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Abstract  

DNA methylation (DNAm) is a developmentally dynamic epigenetic process, yet we still 

know little about how epigenetic effects on health outcomes vary over time; whether DNAm 

alterations during certain periods of development are more informative than others; and 

whether epigenetic timing effects differ by outcome. To address these questions, we 

applied longitudinal meta-regression to published meta-analyses from the PACE consortium 

that examine DNAm at multiple time points (prospectively at birth and cross-sectionally in 

childhood) in relation to the same child outcome (ADHD, general psychopathology, sleep, 

BMI, asthma). Our findings reveal three new insights: (i) across outcomes, effects sizes are 

larger when DNAm is measured in childhood compared to at birth; (ii) higher effect sizes do 

not necessarily translate into more significant findings, as associations also become noisier 

in childhood for most outcomes (i.e. showing larger standard errors); and (iii) DNAm signals 

are highly time-specific while showing pleiotropy across health outcomes.  
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Introduction 

DNA methylation (DNAm) is an important epigenetic regulator of development and health. 

DNAm is influenced by both genetic1,2 and environmental factors, beginning in utero (e.g. 

maternal smoking,3 stressful life events4, air pollution,5 or physical activity6). Alterations in 

DNAm have also been linked to a wide range of health outcomes across childhood, including 

asthma7, attention-deficit/hyperactivity disorder (ADHD)8, and body mass index (BMI)9. 

Together, these properties make DNAm an attractive biological process in the search for 

both biomarkers and mediators of disease risk. 

 DNAm is highly dynamic during development – a property that makes it particularly 

interesting, but also challenging to study. Mulder et al.10 estimated that over half of DNAm 

sites show changes in methylation from birth to 18 years of age, often following a non-linear 

trajectory. Furthermore, in around a third of DNAm sites, the degree of change varies 

between individuals, perhaps reflecting exposure to different postnatal environments, 

genetic variation or stochastic processes.11 Yet, most observational studies linking DNAm to 

health phenotypes measure DNAm only once.12 Thus, it is largely unknown (i) whether the 

relationship between DNAm and health outcomes varies across development (ii) at which 

developmental periods DNAm profiles could be most informative for a given health 

outcome, and (iii) to what extent DNAm-health associations at one time point can be 

generalized to other time points. 

Population-based cohorts have emerged as a powerful tool for the study of DNAm-

health associations, due to their relatively large sample sizes and longitudinal follow-up. In 

most pediatric population studies, DNAm is either measured in cord blood samples at birth 

and associated with a child outcome at a later time point (i.e. prospective epigenome-wide 

association study [EWAS]) or DNAm is measured from a blood sample at the same time 

point as the child outcome (i.e. cross-sectional EWAS). Theoretical arguments exist for 

either design. On the one hand, DNAm measured in cord blood at birth coincides with a 

developmentally sensitive period and may reflect causal effects of genetic and in utero 

environmental factors that can influence risk of later outcomes.13 Furthermore, reverse 

causation scenarios are less likely, given that outcomes in childhood are unlikely to affect 

methylation profiles at birth. However, cross-sectional EWASs during childhood may result 

in a stronger association signal, due to the temporal proximity between predictor and 

outcome, a larger accumulation of environmental effects (prenatal and postnatal), or the 

potential for DNAm patterns in childhood to reflect both a cause and consequence of poor 

health (reverse causality). Cord and peripheral blood also represent different tissues, with 

different cell compositions (e.g., nucleated red blood cells being present in cord, but not 

peripheral blood), which may contribute to differences in associations of DNAm with health 

outcomes.14 However,  it is challenging to fully separate the influence of tissue versus 

timing, as for example cord blood is only available at birth, and early cell-type changes are in 

part developmentally regulated.14,15 
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Recently, the Pregnancy And Childhood Epigenetics (PACE) Consortium16 published 

five multi-cohort EWAS meta-analyses that investigated DNAm using both designs in 

relation to the same child outcome, spanning mental and physical health domains, namely: 

ADHD,8 general psychopathology (measured as a latent factor; GPF),17 sleep duration,18 

body mass index (BMI)9 and asthma7. Results from these previous studies can be 

summarized as follows (Table 1): for ADHD, there were more hits for DNAm at birth rather 

than in childhood (i.e prospective EWAS showed more hits than cross-sectional EWAS); 

whereas the opposite was true for BMI and asthma (i.e. prospective EWAS showed fewer 

hits than cross-sectional EWAS). For GPF and sleep, results were mostly null at either time 

point. Together, these findings point to the potential existence of epigenetic ‘timing effects’ 

on child health. 

Despite these intriguing findings, the studies’ main goal was to maximize 

identification of health-relevant DNAm sites at each time point, rather than systematically 

quantify temporal changes of DNAm-health associations. Addressing this aim would require 

specific analyses that were not originally performed, including quantitatively comparing 

effect sizes between time points, accounting for sample size imbalances that affect 

statistical power per time point, and examining potential statistical and biological factors 

contributing to temporal differences in DNAm-health associations. Furthermore, no 

comparison has been performed across studies, to establish how temporal patterns may 

vary for different child health outcomes, and whether methylation signals for one outcome 

correlate with that for other outcomes (i.e., indicating pleiotropy/shared epigenetic effects).  

Here, we re-analyzed the five PACE meta-analyses on ADHD, GPF, sleep, BMI and 

asthma (Npooled=2178-4641, 26 cohorts) to explore timing effects on DNAm-health 

associations during development. For each outcome, we integrated results from the 

prospective EWAS (cord blood DNAm at birth) and the cross-sectional EWAS (whole blood 

DNAm in childhood) into a longitudinal meta-regression model. This model enabled us to 

systematically quantify changes in effect sizes and statistical significance between time 

points, and also explore a range of factors that may contribute to the observed temporal 

trends. We then performed correlation analyses to estimate the consistency of DNAm 

associations between time points (i.e. in order to assess generalizability of epigenetic signals 

from one time point to another) and across child health outcomes (i.e. to explore presence 

of shared DNAm associations). 
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Results 

How do EWAS effect sizes change from birth to childhood?  

