. This has the 

potential to enhance clinical decision-making and incorporate individualized real-time 

quantitatively robust value-based care policies into clinical care.  This is a potentially 

transformative change, radically  unlike current evidence-based medicine practices, which  rely 

on high-quality data obtained from and averaged across patient populations10,27,28 

In designing ETHOS, we have considered explainability, fairness, and transparency. 

These are vital aspects of our ongoing research. In future work, we plan to implement and test 

advanced visualization attention layers of the transformer29 to gain insights into the model's 

reasoning process. Additionally, a dedicated interface for decision-making is envisaged further 

to enhance the usability of ETHOS in clinical settings. 

Envisioning the development of a robust AI method that offers fully personalized advice 

on a wide range of medical questions necessitates learning from an extensive dataset of 

patients. Such a model must assimilate as much data as possible and be adaptable to a vast 

array of medical tasks. ETHOS represents a significant stride in this direction. Built on a 

transformer architecture, it is inherently scalable and, as a zero-shot learner, is versatile enough 

to address numerous key medical prediction tasks without task-specific training. Currently, 

ETHOS does not incorporate various types of critical information, including clinical and 

discharge notes, medical imaging and pathology images, genetic data, socioeconomic factors, 

lifestyle considerations, and monitoring signals. Nonetheless, the conceptual framework for 

incorporating these diverse data types is relatively straightforward. This can be done by 

leveraging the encoder and cross-attention mechanisms inherent in the transformer 
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architecture; we anticipate the potential for integrating a nearly limitless amount of information 

during training. This expansion of ETHOS's capabilities forms the cornerstone of our future 

work, promising to enhance its applicability and efficacy in personalized medical advice and 

diagnostics. 

We aim to modify further and train ETHOS to apply it across diverse data sources. This 

capability is currently hindered by variations in data collection methodologies, disparities in data 

quality, and the presence or absence of certain data types across different sources. Additionally, 

non-overlapping populations present significant challenges, rendering ETHOS not yet 

generalizable. To mitigate some of these compatibility issues, we propose the development of a 

universal tokenization format. While this approach may resolve certain discrepancies, it does 

not address all underlying compatibility concerns. The ultimate solution, we believe, lies in a 

system capable of transforming tokenized data from one healthcare system to another, akin to 

text translation between languages. Specifically, for ETHOS, this would mean converting the 

patient journey, as encapsulated by the Patient Health Timeline (PHT), from one system's 

format to another. This conversion would not only facilitate a consistent and unified 

representation of patient histories across different systems but also offer insights into the 

operational nuances of these systems. Pursuing such a translation strategy represents a vital 

direction for our future research endeavors, alongside evaluating the methodologies introduced 

in this paper through analysis of prospectively collected data. 

This work has limitations.  We utilized the MIMIC dataset, which may be cleaner than 

many routine clinical datasets. Performance and usability should be tested prospectively in 

diverse datasets and in real-time. The transformer model in the current version of ETHOS is 

relatively simple and uses only 2048 PHT tokens for predictions. When token density per time is 

large, this may not contain sufficient information for optimal performance. Mitigation of the 

limitation is expected with additional computational infrastructure. 
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In conclusion, ETHOS presents a promising approach to deriving insights from massive 

clinical datasets without labor-intensive labeling or distinct model creation for each prediction 

task. This approach has the potential to significantly lower the costs and complexities 

associated with AI model development, thereby accelerating the development and 

implementation of healthcare AI. 
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Methods 

Data 

In this study, the Medical Information Mart for Intensive Care (MIMIC-IV) database served as a 

data source, providing a rich and comprehensive collection of de-identified health-related 

information4. Managed collaboratively by the Massachusetts Institute of Technology (MIT), Beth 

