
Improving Heart Disease Probability Prediction
Sensitivity with a Grow Network Model

Abstract—The traditional approaches in heart disease predic-
tion across a vast amount of data encountered a huge amount of
class imbalances. Applying the conventional approaches that are
available to resolve the class imbalances provides a low recall for
the minority class or results in imbalance outcomes. A lightweight
GrowNet-based architecture has been proposed that can obtain
higher recall for the minority class using the Behavioral Risk
Factor Surveillance System (BRFSS) 2022 dataset. A Synthetic
Refinement Pipeline using Adaptive-TomekLinks has been em-
ployed to resolve the class imbalances. The proposed model has
been tested in different versions of BRFSS datasets including
BRFSS 2022, BRFSS 2021, and BRFSS 2020. The proposed model
has obtained the highest specificity and sensitivity of 0.74 and
0.81 respectively across the BRFSS 2022 dataset. The proposed
approach achieved an Area Under the Curve (AUC) of 0.8709.
Additionally, applying explainable AI (XAI) to the proposed
model has revealed the impacts of transitioning from smoking to
e-cigarettes and chewing tobacco on heart disease.

Index Terms—Heart Disease Probability Prediction, Behavioral
Risk Factor Surveillance System (BRFSS), GrowNet, Explainable
AI (XAI), AI in Health Care.

I. INTRODUCTION

Cardiovascular diseases are now recognized as a major
global health problem, responsible for a significant number
of deaths worldwide. Coronary artery disease, myocardial
infarction, and congestive heart failure are among the most
frequent and life-threatening of these conditions. Medical
surveys include a wide range of health indicators, lifestyle
habits, genetic variables, and patients’ past medical records
[1] [2] [3]. These surveys have been used as an important
source for cardiovascular research [2] [3] [4] [5]. Critical risk
factors of heart disease have been possible to analyze through
these data [4] [5]. However, these datasets need a high amount
of preprocessing to produce useful results [1] [6]. To solve this
problem, enhanced computational approaches are needed.

Machine learning and deep learning advancements in recent
years have transformed the field of medical survey analysis
[7] [8] [9]. Machine learning algorithms are effective in iden-
tifying patterns and predicting outcomes from medical survey
data [4] [5]. Deep learning models, particularly Convolutional
Neural Networks (CNNs) and Artificial Neural Networks
(ANNs), have excelled in heart disease prediction using survey
data, contributing to enhanced prediction accuracy [3] [10].

Many recognized studies utilizing artificial intelligence (AI)
models showed high accuracy, nevertheless without additional
information to confirm the dependability [2] [11]. Class im-
balances are common among medical survey data [1] [6]. It
is challenging to achieve high accuracy for the minority class
while remaining well-balanced [1] [6] [12]. Sensitivity and

specificity analyses are therefore vital for demonstrating such
reliability and ensuring balanced outcomes. Prior studies that
attempted such additional analyses found that the sensitivity
and specificity were eventually unbalanced [1] [6] [12], result-
ing in biased results - an important problem that the proposed
strategy in this work addresses. Prior studies that showed
feature significance in predicting heart disease failed to provide
precise information [11]. These analyses offered a summary
of feature importance, without indicating the significance for
each target class independently [11]. For this sort of study,
finding the key variables that impact the prediction of certain
target classes is essential for efficient model interpretation
and decision-making [13]. Despite significant breakthroughs
in the field of heart disease detection using machine learning
and deep learning, there are still these identified challenges
to be overcome [1] [6] [11] [14]. These issues underline the
importance of this study in adding to the present body of
knowledge and providing solutions to the difficulties outlined
in the prior studies [1] [6] [10] [11] [14].

The present study for predicting heart disease employed a
Synthetic Refinement Pipeline using Adaptive-TomekLinks to
handle the class imbalances. A lightweight GrowNet-based
architecture has been proposed that can obtain higher accuracy
for the minority class while maintaining a balance. The inter-
pretability of the proposed method has been determined using
SHapley Additive exPlanations (SHAP) [15] [16], resulting in
the identification of various risk variables associated with heart
disease.

The key contributions and identified observations are
summarized below.

• The proposed lightweight GrowNet model obtained high
recall (0.81) for the minority class (heart disease) while
maintaining a balanced recall (0.74) for the majority class
(healthy) across heavily unbalanced data. This was a
main challenge in heart disease prediction that many prior
studies [1] [6] [12] struggled to ensure.

• A Synthetic Refinement Pipeline was proposed to handle
the class imbalance which outperformed the other tradi-
tional approaches in balancing the outcomes using the
proposed GrowNet model.

• The interpretability of the proposed GrowNet model, as
measured by Shapley values [15], reveals significant risk
indicators of heart disease. For example, the transition
from cigarettes to chewing tobacco or e-cigarettes re-
duced the SHAP probability of heart disease.

