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Abstract 

The analysis of electrophysiological signals from the human body has become increasingly crucial, especially given 

the widespread adoption of wearable technologies and the growing trend of remote and online monitoring. In 

situations where demographic patient data is unavailable, the evaluation of such information from 

electrophysiological signals becomes imperative for making well-informed diagnostic and therapeutic decisions, 

particularly in ambulatory and urgent cases. This study underscores the significance of this necessity by utilizing 

intracardiac electrograms to predict patient weight. 

Intracardiac electrograms were recorded from 44 patients (14 female, with an average age of 59.2±11.5 years) using 

a 64-pole basket catheter over a duration of 60 seconds. A dataset comprising 2,816 unipolar electrogram signal 

segments, each lasting 4 seconds, was utilized. Weight, considered as a continuous variable, underwent 

discretization into k bins with uniformly distributed widths, where various values of k were experimented with. As 

the value of k increases, class imbalance also increases. 

The state-of-the-art time series classification algorithm, Minirocket, was employed alongside the popular machine 

learning algorithm eXtreme Gradient Boosting (XGBoost). Minirocket consistently demonstrates superior 

performance compared to XGBoost across all class number scenarios and across all evaluation metrics, such as 

accuracy, F1 score, and Area Under the Curve (AUC) values, achieving scores of approximately 0.96. Conversely, 

XGBoost shows signs of overfitting, particularly noticeable in scenarios with higher class imbalance. Tuning 

probability thresholds for classes could potentially mitigate this issue. Additionally, XGBoost's performance 

improves with reduced bin numbers, emphasizing the importance of balanced classes. This study provides novel 

insights into the predictive capabilities of these algorithms and their implications for personalized medicine and 

remote health monitoring. 
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INTRODUCTION 

As technology continues to advance within the healthcare sector, there arises an increasing demand for novel 

methods to monitor and evaluate patients' health conditions. In the realm of continuous cardiovascular assessment, 
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wearable and implanted devices, alongside ambulatory monitoring technologies, have become indispensable 

components (Hong et al., 2019; Sana et al., 2020; Bayoumy et al., 2021). Within this context, the analysis of 

electrophysiological signals emerges as a valuable tool for assessing patients' health status. Specifically, the 

utilization of electrophysiological data such as intracardiac electrograms (EGMs) holds significant potential for 

evaluating patients' cardiovascular health and even predicting their demographic information. 

Traditionally, patient history is evaluated during the diagnosis phase, aiding in formulating the diagnosis, 

followed by therapeutic intervention. However, as data collection techniques transition towards remote methods 

such as Holter monitoring (Zimetbaum and Goldman, 2010), and wearable device usage increases, interpreting 

signal streams from patients becomes increasingly crucial. Auxiliary information concerning patient 

demographics significantly influences the development of diagnostic and therapeutic solutions. Yet, in scenarios 

where patient-specific auxiliary information is unavailable, its assessment becomes imperative. 

Patient demographic data encompasses all non-clinical data about a patient, including age, weight, sex, and 

various other peripheral information. In the context of cardiovascular medicine, correlations between 

physiological attributes such as age, sex, weight, and electrophysiological and electroanatomical properties are 

extensively studied with compelling evidence. For instance, Laredo et al. (2018) found that multiple structural, 

electrophysiologic, ionic, and molecular changes observed during atrial fibrillation (AF) are more prevalent with 

older age, while younger age appears to be associated with protective properties against AF risks. Magnussen et 

al. (2017) investigated sex-specific differences in AF epidemiology and identified variations in prevalence, 

incidence, and risk factors, emphasizing the necessity for sex-specific prevention strategies. Siddiqi et al. (2022) 

further explored the contribution of body size factors to sex differences and concluded that sex differences in 

body size significantly influence the protective association between female sex and AF. Additionally, Johansson 

et al. (2020) discovered positive associations between height, weight, body mass index, and body surface with 

the risk of incident AF in both men and women. A recent study by Westaby et al. (2023) demonstrated that cardiac 

anatomical properties are associated with sex, age, and body measurements, with sex being the most 

discriminatory factor, specifically noting that the female heart exhibits smaller wall thickness, chambers, and 

valves. 