Israel Deaconess Medical Center (BIDMC), and Philips Healthcare, MIMIC-IV encompasses 

detailed records for more than 200,000 patients who were admitted to hospital and critical care 

units at BIDMC in Boston, Massachusetts, between 2008 and 2019. The following tables from 

the MIMIC-IV were used: 1) Patients, which contains static information about the patients, such 

as gender, date of birth, and date of death; 2) Admissions, which holds information about patient 

admissions to the hospital, including admission and discharge times, as well as information 

related to the hospital stay; 3) Icustays, which is specifically related to intensive care unit (ICU) 

stays, including the timings and type of ICU; 4) Labevents, which contains laboratory test results 

for patients. We used the 200 most frequent tests covering 95% of tests completed; 5) 

Prescriptions, which holds information on medications prescribed to patients during their stay, 

with each drug converted to ATC code30 We converted GSN codes in MIMIC-IV to ATC codes 

using conversion tables26; 6) Procedures which contains information about procedures 

performed on patients, coded using ICD10-PCS codes; 7) Diagnoses which contains diagnostic 

information, typically coded using ICD10-CM codes. We converted ICD9 to ICD10-CM if needed 

using conversion table31; 8) Emar, which holds information related to the documentation and 

administration of medications to patients; 9) Omr with information about measurements taken 

from a patient, such as blood pressure or BMI; 10) Services with information about the clinical 

service under which a patient is managed during their hospital stay; 11) drgcodes DRG codes 

which are a classification system used in the healthcare industry to categorize hospital cases 

into groups that are expected to have similar hospital resource use;  12) SOFA, taken from the 
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derived tables in MIMIC. The remaining tables were not used in the current ETHOS 

implementation as they will require additional processing. For example, clinical notes require 

natural language processing to be converted to meaningful tokenized information.  

Patient health timelines (PHTs), tokenization 

The core concept behind ETHOS is the  Patient Health Timeline (PHT), as depicted in Figure 1. 

The fundamental component of the PHT is the token, which represents a distinct unit of 

information occurring within the patient's health timeline. To construct the PHT, we gathered all 

pertinent data from tables 1 to 12 of the MIMIC-IV database, as detailed in the Data section. We 

arranged this data chronologically based on timestamps, as shown in Figure 5a, into a 

chronological sequence of health-related events for each patient. These events were 

timestamped with a floating-point number in 64-bit precision to denote the patient's age at the 

time of occurrence of the event. Subsequently, events from the MIMIC-IV tables were converted 

into tokens. Each event was represented by 1 to 7 tokens to encapsulate information about the 

event, as illustrated in Figure 5b. We crafted this encoding process to ensure each token 

conveys specific, meaningful information, with examples in Figures 5d-k. A comprehensive list 

of token encodings within the PHT is available in the supplementary material. The final step of 

tokenization involved the insertion of time-interval tokens to represent the intervals between 

events, depicted in Figure 5c. We employed 13 different time-interval tokens to represent the 

intervals. No interval token was inserted if the duration between tokens was less than 5 minutes. 

Typically, a single time-interval token was placed between other types of tokens unless the 

interval exceeded one year. In such cases, multiple 6-month tokens were used to approximate 

the actual interval. For example, an interval of 1.4 years was represented by three 6-month 

tokens, while four 6-month tokens represented 1.76 years. One interval-tokens were inserted 

the exact time of events was dropped from PHTs. 
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The patient's age and the commencement date of the PHT were represented using the same 

token set. We used 20 distinct tokens to denote age intervals such as 0-5 years, 5-10 years, 

and so forth. For instance, to encode information about a 46-year-old patient with PHT 

beginning in 1982, we inserted a "45_50 years" token at the 4th position in the PHT. To signify 

the year 1982, we used a "15_20 years" token at the 5th position of the PHT, considering 1970 

as the baseline year. We emphasize that age and the commencement of the PHT are encoded 

in five-year intervals, given that health status typically does not undergo rapid changes with age, 

making finer granularity unnecessary. However, we plan to scrutinize these assumptions in 

subsequent research. The token denoting the commencement of the PHT delineates the 

temporal context of the medical data—identifying whether it corresponds to earlier medical 

practices (e.g., 1990s), contemporary practices, or periods in between. Using tokens with a 

precision of five years is done under the premise that technological and methodological 

progress within the medical field does not advance at a pace that justifies the necessity for time 

intervals more granular than five-year spans. Pertinent to the MIMIC dataset, the obfuscation of 

actual dates through uniform random adjustments for each patient—a measure implemented to 

safeguard privacy—compromises the utility of this temporal information for ETHOS, as it 

obscures the precise date of the start of PHT. However, the absence of precise reference dates 

is less critical, given that the entire dataset was collected over a relatively brief period, from 

2008 to 20195. 