In summary, this section addresses the necessity to improve
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heart disease prediction using medical survey data. The next
section addresses the most relevant literature on the application
of artificial intelligence (AI) in cardiovascular research using
survey data. Following, the dataset part includes information
about the overall number of samples and the distribution of
target classes. Consecutively, the methodology section outlines
the whole technical process of the proposed approach to
reach the final outcomes. Later on, the feature description
provides details for a list of relevant features chosen for this
study based on prior studies. Sequentially, the preprocessing
section includes data wrangling phases such as missing value
handling, train-test splitting, label encoding, and balanced
training using the Synthetic Refinement Pipeline. Furthermore,
the next section describes the architectural details of the
proposed Grownet model. The experiment and result analysis
section next compares the findings obtained using various
performance metrics for all of the applied models. Following,
the interpretability analysis portion depicts the influence of
each input characteristic on predicting heart disease using
SHapley Additive ExPlanations (SHAP) values. Finally, the
discussion section provides a complete summary of the study’s
findings and observations.

II. LITERATURE REVIEW

This section reviews prior studies on the use of machine
learning and deep learning to predict cardiovascular diseases,
particularly heart disease. The objective is to identify gaps in
the current body of knowledge and offer concise justifications
for these limitations. Through a review of prior studies,
the goal is to pinpoint areas in need of more study and
development, which will ultimately lead to a more thorough
and efficient method of comprehending and predicting heart-
related diseases using artificial intelligence (AI) approaches.

A study conducted by Nasimov et al. [11] provided a
methodology to reduce variations in the feature importance
from the same model using different approaches for predicting
chronic heart diseases. The initiative to show feature impor-
tance hueing the predictive classes wasn’t conducted in this
study. This is essential to understand the impact of the input
features on predictions. Accordingly, an accuracy of 0.743 was
obtained from a weighted K-Nearest Neighbors (K-NN) model
using the BRFSS 2021 dataset. The study [11] was conducted
using a reduced and balanced dataset (27392 healthy and
23893 HD records). A similar study on heart disease risk
prediction was conducted by Singh et al. [2] using the UCI
Cleveland Heart Disease (HD) dataset. An accuracy of 0.87
was obtained using a K-Nearest Neighbors (K-NN) model. The
study [2] was conducted using a balanced dataset with limited
records (303 records) and the test set contained very limited
data (51 healthy and 49 HD records). In the above studies [2]
[11], there was no mention of any other important performance
metrics other than accuracy to rely on the outcomes obtained
by these studies. The test sets were limited and balanced in
these studies [2] [11] so high accuracies are usual in these
regards. To rely on these outcomes based on only accuracy is

not enough as these accuracies can vary in terms of real-life
scenarios (heavily unbalanced circumstances) [1] [6].