The treatment of cardiovascular diseases is complex and requires a more targeted, patient-specific approach 

(Correa et al., 2020). In the realm of personalized medicine, increasing precision in treatment remains an ongoing 

endeavor, with complexities and costs escalating as efforts focus on pinpointing underlying molecular and cellular 

level differences. Consequently, identifying personalized cues in tissue-level recordings becomes paramount for 
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individualized medical treatment. 

This study aims to investigate the analysis of electrophysiological signals for predicting patient weight from 

intracardiac electrograms. A recent similar study by Alagoz (2024) explored the prediction of age from 

intracardiac electrograms. In this study, the state-of-the-art time series classification algorithm, Minirocket, was 

employed alongside the popular machine learning algorithm XGBoost. Minirocket consistently demonstrates 

superior performance compared to XGBoost across all class number scenarios and across all evaluation metrics, 

such as accuracy, F1 score, and AUC values, achieving scores of approximately 0.96. Conversely, XGBoost 

shows signs of overfitting, particularly noticeable in scenarios with higher class imbalance. Tuning probability 

thresholds for classes could potentially mitigate this issue. Additionally, XGBoost's performance improves with 

reduced bin numbers, underscoring the importance of balanced classes. This study offers novel insights into the 

predictive capabilities of these algorithms and their implications for personalized medicine and remote health 

monitoring. 

MATERIALS AND METHODS 

Patient Population: 

The dataset utilized in this study was generously provided by Rodrigo et al. in (2022). This dataset consisted of a 

meticulously curated patient cohort sourced from the COMPARE registry (ClinicalTrials.gov Identifier: 

NCT02997254), comprising individuals diagnosed with AF who were prospectively enrolled during ablation 

procedures for symptomatic AF unresponsive to at least one anti-arrhythmic medication. Within this registry, 

intracardiac EGM recordings were performed on each patient using multipolar 64-pole basket catheters. A 

comprehensive review of the registry was conducted by a panel of three cardiac electrophysiologists, who 

meticulously classified each EGM tracing as either AF or Atrial Tachycardia (AT). 

For this study, a systematic selection of patients from the registry was carried out to establish a balanced dataset 

of intracardiac recordings, comprising both AF (N = 22) and AT (N = 22) cases. It is important to note that all 

participants in this study provided written informed consent, in accordance with protocols approved by the Human 

Table 1. The demographic information of the patients participating in the study. 

 Patients (all) Patients (AF) Patients (AT) 

Patient count 

Age (in years) 

Female 

Weight 

44 

59.2±11.5 

14(31%) 

94.9±17.9 

22 

59.7±12 

7(31%) 

97.6±17.8 

22 

58.7±11.1 

7(31%) 

92.1±17.8 
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Research Protection Program. A summary of patient demographics is provided in Table 1. 

Electrogram Collection: 

The dataset utilized in this study was a subset of the dataset originally provided by Rodrigo et al. (2022). 

Specifically, the analysis included N=2,817 EGM signals, with N=1,738 classified as AF and N=1,079 as AT. 

The procedure for EGM collection and pre-processing is outlined as follows. 

During the electrophysiology study, a 64-pole basket catheter (Abbott, Menlo Park, CA) with electrodes sized at 

2 mm and inter-electrode spacing set at 5 mm along the spline was used. Mapping was performed 

comprehensively across both the right and left atria. Unipolar EGMs spanning 60 seconds were extracted from 

the electrophysiological recorder (Prucka, GE Marquette, Milwaukee, WI; Bard Electrophysiology, Billerica, 

MA) and filtered within the frequency range of 0.05–500 Hz. 

For analysis purposes, unipolar EGMs with a duration of 4 seconds, approximately equivalent to 20 cycles of AF 

or AT, were utilized. This duration aligns with the standard practice of examining EGM sequences in the 

frequency domain, with prolonged durations offering minimal enhancements in rhythm identification. The 

original EGMs, recorded at a sample frequency of 1 kHz (Bard) or 977 Hz (Prucka), were uniformly resampled 

to facilitate comparative analyses across datasets. To reduce dimensionality and considering that the physiological 

content of AF and AT EGMs lies below 200 Hz (Rodrigo et al., 2021), the EGMs were downsampled to 400 Hz 

utilizing a 200 Hz anti-aliasing filter. Ventricular artifacts were mitigated by subtracting the mean QRS complex, 

which was identified in three orthogonal ECG leads using a voltage threshold, and then averaged across a 1-

minute period (Alhusseini et al., 2020). 