As mentioned previously, token locations within the timeline are contingent upon the 

temporal occurrence of events. Nonetheless, certain data elements are temporally invariant, or 

at least presented as such within the MIMIC-IV database. In our implementation, we designate 

six static tokens to encapsulate the information encoded in these static data elements. 

Although, in reality, some of these variables may change over time, they are represented as 

invariable constants in the MIMIC database. We encoded this information in the six static tokens 
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exactly as recorded in the MIMIC dataset. These include gender, marital status, race, body 

mass index (BMI), birth date, and the start date of the timeline. While PHTs have the potential to 

extend to hundreds of thousands of tokens, our current methodology utilizes a maximum of 

2048 subsequent tokens within the transformer model context, as elaborated in the "Methods: 

ETHOS Training" section. To accommodate invariant data, we substitute the initial six tokens of 

the 2048-token context with static information tokens, where the sixth token demarcates the 

temporal juncture of the seventh token, which is the first token of the actual timeline. Although 

the transformer architecture inherently facilitates the inclusion of static data via its encoder 

component and cross attention module3, we opted for a more streamlined approach as 

described, deferring the integration of an encoder implementation to future endeavors where 

more substantial time-invariant data like genetics is used.   

Medical encounters yield a plethora of numerical data. We employ a quantile-based tokenization 

strategy to process continuous numerical values, such as blood pressure readings or 

cholesterol levels. Specifically, all numerical values are transformed into integers representing 

the quantile to which each value corresponds. Quantile ranges were determined using the 

training dataset, where histograms of all numerical values were generated and subsequently 

divided into quantiles. We chose to utilize ten quantiles, a decision aimed at striking a balance 

between the need for precise representation of numerical data and the clinical reality that 

significant changes in health indicators often manifest as relatively large variations, such as 

shifts of 10 or 20 percent. This rationale underpins our selection of ten quantiles for 

tokenization. 

In our study, Diagnosis-Related Group (DRG) codes for each inpatient stay were utilized, 

despite the absence of assigned times when they were created in the MIMIC tables. Given that 

a DRG code is assigned after or during discharge, we positioned it after a trio of tokens 

representing discharge-related information: the discharge token, a quantile token indicating the 
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length of the hospital stay, and a token specifying the discharge destination (e.g., home). 

Additionally, we incorporated data from MIMIC regarding the initial SOFA score for ICU patients, 

placing this token after the patient's admission-to-the-ICU token, along with a token denoting the 

ICU type. Given that the SOFA score in the dataset ranges from 0 to 23 (with the score of 24 

never appearing), we uniformly map scores from 0-23 across 1-10 quantiles. Consequently, in 

quantile Q1, SOFA scores of 0, 1, and 2 (average of 1) are included, while quantile Q2 

encompasses SOFA scores of 3 and 4 (average of 3.5), and this pattern continues accordingly.  

ETHOS operates as a causal network. It relies solely on information available up to the time 

being considered in making predictions. Consequently, to ensure causality, actual values of 

DRG codes and SOFA scores are not employed during inference; instead, predictions of these 

values are used. This principle ensures that future-obtained information does not influence the 

prediction of yet-to-occur events. In essence, if tokens are integrated into the timeline based on 

their approximate occurrence time, their actual values must not be utilized for inference 

purposes, or they are placed in the timeline far in the future to ensure they are inserted after 

they occurred.  