We applied multilevel meta-regression models in which regression coefficients (β) from the 

prospective and cross-sectional EWAS were pooled across cohorts and regressed on a 

variable indicating whether the estimate pertains to birth or childhood DNAm. This model 

therefore quantified the DNAm associations at birth, in childhood, as well as the differences 

in associations between time points. β here represents the difference in child health 

outcomes in standard deviations (SD) between no to full methylation in the case of 

continuous variables or as odds ratio for the categorical outcome asthma. We focused on 

effect sizes as defined by the absolute regression coefficient at birth |βbirth| or in childhood 

|βchildhood|. Furthermore, we characterized global trends defined by mean statistics, 

averaged across all autosomal DNAm sites tested. Tables S1 and S2 show an overview of 

included cohorts and the overlap between time points and outcomes. 

For DNAm at birth, mean effect sizes across DNAm sites ranged from 0.77 (BMI) to 

1.23 (GPF) for continuous measures (Table 2; Figures 1,2,S1,S2). Averaged across 

phenotypes, 10% higher methylation was associated with a 0.10SD outcome difference. For 

asthma, mean log(odds) were 2.70, which corresponds to a 10% methylation difference 

being associated with 1.30 lower/higher odds of receiving an asthma diagnosis. 

Compared to DNAm at birth, mean effect sizes for DNAm in childhood were 

consistently higher across all tested outcomes (Table 2,3; Figure 1,2,S1,S2), ranging from 

1.10 (BMI) to 1.59 (Sleep) for continuous outcomes and an log(odds) of 2.94 (odds ratio of 

1.34) for asthma. When quantifying this difference in effect sizes between birth and 

childhood, the smallest mean difference was observed for BMI (|⎯βchildhood|=1.10 vs 

|⎯βbirth|=0.77) and the largest difference for sleep (|⎯βchildhood|=1.59 vs |⎯βbirth|=0.97). 

Aggregating across continuous outcomes, mean effect sizes were 40% higher in childhood, 

with an outcome difference of 0.14SD per 10% methylation. For asthma, the odds ratio 

increased from 1.30 to 1.34. Table S3 shows effect size comparisons across percentiles. 

While these effect size figures provide a global view of genome-wide association 

change, they do not take into account statistical precision (i.e., standard error (SE)). Another 

way to quantify DNAm differences at birth versus in childhood is by counting the number of 

sites at which DNAm effect sizes increase or decrease over time based on a chosen p-value 

threshold of change. Among probes that showed at least a nominally significant difference 

between time points, there were 1.5-3x more DNAm sites with a larger as opposed to 

smaller effect size in childhood across health outcomes. (Table 2, Figures 2,S1-S4). To test 

the robustness of this approach, we also examined the ratio of DNAm sites that show an 

effect size increase vs decreases over time across different change p-value thresholds from 

no thresholding to p<0.0001 (Figure S4). We observed that the ratio is always positive (i.e. 

more DNAm showing an increase in effect size over time) – a trend that becomes stronger 

as the threshold becomes more stringent (lower p-values). 
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For the DNAm sites that showed at least nominally significant change over time, we 

also examined the direction of association with the health outcome, and whether this 

direction was consistent or not across time points. The most common pattern was a null or 

small effect at birth, followed by a positive association in childhood (Table S3). This applied 

to all outcomes, except BMI. Here the most frequent pattern was a switch from a positive 

association at birth to a negative association in childhood. 

 Three DNAm sites showed a genome-wide significant change in association. 

Cg11945228 in BRD2 had no association with GPF at birth (βbirth=5.28, SE=3.76, p=0.16), but 

became genome-wide significantly associated in childhood (βchildhood=-37.00, SE=6.91, 

p=8.58*10-8), a significant change (p=7.68*10-8). Similarly, cg10644885 in ACP5 had a 

significant change (p=2.25*10-8) from no association with asthma at birth (βbirth=-0.56, 

SE=1.19, p=0.64) to genome-wide significance in childhood (βchildhood=-15.00, SE=2.29, 

p=5.57*10-11). In addition, cg22708087 in FRY changed from a positive association with 

asthma at birth (βbirth=7.47, SE=1.80, p=3.42*10-5) to a negative association in childhood 

(βchildhood=-12.64, SE=3.32, p=1.44*10-4). This change was genome-wide significant 

(p=1.06*10-7). For all three genome-wide significantly changing DNAm sites, absolute effect 

sizes were larger in childhood. 

 

Do changes in effect size correspond with changes in the ability to identify significant 

associations?  

While mean effect sizes were robustly larger for DNAm in childhood compared to DNAm at 

birth for all outcomes, this did not necessarily translate into more significant associations, as 

quantified by higher Z test-statistics (equal to lower p-values) (see also Tables 2,3 and 

Figures 1,2,S1,S2). 

ADHD. DNAm at birth showed the strongest association signal with ADHD, as 

evidenced by a mean Z-value of 1.02 and the identification of the largest number of 

significant associations at all tested thresholds (Bonferroni, FDR, nominal). Despite an 

increase in effect sizes from birth to childhood, the mean Z-value dropped (1.02 at birth vs 

0.78 in childhood). No CpG site was identified as genome-wide significant in the cross-

sectional EWAS and the number of nominally significant sites was 3-fold lower (ncpg-birth 

=57,339 vs ncpg-childhood=19,034). 

GPF. The mean Z-value remained constant at 0.78 for both time points, and the 

number of nominally significant sites remained similar. No DNAm site reached genome-wide 

significance at birth, and one DNAm site reached genome-wide significance when assessed 

in childhood. 

Sleep. Mean Z-values for sleep did not differ between time-points and the number of 

nominally significant sites remained similar, with no genome-wide significant hits at either 

time point.  

BMI. For BMI the higher DNAm effect sizes in childhood corresponded with a higher 

statistical significance. This is also reflected by the doubling of nominally significant 
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associations from birth to childhood (15,978 to 30,615), as well as by the presence of 

genome-wide hits in childhood, but not at birth. 

Asthma. The mean Z-values and number of nominally significant sites were 

somewhat larger at birth than childhood. While this reflects the genome-wide trend, it is 

important to emphasize that the number of probes with genome-wide significance was 

much larger for DNAm in childhood (66 hits in the cross-sectional EWAS vs 0 hits in the 

prospective EWAS). 

What explains these outcome-specific patterns?  

We searched potential explanations for why statistical significance did not 

necessarily increase over time, or even decreased for specific outcomes, despite effect size 

increases. Z- and therefore p-values represent the ratio between effect size and statistical 

uncertainty. We found that standard errors (SE) increased from birth to childhood either to 

a disproportionately larger (ADHD, asthma) or similar (GPF, sleep) extent as the effect size 

increased (Tables 2,3), i.e. only for BMI did the increase in effect size outpace the increase in 

SE leading on average to more statistical significance. 