Specifying Classes: 

Since weight represents a continuous target variable, it undergoes transformation into an interval variable through 

discretization using a uniform strategy. This ensures that all bins possess identical widths. Subsequently, based 

 

Figure 1. Counts of weight class members when bin size is chosen 8 (right), 6 (middle), 4(left). 
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on a predetermined number of bins, each weight value is assigned to the corresponding interval. For example, 

within an 8-bin setup with specified bin edges (refer to Table 2), a weight value of 82 falls within the interval 

[80,89). The associated class label is designated as “<89”, indicating that the value 82 is classified under the 

“<89” category. Throughout the study, various bin numbers corresponding to distinct numbers of classes are 

examined. Specifically, experiments are conducted using 8, 6, and 4 bins. The distributions of class membership 

counts are depicted in Figure 1. It is noteworthy that the balance among classes diminishes as the number of 

classes increases. 

MiniRocket:  

MiniRocket is a feature extraction method proposed for tasks involving time series classification. Dempster et al. 

(2020) developed it with the aim of efficiently extracting features from time series data. MiniRocket applies 

random convolutional kernels to the input time series data and calculates statistical moments from the resulting 

random projections. These statistical moments serve as features that can be input into a classification algorithm. 

MiniRocket is recognized for its speed and scalability, making it suitable for large-scale time series classification 

tasks. 

Extreme Gradient Boosting:  

XGBoost is a widely used and powerful implementation of gradient boosting algorithms (Chen and Guestrin, 

2016). It is popular in both machine learning competitions and real-world applications due to its efficiency, speed, 

and high performance. XGBoost constructs an ensemble of weak decision trees sequentially, with each tree 

correcting errors made by the preceding trees. It incorporates regularization techniques to prevent overfitting and 

supports parallel processing for accelerated training. XGBoost is effective for both classification and regression 

tasks and is known for its robustness and accuracy. 

Performance Evaluation:  

To ensure robust cross-validation, Monte Carlo cross-validation is employed, involving random partitioning of 

the dataset into training and testing sets across multiple iterations. Various combinations of training and testing 

sizes are explored to comprehensively assess classifier performance. To ensure the reproducibility of training and 

testing sets, the shuffling seed for each iteration is determined by the iteration number. 

Accuracy: This metric assesses the overall correctness of the classifier by determining the ratio of correctly 

predicted instances to the total instances, offering an intuitive assessment of its performance. 

F1 Score: The F1 score is a commonly used metric for evaluating classifier performance in binary classification 

tasks. It calculates the harmonic mean of precision and recall, providing a balanced measure of the classifier's 
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ability to correctly identify positive instances while minimizing false positives and false negatives. In multi-class 

scenarios, the study adopts the macro-averaging approach, where the F1 score is independently computed for 

each class and then averaged across all classes, assigning equal weight to each class. 

AUC: The AUC is a metric used to evaluate the performance of binary classification models. It represents the 

area under the Receiver Operating Characteristic curve, which plots the true positive rate (sensitivity) against the 

false positive rate (1 - specificity) at various threshold settings. A higher AUC value indicates superior 

discrimination ability of the model. In multi-class classification tasks, the study adopts the One-vs-One (OvO) 

approach, where pairwise comparisons are made between all pairs of classes. For each pair of classes, a binary 

classifier is trained to distinguish between the instances of those two classes. The AUC is then calculated for each 

pair of classes, and the average AUC across all pairs is computed as the final multi-class AUC. 

The experiments are conducted on a system equipped with an Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz x 

11 and 16 GB of RAM, utilizing the Python programming language for computations. 

RESULTS AND DISCUSSIONS 

This study focuses on predicting the weight of a patient using intracardiac EGMs measured over a 4-second 

interval, employing Minirocket and XGBoost algorithms for prediction. 