For the tokenization of drugs, whether administered or prescribed, we utilized the ATC 

classification system due to its hierarchical, tree-like structure. Each ATC code, comprising up 

to seven characters, was encoded using up to three sequential tokens: the first token for the 

initial three characters, the second for the subsequent character, and the third optional token, 

for the remaining suffix. Similarly, ICD-10-CM codes were encoded with three tokens: the first 

representing the first three characters of the code, the next two by the second token, and the 

final token capturing the code's remaining suffix. For ICD-10-PCS codes, each character in the 

seven-character code was represented by a distinct token. The rationale behind such 

tokenization is that the initial characters in those coding schemes denote specific classes of 

drugs and diseases or procedures, which are interpretable and have distinct meanings which 
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we anticipated to be important for the network's self-attention mechanisms.  Looking ahead, our 

approach, which assigns well-defined meanings to each token, will be crucial for refining 

attention mechanisms and enhancing the model's explainability. This method ensures that 

individual tokens contribute significantly to the interpretability of the network's outcomes. For 

more information on the tokenization process applied to MIMIC data in our analysis, as well as 

examples of Patient Health Timelines (PHTs), readers are directed to Figure 6 and the 

supplementary materials where we present real PHTs used in this work with annotations.  

ETHOS training  

We employ a model inspired by the decoder architecture of the transformer3, drawing 

parallels between tokenized text in Natural Language Processing (NLP) and our approach to 

tokenizing PHTs. The ETHOS model's training begins by synthesizing a dataset from existing 

patient records. Each patient's PHT is ended with a "End of timeline" token, and then they are 

concatenated, creating a single long sequence of tokens for the training. Similarly to generative 

LLM, ETHOS is trained to predict a single token based on the context of preceding ones. Given 

the large data scale and model complexity, this phase is resource-intensive similar to methods 

for training used for NLP transformers used in LLMs3,32. We estimated that the size of the 

network training task that we face with ETHOS is similar to GPT-28, and therefore we used the 

size of the transformer used in that network as a starting point. We made heuristic adjustments 

to the size of the network to optimize the value of the loss function. Further details on our 

training methodology of transformers are provided in Brown et al. (2020)8 and for our 

implementation in supplementary material. 
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ETHOS inference 

During inference, ETHOS functions analogous to a document completion tool in which 

word sequences instead of health-related events are sequenced into a PHT. The procedure 

begins with the patient's history recorded in their PHTs. The last 2048 tokens—or the entire 

PHT if it contains fewer than 2048 tokens—are used to initiate the inference in the current 

ETHOS implementation. ETHOS then generates one token at a time through the following 

steps: (1) generating an array of probabilities for all potential tokens, (2) stochastically selecting 

a new token based on these probabilities, (3) appending the new token to the sequence while 

removing the oldest one to maintain the context size at 2048 tokens, (4) go to 1. This generative 

sequence proceeds until it encounters predefined stopping conditions, which may include the 

appearance of a token showing the patient’s death or the sum of time-interval tokens surpassing 

a certain threshold. Additional stopping criteria may be established. The stochastic nature of this 

method allows for the creation of multiple future PHTs (fPHTs). Multiple fPHTs are used to 

assess uncertainties as each of the fPHTs represents an alternative prediction of the future.  

Evaluation of Clinical Outcomes and Tasks Using ETHOS 

The experiments were chosen so the results can be compared to the work of others in terms of 

the estimation of inpatient mortality and readmission on MIMIC data. Patients in the MIMIC were 

randomly divided into training and testing groups, with splits of 90%/10%.  

The chance of inpatient mortality was assessed at the time of admission for all inpatient stays 

for patients in the test set unless the discharge day was unknown. This was performed by the 

generative process that began with the admission token and ended upon generating a 

discharge or death token, repeating this cycle 20 times. The 'N', representing the number of 

times a death token was generated first, was divided by 20 to estimate the chance of inpatient 

mortality. Similarly, the likelihood of ICU mortality was computed for the MIMIC dataset, with an 

additional experiment conducted where predictions were made starting 24 hours after ICU 
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admission, rather than at the point of ICU admission. In the same simulation, the LOS in the ICU 

was estimated by aggregating the time-interval tokens generated in the simulated timeline until 

the discharge token appeared. Instances where the patient died in the ICU during the simulation 

were excluded from the LOS calculation. We opted for 20 repetitions, yielding 21 unique 

probability estimators, which were adequate for constructing robust Receiver Operating 

Characteristic (ROC) curves yielding excellent Gaussian fits (Figure 3). Nevertheless, 

alternative repetition counts may also be employed. 