An effective approach for heart disease prediction was
conducted by Bhatt et al. [10] using a dataset from Kaggle. The
obtained accuracy, precision, recall, f1 score, and AUC were
0.8728, 0.887, 0.8485, 0.8671, and 0.95 respectively using
a Multilayer Perceptron (MLP) model. The study [10] was
conducted using a preprocessed dataset with limited records
(57155 records) and the test set contained only 20% of the
total data. Accordingly, a study on heart disease prediction was
conducted by Pathan et al. [14] using two datasets from Kaggle
including CVD and Framingham. For the CVD dataset, the ob-
tained accuracy, f1 score, and AUC were 0.75, 0.74, and 0.74
respectively using a Support Vector Classifier (SVC) model.
Further, for the Framingham dataset, the obtained accuracy, f1
score, and AUC were 0.72, 0.71, and 0.72 respectively using
a Multilayer Perceptron (MLP) model. The study [14] was
conducted using two reduced and balanced datasets (CVD: 548
healthy, 548 HD records and Framingham: 557 healthy, 557
HD records). A study to enhance heart disease prediction was
conducted by Chandrasekhar et al. [5] employing an ensemble
model (soft voting: RF, KNN, LR, GNB, GB, AdaBoost) using
two datasets including UCI Cleveland Heart Disease (HD) and
IEEE Dataport Heart Disease (HD). For the UCI Cleveland
dataset, the obtained accuracy, precision, recall, f1 score, and
AUC were 0.9344, 0.88, 0.84, 0.84, and 0.95 respectively.
Further, for the IEEE Dataport dataset, the obtained accuracy,
precision, recall, f1 score, and AUC were 0.95, 0.90, 0.89,
0.90, and 0.95 respectively. The study [5] was conducted
using two limited and balanced datasets (UCI Cleveland: 138
healthy, 164 HD records and IEEE Dataport: 410 healthy,
508 HD records) and test sets were also very limited (UCI
Cleveland: 27 healthy, 34 HD records and IEEE Dataport:
88 healthy, 96 HD records) accordingly. An interpretable
approach for stroke prediction was conducted by Srinivasu
et al. [13] using the Kaggle Stroke Prediction dataset. The
obtained accuracy, precision, recall, f1 score, and AUC were
0.95, 1, 0.189, 0.038, and 0.659 respectively using an Artificial
Neural Network (ANN) model. The study [13] was conducted
using a limited and balanced dataset (4861 healthy, 249 HD
records) and test sets were also very limited (972 healthy,
50 HD records) accordingly. Explainable AI (XAI) such as
LIME [17] [18] was used to interpret the model, however, no
initiative was conducted to show feature importance hueing the
predictive classes. An approach to predict coronary heart dis-
ease and risk assessment was conducted by Huang et al. [12]
using a collected dataset. The obtained accuracy, specificity,
sensitivity, and AUC were 0.7896, 0.5113, 0.9386, and 0.8375
respectively using a Random Forest (RF) model. The study
[12] was conducted using a preprocessed dataset with limited
records (1502 records). A study for predicting cardiovascular
heart disease was conducted by Srinivasan et al. [4] using
the UCI Cleveland Heart Disease (HD) dataset. The obtained
accuracy, specificity, sensitivity, precision, recall, f1 score, and
AUC were 0.9878, 0.971, 0.9791, 0.9807, 0.9531, 0.9789,
and 0.96 respectively using a Learning Vector Quantization
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(LVQ) model. In the above studies [4] [5] [10] [12] [13] [14]
there was mention of much more important metrics rather
than accuracy to rely on the outcomes obtained by these
studies. However, these studies [4] [5] [10] [12] [13] [14] were
evaluated across a limited and balanced number of records.
These measures can vary in terms of heavily unbalanced
scenarios which is more usual compared to real-life scenarios
[1] [6]. Hence, it is not sufficient to rely on these measures as
these were tested across very limited and balanced scenarios.

A comparative study to predict heart disease was conducted
by Akkaya et al. [1] using the BRFSS 2020 dataset. The
obtained accuracy, specificity, sensitivity, and AUC were 0.89,
0.94, 0.27, and 0.9487 respectively using an Extreme Gradient
Boosting (XGB) model. The study [1] was conducted using
a significant number of preprocessed data (280293 records)
and the test set was also heavily unbalanced and large (51884
healthy and 4175 HD records). A similar study was con-
ducted by Mamun et al. [6] to predict heart disease using
the BRFSS 2020 dataset. The obtained accuracy, specificity,
sensitivity, and AUC were 0.9157, 0.5261, 0.9232, and 0.84
respectively using a Logistic Regression (LR) model. The
study [6] was conducted using a significant number of data
(319795 records) and the test set was also large containing
20% of the preprocessed data. In the above studies [1] [6],
there was mention of much more important metrics such
as specificity and sensitivity to trust the outcomes obtained
by these studies. Additionally, these studies [1] [6] were
evaluated across a large and balanced number of records.
However, the outcomes obtained from these studies [1] [6]
were heavily unbalanced. In summary, some prior studies [2]
[11] focused just on accuracy, which may not adequately
represent a model’s performance. Simply having high accuracy
does not ensure that the model accurately predicts both target
classes [6]. Accordingly, some prior studies [3] [4] [5] [10]
[12] [13] [14] employed various performance measures and
received favorable evaluations, although these were conducted
on small, balanced datasets. This may make the model look
good, but real-world data is typically huge and imbalanced,
thus the findings may be unreliable. On the other hand, a
few prior studies [1] [6] used large imbalanced datasets, yet
the results were likewise very unbalanced. As a result, there
is a need for research that demonstrates how well a model
operates across a vast amount of imbalanced scenarios while
yet producing balanced results. The overview of the literature
review is provided in Table I.

III. DATASET

The Behavioural Risk Factor Surveillance System (BRFSS)
2022 dataset [19] was employed in this study, which is a
comprehensive collection of health-related information col-
lected from surveys conducted throughout the United States.
The dataset initially has 326 features with 445132 number
of records. A careful review of the data reveals that the
data distributions of healthy and heart disease cases in the
target column are around 93.04% and 5.96%, indicating a
continuing predominance of healthy instances. The dataset

contains a wide range of health and lifestyle-related factors
that are used to train the heart disease probability prediction
model. The previous two versions of Behavioural Risk Factor
Surveillance System datasets including BRFSS 2020 [19] and
BRFSS 2021 [19] are also used in this study for testing the
proposed GrowNet model.