Next, we investigated potential sources for the SE increase. The first was sample size, 

which was unequal between EWAS time points for some outcomes. For GPF, total sample 

size was very similar, and for asthma the number of cases was also equal between time 

points. However, especially for sleep and BMI, sample sizes were much lower for DNAm 

measured in childhood, which increases SE. In sensitivity analyses we removed cohorts 

(Table S1) to achieve equal sample sizes between time points. Interestingly, patterns 

remained largely the same, i.e., with only BMI showing corresponding increases in both 

effect sizes and statistical significance over time (Table S4). 

Second, we examined between-study heterogeneity, which tends to increase SE. We 

fit random slope models, allowing for different amounts of heterogeneity at different DNAm 

assessment periods. Indeed, we generally observed an increase in between-study 

heterogeneity for all outcomes over time, except for GPF (Table S5), suggesting that it may 

partly influence differences in EWAS signal between time points. We examined this 

possibility by re-computing meta-regression analyses using a single cohort. We chose 

ALSPAC, as it was the largest cohort contributing to all analyses with similar sample sizes at 

birth and childhood. Overall, the pattern of results in ALSPAC corresponded to the meta-

analytical results for all outcomes, suggesting that observed temporal differences are 

unlikely to be solely explained by EWAS cohort composition in the meta-analyses. 

 

How do epigenetic signals correlate across time points and child outcomes? 

To test the consistency of epigenetic associations over time and across outcomes, we 

computed spearman correlations (rs) between the regression coefficients of all time points 

and outcomes (Figure 3). For ADHD, estimates at birth correlated modestly with those in 

childhood (rs=0.31). For all other outcomes, estimates between time points were 

uncorrelated (rs<0.08). The coefficients in the ADHD analysis correlated most with the 

coefficients for other outcomes. For instance, the EWAS signal at birth for ADHD was 
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positively correlated with the signal at birth for GPF (rs=0.35) and asthma (rs=0.21), but 

negatively correlated with the EWAS signal in childhood of BMI (rs=-0.18) and asthma (rs=-

0.16). 

 Overlap between cohorts contributing to analyses at the same time point tended to 

be larger than between time points (Table S2). This may have led to an underestimation of 

correlations between time points. To test this, we re-ran correlation analyses within ALSPAC 

(as the largest cohort with repeated DNAm measures), and found that between time-point 

correlations remained low for GPF, sleep and BMI (rs<0.12) and modest for ADHD (rs=0.25) 

(Figure S5). Asthma could not be tested, due to unavailable analyses in childhood. 

 

Which biological pathways are involved in health-related DNAm patterns that change 

from birth to childhood? 

 We performed gene ontology enrichment analyses to probe the potential biological 

relevance of temporal changes in DNAm-health associations and to examine the possibility 

that we may be mainly picking up tissue differences (as opposed to developmental/ 

temporal differences) between birth and childhood. We selected sites that (i) were 

nominally associated with an outcome at either time point and (ii) showed at least 

nominally significant change in associations from birth to childhood. Notably for ADHD, GPF 

and sleep, neural features stand out among the top 10 pathways (e.g. cerebral cortex and 

neuron development, enrichment for synapses and dendrites, Table 4). While neural 

pathways also rank highly for BMI and asthma, other more general cell processes such as 

morphogenesis are prominently represented. However, no pathway was significant after 

adjustment for multiple testing of all 22,560 GO terms. See Tables S6-S11 for all pathways 

with nominal significance. 
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Discussion 

We performed the first systematic comparison of DNAm-health associations at two 

different time points during development (birth and childhood) on child outcomes spanning 

mental and physical domains, by jointly reanalyzing published multi-cohort EWAS meta-

analyses from the PACE Consortium. Our findings lend three important new insights: 1. 

Effect sizes tend to be larger when DNAm is measured in childhood compared to at birth; 2. 

Even though EWAS effect sizes consistently increase over time for all outcomes examined, 

this did not necessarily lead to more significant findings; 3. DNAm signals are largely distinct 

between time points, but they correlate across outcomes, indicating shared associations 

with child health.  

 

Insight 1. EWAS effect sizes increase over time for all child health outcomes 

Our first key finding is that across all five outcomes, mean EWAS effect sizes increased over 

time; i.e., they were stronger in the cross-sectional childhood analyses as compared to the 

prospective birth analyses. This may be due to a number of reasons: (i) the temporal 

proximity of the cross-sectional EWASs may better reflect immediate causal effects of 

DNAm on an outcome; (ii) in addition to genetic and prenatal environmental factors 

captured by DNAm at birth, DNAm in childhood may also reflect the accumulation of 

relevant postnatal environmental exposures and genetic effects11; (iii) peripheral blood (in 

childhood) may be a more informative tissue than cord blood (at birth), e.g. due to tissue 

differences in cell-type composition or immune profile – although we do not find evidence 

of enrichment for blood tissue-specific pathways in health-relevant CpGs that changed over 

time; and (iv) there may be unmeasured confounding (e.g., lifestyle, allergens) and reverse 

causation in childhood, which is more likely to affect cross-sectional analyses than 

prospective analyses.19 Indeed, Mendelian randomization studies suggest that for at least 

some sites, DNAm levels are a consequence, rather than a cause, of BMI20,21 or asthma22. 

While we can only speculate as to the most likely reason for the observed effect size 

increase, we can conclude that it is consistent for different outcomes, and to a comparable 

degree, hinting at potentially common driving factors.  

 

Insight 2. Higher effect sizes ≠ more significant findings 

While EWAS effect sizes robustly increased, this did not necessarily result in more significant 

findings, as the signal also became ‘noisier’ with larger SE in childhood analyses. For BMI, 

the increase in effect sizes did correspond with an increase in statistical significance; 

however, for the other four outcomes significance on average either remained the same or 

actually decreased from birth to childhood, as evidenced most clearly for ADHD. Model 

specification is unlikely to explain differences in error, as outcome definitions and covariates 

were largely the same between the prospective and cross-sectional EWAS analyses; with the 
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main differences relating to the predictor; i.e. when DNAm was assessed and cell-type 

proportion estimates (using different age- and tissue-appropriate reference panels).   