To calculate the probability of 30-day inpatient readmission, the generation of fPHTs 

commenced at the discharge token from inpatient stays and ceased upon the appearance of 

either a new admission or death token or when the cumulative time tokens generated exceeded 

30 days. The simulation was repeated 20 times. The probability of 30-day readmission was then 

derived as M/20, where 'M' is the count of terminations occurring because of patient new 

admission tokens across the 20 repetitions.  

In our approach, tasks are accomplished by simulating future patient health timelines. Yet, 

ETHOS offers additional methods for deriving insights, two of which we illustrate here. For 

instance, in the construction of PHTs following each ICU admission, a sequence is created 

starting with a token that identifies the type of ICU, followed by a SOFA score token, and then 

by a Q token that signifies the actual SOFA score on the first day. We predict the SOFA score 

using SOFA Q node probabilities as generated by ETHOS and the mean SOFA score per 

quantile as assigned during tokenization (Figure 4a). 

The exact timing of the 1-day SOFA score assessment is not specified in the dataset, leading to 

a potential causality issue by inserting the SOFA score immediately after admission, as it relies 

on data acquired subsequently. During the model's training phase, ETHOS permits this 

apparent causality violation. However, such true values of 1-day SOFA scores, not available at 
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the moment of ICU admission, are not used for simulating future timelines during inference to 

prevent causality violation during inference. Instead, these scores are predicted from prior 

information, as demonstrated in our study. This feature of ETHOS enables the inclusion of 

information with indeterminate timing. 

Another distinctive inference capability facilitated by ETHOS is DRG class estimation. As 

illustrated in Fig. 4b, the token denoting the DRG class is consistently positioned following the 

discharge token and a Q token specifying the length of hospital stay. With 771 unique tokens 

available for this purpose, we infer the actual class by generating a probability array in the final 

network layer of the transformer for the DRG token. This array is then utilized to predict the 

classification's top-1 and top-2 accuracy metrics.  

Statistical Analysis 

The performance of classification algorithms of binary tasks was assessed using Receiver 

Operating Curve Analysis (ROC). The ROC curves were fitted to experimental points using 

Gaussian models with unequal variances for binary hypotheses (code provided). Values of 

Areas Under Curves (AUCs) and 95% confidence intervals (CI) were calculated using 

bootstrapping (code provided). For multiclass classification (DRG task), we used top-1 and top-

2 accuracy. We used mean absolute error (MEA) for the regression tasks to indicate prediction 

fidelity with 95% confidence intervals estimated using bootstrapping. Python numpy and scikit-

learn were used. 
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Figure 1: Implementing the ETHOS Model with EMR Data. 

a) Extraction of raw patient data from the MIMIC-IV database, encompassing tables of 

admissions, patient demographics, medical procedures, among others. 

b) The tokenization process, utilizing data from 90% of patients for model training and the 

remaining 10% for testing, transforms complex medical records into structured PHT for efficient 

model processing. 

23 
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c) Training phase illustration, employing a transformer architecture optimized across 8 GPUs 

over a span of 36 hours. 

d) Demonstration of ETHOS's zero-shot inference capabilities, highlighting its proficiency in 

performing tasks such as predicting inpatient mortality and readmission rates, leveraging 

forecasted future PHTs. 
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Figure 2. Tokenization and Embedding Visualizations of MIMIC-IV Data. 

a) Overview of key insights derived from the tokenization process applied to MIMIC-IV data. 

b) Visualization of embedding vectors for quantile tokens (Qs), which categorize quantitative 

information across the dataset. Each quantitative measure (e.g., blood pressure) is encoded by 

a preceding category-specific token followed by a quantile token, delineating its position within a 

predefined value range. This method facilitates a structured, scalable representation of complex 

data types via a systematic token sequence. 

c) Visualization of embedding vectors for time-interval tokens, illustrating the temporal 

distribution and relationships within the PHT. 
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Figure 3: Receiver Operating Characteristic (ROC) Curves for Predictive Tasks via the 

ETHOS Model. 