IV. METHODOLOGY

The phases to predict heart disease probability from heavily
unbalanced survey data are discussed in this section. Obtaining
a balanced recall for both predictive classes (healthy and HD)
was a real challenge for this study. The first section describes
the procedures used to acquire and prepare the data and
includes preprocessing and data collection. The description
of data splitting and methods for addressing class imbalance
are provided next. The selection of an appropriate model is
then discussed. The experiment, analysis of the results, and
an interpretability analysis are finally discussed.

The technical steps to prepare the proposed heart disease
probability prediction model are shown in Fig 1. Firstly, 12
features (6 binary and 6 multi-class) were selected from the
dataset that contains health records, health habits, and demo-
graphic information of individuals. The features are selected
based on the prior studies on heart disease [1] [2] [3] [4]
[5] [6]. Specifically, the features that were mostly used in
previous studies to predict cardiovascular diseases. Initially,
the data contained a significant amount of missing inputs as
the data was collected by telephone surveys. Besides, many
participants refused to provide information, these were labeled
as refused input in the data. Hence, data was preprocessed
by cleaning all missing and refused inputs. Accordingly, data
was split into separate train and test sets. Additionally, the
data distribution for each category inside the selected features
was heavily imbalanced. To provide stabilized training, mul-
tiple approaches were applied to handle the class imbalance.
Multiple approaches such as Random Oversampling (ROS),
Random Undersampling (RUS), Synthetic Minority Over-
sampling Technique (SMOTE), Adaptive Synthetic Sampling
Approach for Imbalanced Learning (ADASYN), Tomek-Links,
Edited Nearest Neighbors (ENN), SMOTE Edited Nearest
Neighbors (SMOTEENN), Near-Miss, SMOTE Undersam-
pling, and Cost-Sensitive Learning (CSL) were applied to
compare the capability of the proposed Synthetic Refinement
Pipeline (SRP). The Synthetic Refinement Pipeline handled the
class imbalance in a more optimized way compared to other
approaches. Sequentially, the target column was encoded to set
the prediction labels. Then multiple models such as Decision
Tree (DT), Adaptive Boosting (AdaBoost), Multilayer Percep-
tron (MLP), Random Forest (RF), Artificial Neural Network
(ANN), Convolutional Neural Network, Gaussian Naı̈ve Bayes
(GNB), Random Undersampling (RUSBoost), and GrowNet
were trained using the prepared data to predict the heart
disease cases. Then, the applied models were evaluated across
different performance matrices. The proposed GrowNet model
obtained high recall for the minority class (heart disease)
while maintaining a balanced recall for the majority class
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TABLE I
Summary of the literature review.

Researcher Year Research Topic Dataset Modeling Technique Accuracy
Bhatt et al. [10] 2023 Heart disease prediction Kaggle HD MLP 0.8728
Chandrasekhar et
al. [5]

2023 Heart disease prediction UCI HD, IEEE Dat-
aport

Ensemble 0.9344, 0.95

Srinivasu et al.
[13]

2023 Heart stroke prediction Kaggle Stroke Pre-
diction

ANN 0.95

Srinivasan et al.
[4]

2023 Heart disease prediction UCI HD LVQ 0.9878

Akkaya et al. [1] 2022 Heart disease prediction BRFSS 2020 XGB 0.89
Mamun et al. [6] 2022 Heart disease prediction BRFSS 2020 LR 0.9157
Nasimov et al.
[11]

2022 Heart disease prediction BRFSS 2021 weighted K-NN 0.743

Pathan et al. [14] 2022 Heart disease prediction CVD, Framingham SVC, MLP 0.75, 0.72
Huang et al. [12] 2022 Heart disease prediction Collected RF 0.7896
Singh et al. [2] 2020 Heart disease prediction UCI HD KNN 0.87

Fig. 1. The complete workflow of the heart disease prediction.

(healthy) using the Synthetic Refinement Pipeline. Lastly, an
interpretability analysis was conducted to explain the proposed
GrowNet model’s hidden patterns. This demonstrates multiple
risk factors for heart disease using the SHapley Additive
exPlanations.

V. FEATURE DESCRIPTION

Only 13 features are selected for this study out of 326
features from the dataset based on the prior studies [20] [21]
[22]. These features are mostly covered medical records of the
individuals such as histories of heart attacks, strokes, asthma,
bronchitis, renal issues, depressive disorders, and Body Mass
Index (BMI). Besides, It also covers a number of aspects of

health-related behaviors, such as the status of smoking, the
use of electronic cigarettes or other vaping devices, and the
use of chewing tobacco, snuff, or snus. Additionally, it also
contains an individual’s age, which is a demographic aspect.

The data distributions for each category inside the input
features are discussed in Table II. The features including heart
attack, depressive disorder, chronic bronchitis, stroke, renal
issues, and asthma have binary categories. Accordingly, the
features including age groups, diabetes, BMI, smoking status,
tobacco usage, and e-cigarettes have multiple categories. The
categorization inside these features seemed to be heavily
unbalanced.
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TABLE II
Data distribution of the input features.