Three other plausible ‘culprits’ for the noisier signal include sample size differences, 

between-study heterogeneity, and increasing DNAm variance with age. First, an imbalance 

in sample sizes (and associated power) between the birth and childhood EWASs could have 

led to differences in mean statistical significance. However, results remained largely 

consistent when re-running analyses restricting sample sizes to be equal between time 

points, ruling out this explanation. Second, we found that for all outcomes except GPF, 

between-study heterogeneity (i.e. systematic variability in effect sizes across the 

contributing cohorts) increased when DNAm was measured in childhood, potentially leading 

to more statistical uncertainty. Contributing factors may include (i) differences in DNAm 

assessment age, which varied substantially less in EWAS analyses at birth (cohort 

differences in the order of days) compared to EWAS in childhood (with age ranging from 5 

to 17 years for asthma); and (ii) environmental differences between the included cohorts, 

which may cumulatively affect DNAm patterns (e.g., dietary factors, pollutant exposure, 

etc.), leading to more context-dependent associations in childhood. Importantly, however, 

between-study heterogeneity does not seem to fully account for increasing error in EWAS 

estimates over time. Indeed, when we re-ran meta-regression analyses only in ALSPAC, we 

found largely the same pattern of findings as the overall meta-analyses, meaning that 

sources of variability related to the use of multiple cohorts are unlikely to fully explain the 

observed temporal differences in EWAS signal.  

A third explanation relates to DNAm variance. Variance for most DNAm sites 

increases with age (on average increasing 1.26 fold per year from birth), with only a minority 

of DNAm sites showing significant decreases in variance.23 It is likely that this increased 

variance reflects in part variation relevant to the studied health outcomes, e.g. reflecting 

additional important postnatal exposures, which results in increased effect sizes. At the 

same time, the increased variance likely also includes a substantial amount of variance 

unrelated to the studied health-related outcomes, increasing the standard error (i.e. adding 

noise) of the DNAm estimates and lowering power. 

In summary, our findings caution against the assumption that larger effect sizes in 

EWAS lead to the identification of more hits. Rather, they suggest that statistical power 

varies depending on factors such as the degree of uncertainty and study heterogeneity, the 

timing of DNAm assessment, and the potentially causal nature and direction of associations 

between DNAm and a given outcome. 

 

Insight 3. Epigenetic signals associated with child outcomes are time-specific and 

pleiotropic  

Our analyses correlating EWAS estimates between time points reveal largely distinct 

association signals at birth versus in childhood: generally, for a given outcome, estimates at 

birth did not correlate with those in childhood – or only modestly in the case of ADHD. 
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Based on the available data, it is not possible to establish whether this specificity in DNAm 

signals extends more broadly to other life stages, or whether DNAm associations become 

more stable and comparable after some developmental point.10,23 These temporal 

differences raise the question of which DNAm assessment time point may be most relevant 

for health. For biomarker purposes, our results suggest that DNAm estimates from cross-

sectional childhood analyses may explain higher phenotypic variance, but at the cost of 

higher uncertainty of estimates. This may lead to noisier methylation profile scores (MPS; 

akin to polygenic scores or PGS), which are also more likely to reflect consequences of a 

phenotype, and thus less useful for prediction of later outcomes.24 Our results caution that 

MPS developed from one DNAm time point may generalize poorly to different time-points. 

As such, repeated assessments of DNAm and the combination of multiple age-specific 

scores may be needed to improve MPS performance, although specific guidelines are 

difficult to formulate based on the present findings. For instance, MRSs based on allergy-

related EWAS performed similarly well when tested at both age 6 and 10 years,25 but 

differences between birth and childhood methylation profiles are likely more impactful. 

Surprisingly, the consistency of estimates across some child outcomes was larger 

than between time points for the same outcome. Our correlation analyses suggest that 

DNAm associations with ADHD, GPF and asthma are to some degree shared. This is in line 

with previous studies pointing to phenotypic and genetic correlations between these 

outcomes26–29, and may point towards an early shared origin of these conditions reflected in 

the methylome or network effects among the phenotypes. Enrichment analyses suggest 

that neural pathways may be involved in all tested health outcomes (particularly mental 

phenotypes) and may partly explain the observed correlation. On the other hand, the 

observed negative correlation between (birth/childhood) ADHD and (childhood) BMI 

estimates is more perplexing. Children with ADHD are more likely to be overweight and vice 

versa,30,31 and BMI and ADHD also show positive genetic correlations.27,32 This may indicate 

that epigenetic risk mechanisms for ADHD are associated with lower BMI in childhood, but 

are overshadowed by (non-methylation related) mechanisms causing positive phenotypic 

correlations.  

 

Study limitations 

Our meta-regression approach enabled us to quantify longitudinal trends (changes in EWAS 

effect sizes, standard error and statistical significance) in the relationship between DNAm 

assessed at multiple time points (birth, childhood) and various child health outcomes, as 

well as to estimate how EWAS signals correlate over time and across outcomes. However, 

summary statistics-based approaches also have several limitations. While we accounted for 

repeated measures from the same cohorts, the degree of sample overlap across time points 

and outcomes could not be explicitly modeled based on summary data.33 That said, 

sensitivity analyses in a single cohort with largely overlapping samples did not alter 

conclusions. In addition, modeling effect size changes and between-study heterogeneity 

more granularly to incorporate information on specific age of DNAm assessment (i.e. 
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[gestational] age at birth or childhood) would also require individual-level analyses. Another 

individual characteristic we cannot model with the given data is sex. It is possible that 

associations may differ depending on sex and affect childhood DNAm associations 

disproportionately, especially after puberty. Future studies with individual-level data should 

also study the impact of increasing DNAm variance on association estimates. Lastly, we 

could not perform formal epigenetic correlation tests on individual-level data, and the 

correlation analyses of regression coefficients should therefore be interpreted as 

hypothesis-generating for future research. 

With current study designs, it is also impossible to disentangle timing differences 

from tissue differences between cord and peripheral blood. Each EWAS adjusted for 

estimated cell proportions, but such corrections only adjust for cell composition differences 

within time points and tissues, but not across tissues26. Morphogenesis pathways showed 

some evidence of enrichment in case of BMI and asthma, leaving the possibility open for an 

involvement of tissue differentiation. Future studies are needed that examine different 

tissues at birth (to determine the specificity of the findings to cord blood as opposed to the 

neonatal period in general) as well as DNAm at multiple time points in childhood (to test if 

effect sizes change non-linearly across developmental periods).10 While our analyses 

provided important new insights into genome-wide trends, they were mostly underpowered 

to identify specific DNAm sites showing longitudinal changes in associations at a genome-

wide level of significance; as such, larger studies are needed to reliably characterize 

epigenetic changes in associations for individual sites. Finally, expanding analyses to other 

outcomes should be pursued in future research.  