Each graph delineates the model's efficacy in forecasting distinct clinical outcomes, specifically 

mortality and readmission rates. Accompanying each ROC curve are the case count (N), the 

outcome prevalence, and the 95% confidence interval for the AUC. Points marked with an 'X' 

denote specific thresholds utilized for classification decisions within the ETHOS model. 

26 
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Figure 4: ETHOS Model Performance on SOFA Estimation and DRG Classification. 

a) Estimation of the first-day Sequential Organ Failure Assessment (SOFA) score at ICU 

admission by ETHOS, which generates a sequence of three tokens: the admission type (orange 

token), a SOFA token (indicating the SOFA score estimation will follow), and a quantile token 

(q-token indicated by question mark) predicting probabilities of the SOFA score's quantile, as 

detailed at the bottom of the panel (a). The fixed position of the SOFA token ensures its 

consistent prediction immediately after ICU admission. The SOFA score is derived using 

quantile probabilities generated by ETHOS and average value of SOFA for ten quantiles (values 

of 1.0, 3.5 …). Since SOFA value 24 was not present in the dataset we predict values 0-23. 

b) Correlation plot between actual and predicted SOFA scores.  
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c) For Diagnostic Related Groups (DRG) classification. The model is trained to insert a DRG 

token after tokens typically used at discharge time, utilizing a placeholder “DRG_UNKNOWN” 

for if DRG is unknown in the training set. Predicted probabilities are used to compute the top-

{1,2,3,5} DRG classifications. 

d) Visualization of DRG classification accuracy, showcasing the model's predictive performance. 
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Figure 5: Stages of PHT Construction and Tokenization in ETHOS 

Figure 5. a) The process begins with assembling a chronological list of events from MIMIC-IV 

tables, Each entry on the list is time stamped with 64-bit real value only 6 significant digits show 

for clarity, indicating the patient's age at which the event occurred. b) Subsequently, list 

elements are transformed into tokens using ETHOS tokenization scheme. Based on the event's 

nature, one event can be translated into 1 up to 7 tokens. Each token derived from the same 

event shares its timestamp. c) The final step involves representing time gaps between events by 

inserting time-interval tokens. If the time difference between events is less than 5 minutes—the 

minimum value represented by the token for the shortest time interval—no token is added. After 

adding interval-tokens, timestamps are stripped from the timeline. Not pictured is insertion of 6 

static-information tokens at the beginning of timeline which is the last step in construction of 

PHT. Panels d-k showcase various examples of information encoding via tokens: (d) Depending 

on the ICD-10-CM code, 1 to 3 tokens are utilized for representation, with the first token 

corresponding to the code's first three characters, the fourth and fifth characters possibly 

represented by another token, and an optional third token for the remaining characters in the 

ICD code. (e) Medications, coded by ATC codes, are similarly encoded by 1 to 3 tokens based 

on the specificity of the code, with the first token representing the first three characters, the 

second for the next two, and the third for the remaining characters. (f) Blood pressure 

measurements are consistently encoded using three tokens: one to indicate the BP 

measurement and two quantile tokens for systolic and diastolic pressure values, respectively. 

(g) ICD-PCS codes may be represented by up to seven tokens, with each token denoting one 

character of the code. (h) Lab tests are depicted by a token that describes the type of test 

followed by a quantile token for the test's numerical value. Finally, (i) demographics are 

depicted which are part of static tokens, always positioned at the beginning of the PHT. 
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Figure 6: Example segments of an actual PHT   

For enhanced understanding, we utilize descriptive labels for token names, although within 
ETHOS, these are internally represented as integers. A short abbreviated section is provided 
here and more extensive examples are provided in supplementary materials.  