Feature Frequency
Heart attack 1 (yes: 25108), 2 (no: 416959)
Depressive disorder 1 (yes: 91410), 2 (no: 350910)
Chronic bronchitis 1 (yes: 35656), 2 (no: 407257)
Stroke 1 (yes: 19239), 2 (no: 424336)
Renal issues 1 (yes: 19239), 2 (no: 424336)
Asthma 1 (yes: 20315), 2 (no: 422891)
Diabetes 1 (yes: 61158), 2 (gestational:

3836), 3(no: 368722), 4(pre-
diabetes: 10329)

Age groups 1 (18 to 24: 26943), 2 (25 to 34:
47840), 3 (35 to 44: 59174), 4 (45
to 54: 66984), 5 (55 to 64: 82740),
6(65 or older: 161451)

BMI 1 (BMI < 1850: 26943), 2 (1850
<= BMI < 2500: 47840), 3 (2500
<= BMI < 3000: 59174), 4 (3000
<= BMI: 66984)

Smoking status 1 (regular: 36003), 2 (irregular:
13938), 3 (former: 113774), 4
(never: 245955)

Tobacco usage 1 (regular: 7333), 2 (irregular:
5358), 3 (no: 398616)

E-cigarette 1 (never: 311988), 2 (regular:
10382), 3 (irregular: 11734), 4 (for-
mer: 75368)

VI. PREPROCESSING

As the survey was carried out via telephone, it contained
a significant number of missing values. The dataset contains
62241 rows with missing values. Besides, many respondents
to the survey refused to answer questions or said they were
unsure of the precise responses at the time. These circum-
stances are denoted with specific input categories in the
dataset. Accordingly, 57588 rows are identified as these reused
inputs. After cleaning these missing and refused inputs, the
dataset now contains 367320 clean records. Then, the dataset
is divided into two sections including input and target. Input
contains 12 features and the target contains the feature that has
heart disease information. The target column is encoded into
two categories such as class 0 represents healthy cases and
class 1 represents heart disease cases. Then the two sections
input and target are divided with a split ratio of 51.22% for
training and 48.78% for testing. This unusual distribution was
chosen to obtain acceptable outcomes from heavily unbalanced
data. There are initially 172472 records of healthy cases and
15662 records of heart disease cases in the train set. Similarly,
the test set included 172473 records of healthy cases and
6713 records of heart disease cases. After balancing the train
set using the Synthetic Refinement Pipeline, the train set
now contains 172472 records of healthy cases and 173404
records of heart disease. Accordingly, the proposed model is
tested on the BRFSS 2020 dataset that contains 46640 records
(healthy: 44665 records, heart disease: 1975 records) after
preprocessing. Similarly, the proposed model is also tested
on the BRFSS 2021 dataset that contains 369767 records
(healthy: 350042 records, heart disease: 19725 records) after
preprocessing.

The equations for the Synthetic Refinement Pipeline:

(Xfinal, yfinal) = EnhanceBalance(Xtrain, ytrain) (1)

Here, operator EnhanceBalance uses a dynamic mix of
oversampling and undersampling to improve the balance
across classes.

Xmin oversampled = Xmin ∪ Synthesize(Xmin) (2)

Xmin us, Xmaj us = RemoveTomekLinks(Xmin os, Xmaj) (3)

Here, ADASYN oversampling (os) procedure is Synthesize,
while the Tomek Links undersampling (us) process is
RemoveTomekLinks.

The Synthetic Refinement Pipeline is like a makeover for the
dataset to enhance the balance. To address the class imbalance,
it adds more variations to the minority class (heart disease)
by creating diverse copies of these, balancing the predictive
classes. Next, it removes unnecessary connections between the
newly added data and the majority (healthy cases), creating
a harmonious distribution of data. This dynamic process of
adding and adjusting records, done through the Enhance-
Balance method, ensures that the final train set has a better
mix of both predictive classes (healthy and HD), making it fair
and ready for training in artificial intelligence (AI) models.

VII. MODEL ARCHITECTURE

A custom GrowNet was proposed to predict heart disease
from heavily unbalanced survey data. GrowNet is a method for
improving neural networks by progressively adding and refin-
ing neurons during training, increasing the model’s capacity
to learn and predict accurately shown in Fig 2.