 

Conclusions 

Overall, our results suggest developmentally-specific associations between DNAm and child 

health outcomes, when assessing DNAm at birth vs childhood. This implies that EWAS 

results from one time point are unlikely to generalize to another (at least based on birth vs 

childhood comparisons): a consequential finding, given that most research to date examines 

DNAm at a single assessment time-point. Longitudinal studies with repeated epigenetic 

assessments are direly needed to shed light on the dynamic relationship between DNAm, 

development and health, as well as to enable the creation of more reliable and 

generalizable epigenetic biomarkers. More broadly, this study underscores the importance 

of considering the time-varying nature of DNAm in epigenetic research and supports the 

potential existence of epigenetic ‘timing effects’ on child health. 
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Methods 

Data 

We requested cohort-level epigenome-wide summary statistics from five meta-analytic 

studies previously performed by the PACE Consortium. We obtained permission for re-

analysis from the meta-analysis leads and representatives of all originally participating 

cohorts, except for the GOYA study, which was excluded here from further analysis. The 

Erasmus MC Medical Ethics Review Committee and respective local ethics committees 

previously approved the included studies.7–9,17,18 

 EWAS summary statistics included the association between DNAm (predictor) and a 

phenotype (outcome). DNAm was either measured in cord blood at birth or in peripheral 

blood in childhood with either Illumina 450K or EPIC arrays (although only 450K DNAm sites 

remained after QC, see below). Predictors were the DNAm betas ranging from 0 to 1, 

corresponding to 0 to 100 percent methylation, with analyses for GPF and Sleep having 

trimmed DNAm outliers outside the range of [25th percentile - (3*interquartile range (IQR) 

to 75th percentile + 3*IQR). ADHD, GPF and sleep were assessed via parental questionnaires 

and BMI was computed based on measured height and weight.  ADHD, GPF and sleep were 

assessed via parental questionnaires and BMI was computed based on measured height and 

weight. These were modelled as continuous measures that were z-score standardized within 

each cohort.8,9,17,18 Asthma was classified based on doctor’s diagnosis and symptoms in past 

years, and analyzed in a dichotomous fashion.7 All EWAS were adjusted for sex, maternal 

age, maternal education, maternal smoking, cell proportions and possible batch effects, in 

addition to other variables, which differed depending on outcome and time-point. A variety 

of analysis models were employed, such as OLS linear models (ADHD, sleep), robust linear 

models (GPF, BMI) and logistic regression (asthma). For ADHD, some cohorts applied linear 

mixed models, when repeated measures of ADHD were available (Table 1). 

We applied the following additional quality control: 1. Kept only autosomal DNAm 

sites, 2. removed DNAm sites with information in less than three cohorts or 1000 

participants per time-point, 3. kept only CpG sites present both at birth and in childhood, 4. 

removed cross-reactive probes using the maxprobe 0.0.2 package 

(https://github.com/markgene/maxprobes). Finally, to examine whether the differences in 

statistical significance were influenced by sample size differences, we also performed 

sensitivity analyses with similar sample sizes at both time points. We removed (combination 

of) cohorts which resulted in the most similar sample sizes between cohorts (Table S1).  

 

Statistical Analysis 

Each summary statistic contained information on the regression coefficient (βjk) and 

standard error. β represents the expected difference in the outcome in SD between no and 

full methylation at the tested CpG site at DNAm assessment time-point j (birth or childhood) 

estimated in cohort k. We applied multi-level meta-regressions to pool effect sizes across 

cohorts and to model changes in effect sizes depending on DNAm assessment time-point. 
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Repeated measures from cohorts that contributed association estimates for both DNAm at 

birth and in childhood were taken into account with a random intercept. The main model 

therefore took the form of: 

 

βjk=βbirth+βΔchildhood+uk+rk 

 

βbirth is the intercept and represents the pooled variance-weighted associations of 

methylation at a CpG site on an outcome at birth or childhood, respectively. 

βΔchildhood refers to the change in association from DNAm at birth to childhood.  

uk is the study random effect and refers to deviation of the mean associations within cohort 

k from overall mean associations. 

rk denotes residual error 

 

We also ran a statistically identical model with reverse time direction to extract DNAm 

effects at childhood. We applied these meta-regression models to each DNAm site 

separately using metafor 4.2.034 in R 4.2.235. After estimating the associations and their 

change for each CpG site, we aggregated statistics across the genome to characterize global 

trends. Specifically, we examined across all CpG sites the mean absolute effect size at birth 

(|⎯βbirth|), mean absolute effect size in childhood (|⎯βchildhood|), and the mean effect size 

difference between birth and childhood (|Δ⎯βΔchildhood|). In addition, we examined trends of 

statistical significance by taking the mean z test statistic of βbirth (|⎯zbirth|) and βchildhood 

(|⎯zchildhood|), representing the evidence of association for DNAm at birth and childhood, 

respectively. Furthermore, we also characterized the change in mean statistical significance 

from birth to childhood methylation (|Δ⎯z|). 

We also examined whether between-study heterogeneity changed between birth 

and childhood estimates by adding a random slope of βΔchildhood on the cohort level. We 

extracted τ, which indicates to which degree DNAm effects vary due to between-study 

heterogeneity within 1SD. In other words, assuming no sampling error and normal 

distribution, 67% of estimates are expected to be within β+-τ due to study differences. 

Reported correlations are spearman correlations. GO term enrichment for DNAm sites with 

nominally significant change and nominally significant association for at least one time point 

was tested using missMethyl 1.36.0.36,37 
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Data-availability 

Original analysis code and example data can be found at https://github.com/aneumann-

science/epigenetic_timing_effects. Full meta-analysis summary statistics can be downloaded at 

https://doi.org/10.5281/zenodo.10720466 (Will be made public after acceptance). 
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Figure legends 

Figure 1. Mean effect sizes and statistical significance for DNAm at birth and in childhood.  

Mean effect sizes (left column) and mean statistical significance (right column) across all 

tested autosomal DNAm sites per outcome (color) and time point. Upper row displays 

results from analyses utilizing maximum available sample sizes. Lower row displays results 

from analyses with cohorts removed to achieve equal sample sizes at both time points. 