 

 

 

 

 

Patient Health Timeline (PHT) Notes 

ED_ADMISSION_START--------------------------- 
_2h-6h---------------------------------------------------- 
LAB_pH_units------------------------------------------ 
_Q4-------------------------------------------------------- 
LAB_Protein_mg/dL 
_Q4 
LAB_Absolute Monocyte Count_K/uL 
_Q6 
_6h-12h-------------------------------------------------- 
INPATIENT_ADMISSION_START---------------- 
TYPE_OBSERVATION------------------------------ 
INSURANCE_MEDICARE-------------------------- 
ICD_Other symptoms and signs involving------ 
cognitive functions and awareness 
ICD_4-5_82-------------------------------------------- 
ICD_Dorsalgia 
ICD_4-5_16 
ICD_Malaise and fatigue 
ICD_4-5_1 
ICD_Personal history of certain other diseases 
ICD_4-5_73 
ICD_Other hypothyroidism 
ICD_4-5_9 
ICD_Type 2 diabetes mellitus 
ICD_4-5_21 
ICD_Dorsalgia 
ICD_4-5_5 
ICD_Abnormalities of gait and mobility----------- 
ICD_4-5_2 
TRANSFER_MED------------------------------------- 
_6h-12h-------------------------------------------------- 
ATC_stomatological preparations---------------- 
ATC_4_A 
ATC_SUFFIX_D05 
ATC_diuretics------------------------------------------- 
ATC_4_A 
ATC_SUFFIX_A03 
ATC_agents acting on the renin-angiotensin system-- 
ATC_4_A 
ATC_SUFFIX_A03 
_6h-12h 
ED_ADMISSION_END-------------------------------------- 
_Q10------------------------------------------------------------- 
INPATIENT_ADMISSION_END--------------------------- 
_Q2-------------------------------------------------------------- 
DISCHARGED_UNKNOWN------------------------------ 
UNKNOWN_DRG-------------------------------------------- 
_=6mt------------------------------------------------------------ 
LAB_Epithelial Cells_#/hpf-------------------------------- 

Admission to Emergency Department 
Time interval that elapsed after admission to ED was recorded and next event 
Results Lab test of pH and the unit of this result is units. The same lab test may have different tokens due to units 
Quantile token referring to the result of lab test of pH 
The next tokens are plethora to tokens indicating various lab results 
 
 
 
Token indicating that another 6-12 hour period elapsed  
Token indication an admission to the hospital 
The type of the admission is observation - this token always follows admission token 
The patient’s insurance is MEDICARE - this token always follow  
The primary diagnosis at the beginning of the hospital stay is Altered mental status, unspecified (R4182), which is  
broken down to two tokens; R41 and 82. This token represent the first three characters 
This represents the 4th and 5th character of ICD code from the previous token.  
More  ICDs representing diagnoses follow. 
 
 
 
 
 
 
 
 
 
 
 
The last ICD in the group.  
 
Transfer to a different care unit - MED 
Time interval between 6h and 12h 
Token indicating medication, in this case ATC code: A01AD05 broken down in PHT into 3 tokens; A01, A, D05 
 
 
Another medication with ATC code broken into 3 subsequent tokens 
 
 
Another medication with ATC code broken into 3 subsequent tokens 
 
 
 
Discharge from Emergency Department 
Quantile quantifying the length of the stay in Emergency Department, always put at end of admissions, icu, ed 
Discharge from the hospital 
Quantile quantifying the length of the stay  in the hospital based on all stays in the data 
The reason for discharge. In this case the reason is unknown. 
After all admissions, a DRG-class token is inserted. Here it is unknown. 
Time interval of 6 months, which indicates that no information is available for approximately 6 months 
After approximately 6 month patient underwent lab test which is indicated by this token 
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Data availability 

The MIMIC-IV dataset is publicly available at https://physionet.org/content/mimiciv/2.2/. The 
code, ETHOS model weights used for all inferences, results of inferences, scripts to generate 
numerical results for all aspects of this study for the MIMIC-IV will be made available upon 
reasonable request after peer review and publication. 
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