Table 2 presents the classification results. Minirocket consistently outperforms XGBoost with accuracy, F1 

scores, and AUC values hovering around 0.96. On the other hand, XGBoost demonstrates accuracy and F1 scores 

around 0.80, while achieving AUC values of approximately 0.96. This discrepancy suggests that XGBoost may 

be overfitting, potentially remediable through tuning probability thresholds for classes. Additionally, XGBoost's 

performance improves with a reduction in bin numbers, leading to more balanced classes. The decrease in class 

Table 2. Classification results 

Model Accuracy F1 AUC 

8-bin with edges: [64, 72, 80, 89, 97, 106, 114, 122, 131] 

Minirocket 

XGBoost 

0.9605 ± 0.0069 

0.7876 ± 0.0108 

0.9620 ± 0.0074 

0.7592 ± 0.0163 

0.9777 ± 0.0045 

0.9648 ± 0.0022 

6-bin with edges: [64, 75, 86, 97, 108, 120, 131] 

Minirocket 

XGBoost 

0.9629 ± 0.0094 

0.8046 ± 0.0165 

0.9654 ± 0.0088 

0.8053 ± 0.0182 

0.9785 ± 0.0055 

0.9679 ± 0.0056 

4-bin with edges: [64, 80, 97, 114, 131] 

Minirocket 

XGBoost 

0.9493 ± 0.0052 

0.8188 ± 0.0175 

0.9490 ± 0.0051 

0.8175 ± 0.0174 

0.9654 ± 0.0035 

0.9528 ± 0.0045 
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imbalance with fewer bins indicates a possible cause for XGBoost's overfitting. 

Contrastingly, Minirocket displays robustness to class imbalance, maintaining consistent performance around 

0.96 across varying class numbers. However, in the case of 4-bin classification, F1 and accuracy values slightly 

drop to around 0.95. It is noteworthy that Minirocket performs better with a greater number of classes and 

increased class imbalance, which is unexpected. 

Further insights can be gleaned from the confusion matrices depicted in Figure 2, particularly for the 8-class 

scenario. XGBoost exhibits lower precision and recall for classes with relatively fewer members, as indicated in 

Figure 1. This highlights XGBoost's susceptibility to overfitting due to class imbalance. Conversely, Minirocket 

demonstrates robust performance, achieving precision and recall values of 1.0 for class "<72", while XGBoost's 

values are 0.92 for the same class. 

In a broader context, this study introduces a novel approach enabling the estimation of patient demographics from 

electrophysiological signals, a pioneering effort in the literature. The significance of this prediction lies in several 

aspects. Firstly, in conventional medical settings, patient information is typically gathered through personal 

history assessment before obtaining electrophysiological measurements, which then inform diagnostic or 

therapeutic actions. Hence, accurate estimation of patient demographics is crucial. Secondly, in scenarios such as 

 

Figure 2. Confusion matrices resulting from Monte Carlo cross-validation runs. Cell values denote the 

percentages of total number of test instances used in all runs. 
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urgent or ambulatory cases where patient information may not be readily accessible, precise estimation of patient 

demographics becomes indispensable. Thirdly, amidst the rapid development of wearable technology and remote 

data collection, the assessment of auxiliary data aids in enhancing remote health monitoring. Lastly, deriving 

patient-specific cues from signals obtained directly from the patient holds substantial implications for 

personalized medicine. 

CONCLUSIONS 

In conclusion, this study demonstrates the efficacy of Minirocket and XGBoost algorithms in predicting patient 

weight using intracardiac EGMs. Minirocket consistently outperforms XGBoost across various metrics, 

showcasing its robustness to class imbalance and superior performance in scenarios with a greater number of 

classes. 

The findings suggest that XGBoost may be overfitting, particularly evident in scenarios with higher class 

imbalance. However, this overfitting can potentially be mitigated through tuning probability thresholds for 

classes. Furthermore, XGBoost's performance improves with a reduction in bin numbers, indicating the 

importance of balanced classes in enhancing algorithm performance. 

On the other hand, Minirocket maintains consistent performance across different class numbers, highlighting its 

resilience to class imbalance. Nevertheless, a slight drop in performance is observed in the 4-bin classification 

scenario. 

The analysis of confusion matrices provides deeper insights into the performance of both algorithms, with 

XGBoost displaying lower precision and recall for classes with fewer members compared to Minirocket. 

Overall, this study introduces a novel approach for estimating patient demographics from electrophysiological 

signals, presenting significant implications for personalized medicine, remote health monitoring, and scenarios 

where patient information may not be readily accessible. Further research could focus on refining algorithms to 

address overfitting issues and exploring additional features for improved prediction accuracy. 
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