Effect size is given as absolute regression coefficient (|⎯β|), representing the difference in 

child health outcomes in SD between full or no methylation in the case of continuous 

outcomes (ADHD, general psychopathology, sleep duration and BMI), or log(odds ratio) for 
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categorical outcomes (asthma diagnosis). Statistical significance is given as mean absolute Z-

values.  

 

Figure 2. QQ-plots. Distribution of observed p-values (y-axis) vs expected (x-axis). Diagonal 

represents expected distribution of p-values by chance. Upwards deviations indicate higher 

presence of lower p-values than expected assuming a null effect. Distributions are given for 

DNAm effects at birth (left), in childhood (middle) and for change in effect between birth 

and childhood (right) per outcome (color). Grey are displays the 95% confidence interval of 

the null distribution. 

 

Figure 3. Correlations between DNAm effects at birth and childhood and across outcomes. 

This correlation matrix displays spearman correlations between regression coefficients for 

DNAm at birth and childhood and across outcomes. Intensity of red represents higher 

positive correlations and blue lower negative correlations. 

 

Figure S1. Distribution of effect sizes and statistical significance for DNAm at birth and in 

childhood.  Mean effect sizes (left column) and mean statistical significance (right column) 

across all tested autosomal DNAm sites per outcome (y-axis) and time point. Upper row 

displays results from analyses utilizing maximum available sample sizes. Lower row displays 

results from analyses with cohorts removed to achieve equal sample sizes at both time 

points. Effect size is given as absolute regression coefficient (|⎯β|), representing the 

difference in child health outcomes in SD between full or no methylation in the case of 

continuous outcomes (ADHD, general psychopathology, sleep duration and BMI), or 

log(odds ratio) for categorical outcomes (asthma diagnosis). Effect sizes are displayed on 

log-scale but y-axis units are in original units. Statistical significance is given as mean 

absolute Z-values and again displayed on a log-scale. 

 

Figure S2. Manhattan plot of DNAm associations at birth or in childhood. Manhattan plot 

displaying the -log10 p-value (y-axis) for DNAm associations at birth (bottom plots) or in 

childhood (upper plots) per site (x-axis) per outcome. Red line indicates genome-wide 

significance (Bonferroni: 1/number of tested probes), yellow line represents suggestive 

threshold (1*10-5). Bottom ideogram displays cytobands.  

 

Figure S3. Manhattan plot of association change. Manhattan plot displaying the -log10  p-

value (y-axis) for change in DNAm association from birth to childhood per DNAm site (x-axis) 

per outcome. Red line indicates genome-wide significance (Bonferroni: 1/number of tested 

probes), yellow line represents suggestive threshold (1*10-5). Bottom ideogram displays 

cytobands.  

 

Figure S4. Effect size change ratio across different p-value thresholds. Number of DNAm 

sites with increasing effect size divided by number of DNAm sites with decreasing effect size 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.29.24303506doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.29.24303506
http://creativecommons.org/licenses/by/4.0/


20 

 

from birth to childhood (y-axis). Y-axis values higher than 1 indicate more DNAm sites with 

increasing effect size vs decreasing. DNAm is categorized as changing according to different 

p-value thresholds of change (-log10 p-values; x-axis). No thresholding based on statistical 

significance of change is applied on the left, but becomes increasingly stringent towards the 

right.  

 

Figure S5: Correlations between DNAm effects at birth and childhood and across 

outcomes in ASLPAC. This correlation matrix displays spearman correlations between 

regression coefficients for DNAm at birth and childhood and across outcomes. Intensity of 

red represents higher positive correlations and blue lower negative correlations. Estimates 

are based on ALSPAC cohort only. 
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Table 1 Published epigenome-wide association studies of child developmental outcomes from PACE, jointly re-analyzed in present study 

         Birth EWAS Childhood EWAS 

Study Outcome Age  Instrument Methylation Model Covariates Meta-
analysis 

Sig. 
Threshold 

n ncpg  n ncpg  

Neumann 
et al. (2020) 

ADHD 5-15 Paternal 
questionnaire 

Beta LMM, 
LM 

sex, gest. age, age*, mat. age, mat 
edu., mat. smoking, cell prop., batch 

HE-RE Bonf. 2477 9 2374 0 

Rijlaarsdam 
et al. (2022) 

GPF 6-12 Paternal 
questionnaire 

Beta 
(Trimmed) 

RLM sex, gest. age, age, mat. age, mat. 
edu., mat. smoking, cell prop., 
ancestry, batch 

FE Bonf. 2178 0 2190 1 

Sammallahti 
et al. (2022) 

Sleep 4-13 Paternal 
questionnaire 

Beta 
(Trimmed) 

LM sex, age, mat. age, mat. edu., mat. 
smoking, cell prop., ancestry, batch 

FE FDR �3658 0 2539 0 

Vehmeijer 
et al. (2020) 

BMI 2-10 Measured Beta RLM sex#, gest age, age#, mat. age, mat 
edu., mat. smoking, mat. BMI, 
parity, birth weight*, breastfeeding*, 
cell prop., ancestry, batch 

FE Bonf. 
(FDR) 

4641 1 
(1) 

3406 1 
(10) 

Reese 
et al. (2019) 

Asthma 5-17 Diagnosis Beta Logistic sex, mat. age, mat. edu., mat. 
smoking, cell prop., batch 

FE FDR 3572 9 2834 179 

* Covariate only used in school-age analyses 

# Covariates considered in creation of BMI standard deviation scores 

ADHD Attention Deficit Hyperactivity Disorder 
GPF General Psychopathology Factor 
BMI Body Mass Index 
Age Age at outcome 
LMM Linear Mixed Model 
LM Linear Model (OLS) 
RLM Robust Linear Model 
Logistic Logistic regression model 
mat. Maternal 
edu. Education 
prop. proportion 
HE-RE Han & Eskin Random Effects Model 
FE Fixed Effects Model 
ncpg Number of CpG sites genome-wide significant 
n Sample size  
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Table 2 Association between DNA methylation either at birth or in childhood and child developmental outcomes (full sample) 

  DNAm at Birth (Prospective EWAS)  DNAm in Childhood (Cross-sectional EWAS)  Change between time points 

Outcome ncpg n ncohorts mean 
β 

(abs.) 

mean 
SE 

mean 
z 

ncpg p<0.05 
(FDR/bonf.) 

 n ncohorts mean 
β 

(abs.) 

mean 
SE 

mean 
z 

ncpg p<0.05 
(FDR/bonf.) 