The equations for the proposed GrowNet model:

dense1 = GrowLayer(W1 · xinput + b1) (4)

This equation reflects the initial dense layer’s (dense1) output
in the GrowNet tabular model. The input is multiplied by the
weight matrix (W1), and the output is fed into the GrowLayer
activation function with bias (b1).

grow layeri = GrowLayer(Wi · xinput + bi) (5)

densei = BN(DO(Concat([densei−1, grow layeri]))) (6)

These equations explain the extra GrowNet layers
(grow layeri and densei) where i vary from two to three. The
grow layer is computed similarly to the initial dense layer,
while the dense layer incorporates batch normalization (BN),
dropout (DO), and concatenation (Concat) with the preceding
dense layer.

output = Dense(Woutput · densefinal + boutput, sigmoid) (7)

This equation corresponds to the GrowNet tabular model’s
output layer (output). It employs a final dense layer with a
sigmoid activation function to generate the model’s prediction.
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Fig. 2. Architecture of the proposed GrowNet model.

GrowNet Tabular = Output(densefinal) (8)

This equation explains the general structure of the GrowNet
tabular model, with the ultimate output coming from the last
dense layer.

The input layer of the Grow Neural Network design receives
data in a given format. Employing the ReLU activation func-
tion, the GrowLayer is the first dense layer with 256 units. To
standardize inputs, batch normalization is used, and dropout at
a rate of 0.5 is used to avoid overfitting. There are two more
GrowNet layers in the network, each of which doubles the total
number of units. GrowLayer, batch normalization, and dropout
form these layers. Every GrowLayer’s output is concatenated
with the dense layer previous to it. Lastly, a dense layer with
one unit and a sigmoid activation function forms the output
layer, which is appropriate for applications involving binary
classification. The architecture uses regularisation techniques
like batch normalization and dropout to prevent overfitting and
attempt to capture complicated patterns in the input data.

VIII. EXPERIMENT AND RESULT ANALYSIS

A wide range of performance matrices [26] are used to
analyze and compare the ability of the proposed prediction
model. The balanced dataset refined through the Synthetic
Refinement Pipeline was used in this section. First, training

and validation metrics of the proposed GrowNet model, such
as accuracy and loss, are measured at the epoch level. Further,
the specificity and sensitivity of all the applied models are
computed from datasets that are both unbalanced and balanced
to measure the progress. The Area Under the Receiver Oper-
ating Characteristic (AUC) curves for all the applied models
are assessed in the next section. Finally, the confusion matrix
for the proposed GrowNet model was determined. Besides,
confusion matrices for different models that outperformed
other models using a traditional approach to address class
imbalance are determined. This will provide an overview of
the significance of the proposed sampling pipeline (Synthetic
Refinement) in comparison to alternative strategies to handle
class imbalance. Additionally, the confusion matrices for the
proposed GrowNet model when tested on BRFSS 2020 and
BRFSS 2021 datasets, are also figured.

Equations to compute the specificity [26] and sensitivity
[27]:

Specificity =
TrueNegatives

TrueNegatives+ FalsePositives
(9)

Sensitivity =
TruePositives

TruePositives+ FalseNegatives
(10)

Specificity indicates how well a model correctly identifies
those who don’t have a probability of heart disease, and sensi-
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TABLE III
Specificity and sensitivity from raw and balanced data (stabilized using Synthetic Refinement Pipeline).

Approaches Training on Raw Data Balanced Training
Specificity Sensitivity Specificity Sensitivity

DT 0.98 0.35 0.75 0.68
AdaBoost 0.99 0.26 0.69 0.84

MLP 0.98 0.42 0.68 0.85
RF 1.00 0.00 0.66 0.86

ANN 0.98 0.43 0.64 0.88
CNN 0.98 0.42 0.76 0.76
GNB 0.89 0.65 0.84 0.70

RUSBoost 0.84 0.71 0.81 0.73
GrowNet 0.98 0.41 0.74 0.81

tivity shows how well a model correctly identifies those who
have a probability of heart disease. The obtained specificity
and sensitivity across different approaches are shown in Table
III. When trained on raw data, a boosting model (Random
Undersampling Boosting) obtained balanced specificity and
sensitivity. However, a Grow neural network-based model was
proposed which obtained the most optimal specificity and
sensitivity when trained on a stabilized dataset (balanced using
a Synthetic Refinement Pipeline). The average performance of
Random Undersampling Boosting (RUSBoost) initially looked
better than the proposed GrowNet. However, the main inten-
tion of this study is to obtain better recall for the minority class
while maintaining a balanced recall for the majority class. The
proposed GrowNet model obtained a significantly higher recall
for the heart disease class (minority class) than the RUSBoost
and also maintained a balanced recall for the healthy class
(majority class). A few models such as Adaptive Boosting
(AdaBoost), Multilayer Perceptron (MLP), Random Forest
(RF), and Artificial Neural Network (ANN) obtained higher
recall for the heart disease class than the proposed GrowNet
but also performed very poorly in predicting the healthy class
with obtained recall below 70%. Hence, outcomes obtained
from the proposed GrowNet were more optimized in balancing
the recall for both classes prioritizing the minority class.

Fig. 3. Training and validation phases within each epoch.

The training and validation phases are shown in Fig 3.
The training phase went smoothly as the training dataset was
balanced using a Synthetic Refinement Pipeline. However, few
spikes were seen for validation losses and accuracies as there
was a huge imbalance between the prediction classes in the
test dataset. The highest validation accuracy of over 0.86 was
obtained at epoch 5.

Fig. 4. AUC curves for all the applied models.

The Area Under a Receiver Operating Characteristic (ROC)
curve provided in Fig 4 depicts a model’s ability to distinguish
between two predictive classes (healthy and HD cases). A
higher AUC score indicates better overall performance in heart
disease prediction. The AUC curve for GrowNet rises from the
bottom-left corner which indicates higher true positive rates
and lower false positive rates. This demonstrates that GrowNet
is better at distinguishing between predictive classes (healthy
and HD). Besides, the proposed grow network-based model
outperformed the other applied models, displaying the highest
AUC scores above 0.87.

The normalized confusion matrices in Fig 5 depicts the
proportion of correct predictions for each predictive class in
the heart disease prediction. All the models are evaluated using
different approaches for balancing the class imbalance such as
Random Oversampling (ROS), Random Undersampling (RUS)
[14], Synthetic Minority Oversampling Technique (SMOTE)
[1], Adaptive Synthetic Sampling Approach for Imbalanced
Learning (ADASYN) [13], Tomek-Links [1], Edited Nearest
Neighbors (ENN) [13], SMOTE Edited Nearest Neighbors
(SMOTEENN) [13], Near-Miss [13], SMOTE Undersampling
[1], Cost-Sensitive Learning (CSL) [29], and proposed Syn-
thetic Refinement Pipeline (SRP). For each sampling ap-
proach, the optimal confusion matrix achieved through a
particular model is shown in this section. The proposed
GrowNet model, trained on balanced data using the Synthetic
Refinement Pipeline (SRP), obtained the most optimized recall
in identifying heart disease cases across the BRFSS2022
dataset while maintaining a balance with the recall of healthy
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Fig. 5. Confusion matrices for different sampling approaches. For any
sampling strategy, the ideal confusion metric mentioning the model is shown
here.

cases. The Convolutional Neural Network (CNN) model using
cost-sensitive learning (CSL) obtained 92% recall for the heart
disease class but obtained a very low around 58% recall for
the healthy class. This approach obtained better recall for the
heart disease class than the proposed GrowNet but was still not
optimized for its significantly poor performance in predicting
the healthy class. Besides, other applied approaches obtained
less recall for the heart disease class compared to the proposed
GrowNet’s recall in this regard. The main focus of this study
is the minority class which is the heart disease class. Hence,
the proposed GrowNet model performed in a more optimized
way than other models. Additionally, the proposed model also
obtained optimal recalls for heart disease cases across the
BRFSS2020, and BRFSS2021 datasets, while also balancing
the recall for healthy cases.

A. Explainability

The sensitivity of the proposed model towards each input
feature is analyzed here using SHapley Additive exPlanations
(SHAP) [23] [24] [25]. First, the impact of all the input
features is measured using the SHAP summary plot. This
demonstrates the impact of each input category inside se-
lected features hueing the predictive classes (healthy and HD).
However, the features that have multiple categories inside are
thoroughly discussed next for clear observations using the
SHAP dependence plot. Next, the impacts of smoking, chew-
ing tobacco, and e-cigarettes on heart disease are measured
using the SHAP values.

The effects of the input features are shown in Fig 6.
Individuals who have a history of heart attack, diabetes,

Fig. 6. Feature effects on heart disease using the SHapley Additive
exPlanations (SHAP). For the binary features, blue indicates individuals with
a history of these diseases and red indicates individuals who have no issue in
these regards. Age groups contain six categories (young adults, early adults,
mid adults, late adults, mature adults, and elderly). The diabetes column
contains four categories (diabetes, during pregnancy, no diabetes, and pre-
diabetes). The BMI column contains four categories (underweight, normal
weight, overweight, and obese). The smoking status contains four categories
(chain smoker, irregular smoker, former, and never). The tobacco usage
column contains three categories (regular, irregular, and no). The e-cigarette
column contains four categories (never, regular, irregular, and former). The
color hues vary from blue to purple to red for the input categories in multiclass
features.

depressive disorder, chronic bronchitis, stroke, renal issues,
and asthma have a significant impact on the prediction of
heart disease cases. Further, age groups and BMI categories
have a good influence on heart disease prediction. Accordingly,
health habits including smoking status, tobacco usage, and
e-cigarettes have also a significant impact on the prediction
of heart disease. The influence of each category for the
binary columns is clearly visible. However, detailed analyses
are required to understand the influence of the categories in
multiclass columns which will be discussed in the next section.