 ncohorts 
both 

 Δβ Ncpg 
+Δβ 

Ncpg 
-Δβ 

Δz 

ADHD 430327 2477  6 1.03 1.10 1.02 57339 

(896/3) 

 2374 5 1.39 1.76 0.78 19034 

(0/0) 

 3 0.36 10542(0/0) 6841(0/0) -0.23 

GPF 372292 2178 4 1.23 1.59 0.78 16549 
(0/0) 

 

 2190 5 1.50 1.98 0.78 17767 
(1/1) 

 3 0.27 13375(1/1) 6475(0/0) 0.01 

Sleep 431159 3658 10 0.97 1.30 0.76 17399 
(0/0) 

 2539 5 1.59 2.06 0.77 18113 
(0/0) 

 4 0.63 14447 
(0/0) 

5171(0/0) 0.01 

BMI 435652 4102 14 0.77 1.04 0.75 16012 

(0/0) 

 3406 11 1.10 1.29 0.86 30615 

(2/1) 

 6 0.33 23793(0/0) 6634(0/0) 0.11 

Asthma 432728 3065 
(631) 

7 2.70 3.44 0.82 26112 

(0/0) 

 2834 

(631) 

9 2.94 3.92 0.77 18605 

(66/11) 

 0 0.24 18024(2/2) 9678(2/0) -0.06 

 
ADHD Attention Deficit Hyperactivity Disorder 
GPF General Psychopathology Factor 
BMI Body Mass Index 
ncpg Number of CpG sites tested 
n Sample size (cases) 
ncohorts Number of cohorts 
mean β (abs.) The mean absolute regression coefficient across DNAm sites. β represents the expected difference in the outcome in SD when CpG sites is fully 
methylated compared to no methylation. For asthma, β represents the log(odds) difference 
Mean SE Mean Standard Error 
Mean z Mean z values across CpG sites. z=β/SE indicating statistical significance 
ncpg p<0.05 (FDR/bonf.) Number of nominally significant CpG sites (after adjustment for false discovery rate/after Bonferroni adjustment) 
ncohorts both Number of cohorts which contributed to both birth and school age analyses 
Δβ Change in effect size from birth to school age  
Ncpg+Δβ Number of CpG sites with increasing effect size and nominally significant change (FDR/Bonferroni) 
Ncpg--Δβ Number of CpG sites with decreasing effect size and nominally significant change (FDR/Bonferroni) 
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Table 3 Comparison of birth EWAS (i.e. prospective analysis) versus childhood EWAS (i.e. cross-sectional analysis): Overview of study findings 

 Change from birth to 

childhood EWAS 

Potential contributing factors Sensitivity analyses Correlation analyses 

Outcome Effect 

size 

Statistical 

significance 

EWAS 

sample size 

Between-study 

heterogeneity 

Do results hold 

when making N 

equal across time 

points? 

Do results hold 

within single 

longitudinal cohort 

(ALSPAC) 

Correlations 

between 

time points 

(i.e. 

stability) 

Correlations with 

other phenotypes 

ADHD ↑ ↑ = ↑ � � �  (rs = 0.31) � (rs = -0.18—0.35) 

GPF ↑ = = = � � ≠  (rs = 0.08) � (rs = -0.07—0.35) 

Sleep ↑ = ↓ ↑ � � ≠  (rs = 0.06) ≠  (rs = -0.04—0.06) 

BMI ↑ ↑ ↓ ↑ � � ≠  (rs = 0.05) � (rs = -0.18—0.06) 

Asthma ↑ ↑ = ↑ � � ≠  (rs = -0.04) 

 

� (rs = -0.16—0.21) 
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Table 4 Gene ontology enrichment analyses: top 10 terms for phenotype-associated DNAm sites showing change from birth to childhood 

  ADHD   GPF   Sleep   BMI   Asthma 

ncpg 10742  11228  11591  19055  18771 

Ontology Term p-value   Term p-value   Term p-value   Term p-value   Term p-value 

Biological processes (BP)                          

BP vesicle cyto-
skeletal traf-
ficking 

1.0E-03  neurogenesis 2.2E-04  proximal/distal pat-
tern formation 

3.6E-04  positive regulation of 
RNA biosynthetic 
process 

4.5E-05  cell morpho-
genesis 

3.6E-05 

BP G protein-
coupled gluta-
mate receptor 
signaling 
pathway 

2.7E-03  generation of 
neurons 

1.0E-03  cell morphogenesis 
involved in neuron 
differentiation 

5.8E-04  morphogenesis of 
an epithelium 

4.8E-05  cell junction 
organization 

1.4E-04 

BP cerebral cortex 
development 

3.3E-03  neuron projection 
development 

1.6E-03  anatomical structure 
arrangement 

1.7E-03  nervous system 
development 

4.8E-05  plasma mem-
brane bounded 
cell projection 
morphogene-
sis 

2.1E-04 

BP toll-like recep-
tor 2 signaling 
pathway 

4.3E-03  platelet-derived 
growth factor 
receptor signaling 
pathway 

1.6E-03  cranial nerve mor-
phogenesis 

1.7E-03  positive regulation of 
DNA-templated 
transcription 

4.9E-05  cell projection 
morphogene-
sis 

2.6E-04 

BP mucus secre-
tion 

4.7E-03  neuron differentia-
tion 

1.7E-03  central nervous 
system develop-
ment 

1.8E-03  regulation of cell 
projection organiza-
tion 

9.0E-05  cellular locali-
zation 

3.6E-04 

BP peptidyl-
threonine 
dephosphoryla
tion 

6.5E-03  neuron develop-
ment 

1.9E-03  brain development 2.1E-03  dendritic spine mor-
phogenesis 

1.1E-04  neuron projec-
tion morpho-
genesis 

3.7E-04 

BP response to 
nutrient 

6.7E-03  regulation of en-
doplasmic reticu-
lum stress-
induced intrinsic 
apoptotic signal-
ing pathway 

1.9E-03  regulation of DNA-
templated DNA 
replication 

2.5E-03  regulation of plasma 
membrane bounded 
cell projection organ-
ization 

1.1E-04  cell junction 
assembly 

6.6E-04 

BP corticosteroid 
hormone se-
cretion 

7.0E-03  regulation of 
Notch signaling 
pathway 

2.2E-03  chorionic 
trophoblast cell 
differentiation 

3.0E-03  cell morphogenesis 
involved in neuron 
differentiation 

1.1E-04  mRNA export 
from nucleus 

7.0E-04 
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BP regulation of 
lysosome size 

7.1E-03  negative regula-
tion of T cell me-
diated immunity 

2.2E-03  head development 3.3E-03  cell morphogenesis 1.4E-04  adherens 
junction organ-
ization 

8.0E-04 

BP modification of 
postsynaptic 
actin cytoskel-
eton 

7.8E-03  negative regula-
tion of DNA-
templated tran-
scription initiation 

2.3E-03  skeletal system 
morphogenesis 

3.4E-03  neuron differentia-
tion 

1.4E-04  cell part mor-
phogenesis 

8.1E-04 

Cellular Components (CC)                         

CC synapse 1.0E-03  cell junction 6.7E-03  dendritic tree 9.9E-06  cell-substrate junc-
tion 

1.4E-05  nucleoplasm 2.3E-04 

CC neuron spine 1.5E-03  neurofilament 7.5E-03  dendrite 1.6E-05  focal adhesion 2.3E-05  exon-exon 
junction com-
plex 

1.3E-03 

CC dendritic spine 1.6E-03  protein phospha-
tase type 2A 
complex 

9.0E-03  dendritic spine 2.8E-05  glutamatergic syn-
apse 

3.5E-05  nuclear body 2.3E-03 

CC postsynapse 2.3E-03  cell leading edge 1.0E-02  neuron spine 5.2E-05  anchoring junction 5.0E-04  adherens 
junction 

2.8E-03 

CC plasma mem-
brane protein 
complex 

3.4E-03  synaptic mem-
brane 

1.0E-02  somatodendritic 
compartment 

6.7E-04  cell leading edge 7.7E-04  sarcoplasm 2.9E-03 

CC voltage-gated 
potassium 
channel com-
plex 

4.2E-03  glutamatergic 
synapse 

1.1E-02  neuron to neuron 
synapse 

1.7E-03  actin-based cell 
projection 

1.2E-03  cell leading 
edge 

3.0E-03 

CC cell junction 4.4E-03  leading edge 
membrane 

1.2E-02  asymmetric synapse 2.4E-03  postsynapse 1.3E-03  junctional 
sarcoplasmic 
reticulum 
membrane 

4.3E-03 

CC potassium 
channel com-
plex 

5.0E-03  cell tip 1.3E-02  postsynaptic density 2.4E-03  cell cortex 2.7E-03  chromosomal 
region 

5.4E-03 

CC BORC com-
plex 

7.1E-03  postsynaptic cyto-
skeleton 

1.4E-02  neuron projection 2.5E-03  adherens junction 3.1E-03  cell junction 6.5E-03 

CC axolemma 7.7E-03  eukaryotic transla-
tion initiation fac-
tor 3 complex, 
eIF3m 

1.5E-02  main axon 6.3E-03  lamellipodium 3.2E-03  postsynapse 6.9E-03 

Molecular Functions (MF)                         

MF phospholipase 
binding 

1.7E-03  lysine-acetylated 
histone binding 

4.7E-04  ubiquitin conjugating 
enzyme binding 

2.4E-03  transcription factor 
binding 

2.4E-04  protein serine 
kinase activity 

9.2E-04 

MF efflux 
transmembran
e transporter 

3.7E-03  acetylation-
dependent protein 
binding 

4.7E-04  cytoskeletal anchor 
activity 

7.2E-03  enzyme binding 3.0E-04  cell adhesion 
molecule bind-
ing 

1.9E-03 
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activity 

MF GTPase regu-
lator activity 

7.6E-03  transcription 
coregulator bind-
ing 

1.1E-03  1-
phosphatidylinositol-
4-phosphate 3-
kinase activity 

8.5E-03  DNA-binding tran-
scription factor bind-
ing 

4.2E-04  beta-catenin 
binding 

4.6E-03 

MF nucleoside-
triphosphatase 
regulator ac-
tivity 

7.6E-03  proline-rich region 
binding 

1.2E-03  1-
phosphatidylinositol-
3-kinase activity 

8.5E-03  transcription 
coregulator activity 

7.6E-04  phosphatidyl-
inositol-3,4,5-
trisphosphate 
binding 

5.8E-03 

MF demethylase 
activity 

8.4E-03  prostaglandin E 
receptor activity 

5.8E-03  poly-pyrimidine tract 
binding 

1.0E-02  RNA polymerase II-
specific DNA-binding 
transcription factor 
binding 

8.5E-04  transferase 
activity, trans-
ferring phos-
phorus-
containing 
groups 

5.8E-03 

MF bHLH tran-
scription factor 
binding 

9.2E-03  prostaglandin 
receptor activity 

6.1E-03  ephrin receptor 
binding 

1.1E-02  protein tyrosine 
kinase activity 

9.8E-04  phosphatidyl-
inositol-3,5-
bisphosphate 
binding 

7.0E-03 

MF histone 
demethylase 
activity 

1.1E-02  transmembrane 
receptor protein 
tyrosine kinase 
activity 

8.3E-03  branched-chain 
amino acid 
transmembrane 
transporter activity 

1.2E-02  kinase activity 1.0E-03  cysteine-type 
endopeptidase 
regulator ac-
tivity involved 
in apoptotic 
process 

7.7E-03 

MF protein 
demethylase 
activity 

1.1E-02  bicarbonate 
transmembrane 
transporter activity 

9.2E-03  poly(U) RNA binding 1.2E-02  ATP binding 1.9E-03  histone H3K9 
methyltransfer
ase activity 

9.2E-03 

MF RS domain 
binding 

1.1E-02  transcription 
coactivator bind-
ing 

9.8E-03  scaffold protein 
binding 

1.3E-02  transcription 
coregulator binding 

1.9E-03  ubiquitin-like 
protein trans-
ferase activity 

9.2E-03 

MF transcription 
coregulator 
activity 

1.3E-02   modification-
dependent protein 
binding 

1.3E-02   ubiquitin-like protein 
conjugating enzyme 
binding 

1.4E-02   adenyl nucleotide 
binding 

2.7E-03   cadherin bind-
ing 

9.5E-03 
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ADHD (Birth)

ADHD (School Age)

GPF (Birth)

GPF (School Age)

Sleep (Birth)

Sleep (School Age)

BMI (Birth)
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Asthma (Birth)

Asthma (School Age)

β correlations between time points and outcomes

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.29.24303506doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.29.24303506
http://creativecommons.org/licenses/by/4.0/