Fig. 7. Effect of each category in multi-class features on heart disease
using the SHapley Additive exPlanations (SHAP).
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The impact of each category inside BMI, age group, and
diabetes are shown in Fig 7. The elderly group has a greater
contribution in predicting heart disease cases. Besides, elderly
individuals with myocardial infarction (MI) contributed to
predicting heart disease cases. Accordingly, the elderly with
diabetes have a significant contribution in predicting heart
disease cases. Similarly, females having diabetes during preg-
nancy have also contributed to predicting heart disease cases.
Lastly, the obese condition in different age groups has a greater
influence on predicting heart disease cases.

Fig. 8. Effects of smoking, chewing tobacco, and e-cigarettes on heart
disease using the SHapley Additive exPlanations (SHAP)

The impact of each category inside smoking, chewing to-
bacco, and e-cigarettes are shown in Fig 8. Young individuals
with chain-smoking habits have a significant contribution in
predicting heart disease cases. Accordingly, individuals with a
habit of chewing tobacco have also contributed to predicting
heart disease cases. Individuals with myocardial infarction in
this category seem to have a minimal impact on the prediction
of heart disease cases. Besides, Individuals with a habit of
using e-cigarettes have an influence on the prediction of
heart disease cases. The smoking transition column has been
formed by performing feature engineering in the three columns
including smoking status, chewing tobacco, and e-cigarettes.
Lastly, the transition from cigarettes to chewing tobacco and e-
cigarettes drastically reduces the prediction influence of heart
disease cases among the elderly.

IX. DISCUSSION

The study has brought to light some important gaps in
the body of research on the use of artificial intelligence (AI)
in the prediction of heart disease. In the validation phases,
the proposed GrowNet model has fluctuating outcomes. The
training of the model was conducted on a synthetic balanced
dataset. However, the test set was heavily unbalanced (172473
healthy and 6713 HD cases). So, the proposed model faced
fluctuating outcomes when it introduced to heavily unbalanced
train set. Srinivasan et al. [4] conducted a study that obtained
above 0.97 of specificity and sensitivity but tested on very

limited data, around 150 samples. Similarly, Chandrasekhar
et al. [5] conducted a study that obtained an average recall of
0.97 but also tested on very limited data around 88 healthy and
96 HD records. However, Akkaya et al. [5] conducted a study
employing SMOTE-Tomek Link to handle class imbalance.
However, the obtained specificity (0.97) and sensitivity (0.27)
were unbalanced when tested on a large dataset (51884 healthy
and 4175 HD cases) [5]. In this way, the performance of
the model can decrease when tested across real scenarios
(unbalanced) [5] [6]. Nevertheless, the proposed GrowNet
model obtained balanced specificity (0.74) and sensitivity
(0.81) across a heavily unbalanced test set (172473 healthy
and 6713 HD cases) using a Synthetic Refinement Pipeline
to handle class imbalance. Besides, the proposed GrowNet
model obtained comparatively balanced outcomes such as
specificity (0.77, 0.87), and sensitivity (0.79, 0.77) across the
other two versions of the dataset with 46640 and 369767
records respectively. The RUSBoost model seemed to have
similar performance as the proposed GrowNet but the recall
for the minority class (heart disease class) was comparatively
lower (0.73) than the GrowNet model’s recall (0.81). The heart
disease class is the most important in this study. Besides, the
AUC score of the GrowNet (0.8709) was significantly better
than the RUSBoost (0.7697). Similarly, the AUC score of
ANN is almost the same as the GrowNet model but the recalls
were heavily unbalanced (healthy: 0.64, HD: 0.88). Hence, the
proposed GrowNet model obtained the most optimized and
considerable outcomes compared to other models.

Additionally, risk factors for heart disease are identified
by applying explainable AI (XAI) to the proposed GrowNet
model. Individuals who have a history of heart attack, diabetes,
obesity, depressive disorder, chronic bronchitis, stroke, renal
issues, and asthma seemed to have a high SHAP [15] [16]
probability score to predict heart disease cases. There is a
link between these medical conditions and the heart. Hence,
a person’s risk of developing heart disease can be raised by
any of these conditions. Further, tobacco products including
cigarettes, chewing tobacco, and e-cigarettes have an influence
in the predicting of heart disease cases. These products can
harm the condition of an individual’s heart. Hence, consuming
these products regularly can be a significant risk factor for
heart disease. Accordingly, individuals who started to use
chewing tobacco or e-cigarettes instead of cigarettes seemed
to have a significantly lower SHAP probability score than
smokers. Hence, this can be stated that e-cigarettes or chewing
tobacco have less influence on heart disease than cigarettes.
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