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Abstract (300 words max): (297) 

Immigrants and refugees seeking admission to the United States must first undergo an overseas medical 

exam, overseen by the US Centers for Disease Control and Prevention (CDC), during which all persons 

≥15 years old receive a chest x-ray to look for signs of tuberculosis. Although individual screening sites 

often implement quality control (QC) programs to ensure radiographs are interpreted correctly, the CDC 

does not currently have a method for conducting similar QC reviews at scale. 

 

We obtained digitized chest radiographs collected as part of the overseas immigration medical exam. 

Using radiographs from applicants 15 years old and older, we trained deep learning models to perform 

three tasks: identifying abnormal radiographs; identifying abnormal radiographs suggestive of 

tuberculosis; and identifying the specific findings (e.g., cavities or infiltrates) in abnormal radiographs. 

We then evaluated the models on both internal and external testing datasets, focusing on two classes of 

performance metrics: individual-level metrics, like sensitivity and specificity, and sample-level metrics, 

like accuracy in predicting the prevalence of abnormal radiographs. 

 

A total of 152,012 images (one image per applicant; mean applicant age 39 years) were used for model 

training. On our internal test dataset, our models performed well both in identifying abnormalities 

suggestive of TB (area under the curve [AUC] of 0.97; 95% confidence interval [CI]: 0.95, 0.98) and in 

estimating sample-level counts of the same (-2% absolute percentage error; 95% CIC: -8%, 6%). On the 

external test datasets, our models performed similarly well in identifying both generic abnormalities 

(AUCs ranging from 0.89 to 0.92) and those suggestive of TB (AUCs from 0.94 to 0.99). This performance 

was consistent across metrics, including those based on thresholded class predictions, like sensitivity, 

specificity, and F1 score.  

 

Strong performance relative to high-quality radiological reference standards across a variety of datasets 

suggests our models may make reliable tools for supporting chest radiography QC activities at CDC.  

 

Abbreviations 

AI, artificial intelligence; AP, anterior-posterior; AUC, area under the ROC curve; CDC, Centers for 

Disease Control and Prevention; M; CNN, convolutional neural network; DGMH, Division of Global 

Migration Health; HaMLET, Harnessing Machine Learning to Eliminate Tuberculosis; IOM, International 

Organization for Migration; IRHB, Immigrant and Refugee Health Branch; MiMOSA, Migrant 
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Management Operational System Application; MTB, Mycobacterium tuberculosis, NLP, natural language 

processing; NAAT, nucleic acid amplification testing; OCR, optical character recognition; PII, personally-

identifiable information; PPV, positive predictive value; QC, quality control; ROC, receiver operating 

characteristic; TPP, target product profile; WHO, World Health Organization 

  

Introduction 

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (MTB) that typically affects 

the lungs.
11

Those who are infected but do not show symptoms have latent tuberculosis infection (LTBI) 

and may never develop tuberculosis disease. LTBI is not infectious but still needs to be treated to 

prevent the progression into tuberculosis disease. Tuberculosis disease causes coughing, chest pain, 

fatigue, weight loss, fever, and many other symptoms, and is contagious.
22

 It is the 13
th

 leading cause of 

death in the world, and the second leading infectious killer after COVID-19.
1
 In the United States, 

tuberculosis rates have been declining, and the tuberculosis incidence rate for 2021 was 2.4 cases per 

100,000 persons, with the majority of reported cases occurring among non-US–born persons (71.4%). 

Non-US born persons had an incidence rate 15.8 times higher (12.5 cases per 100,000) when compared 

to US-born persons (0.8 cases per 100,000).
3
 

 

Every year, approximately 550,000 immigrants and refugees apply to enter the United States. The 

Division of Global Migration Health (DGMH) within the Centers for Disease Control and Prevention (CDC) 

has regulatory responsibility to oversee the medical examinations of these applicants. The examinations 

are conducted overseas in accordance with CDC DGMH’s Technical Instructions for panel physicians. All 

panel physicians are licensed local medical doctors on an agreement with the US Department of State to 

perform these examinations, and many are affiliated with the International Organization for Migration 

(IOM), an intergovernmental agency under the United Nations system that supports migrants. IOM 

works closely with US Department of State and CDC to ensure the healthy migration of US-bound 

immigrants and refugees. 

 

DGMH’s Technical Instructions for tuberculosis seek to prevent disease importation by detecting and 

treating infectious tuberculosis before arrival, and to reduce tuberculosis-related morbidity and 

mortality in these populations. Requirements include a medical history and physical examination. All 

applicants 15 years and older receive chest x-rays, and anyone with a chest x-ray suggestive of 

tuberculosis, signs or symptoms suggestive of tuberculosis, or known HIV, then has three sputum 

specimens collected for smears and cultures
.4,5

  
 

In September 2018, DGMH began receiving digital copies of chest x-ray images from panel sites. This 

was due to the rollout of the eMedical system, an electronic health processing system that collects data 

from the required overseas immigrant examinations. In 2018 alone, 124,551 images for 521,270 

applicants were collected, raising the possibility of using machine learning methods to complement 

DGMH’s already effective oversight for the radiologic components of tuberculosis screening for US-

bound immigrants and refugees.
6
 

 

Brief overview of AI for Chest radiography 

Artificial intelligence (AI), especially as enabled by deep learning algorithms, has been widely studied for 

applications in medical imaging. Examples include diabetic retinopathy
7
, cardiovascular risk prediction

8
, 

cancer histopathology
9-11

, and imaging for musculoskeletal
12,13

, cardiac
14

, and pulmonary
15

conditions. 

Models are typically designed for diagnostic tasks, like segmenting anatomical structures or indicating 

the presence of disease, but they have also been designed for prognostic tasks, like predicting survival 

time for patients from histopathology whole-slide images.
16
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In chest imaging, applications have generally focused on identifying abnormalities associated with 

specific diseases, like pneumonia
,17,18

, COVID-19
19

, lung cancer
20,21

, and tuberculosis.
15,17,22 

Recent 

work
23,24

 has broadened the scope to include abnormalities in general. Studies focusing on tuberculosis 

have ranged from the narrow evaluation of specific models (typically commercial) on relatively small 

test sets
25,26

 to the development of original algorithms from custom largescale training sets.
23,27,28 

The 

references standards for these studies are often mixed, comprising radiological findings, clinical 

diagnoses, microbiological testing, and nucleic acid amplification testing (NAAT).  

 

Of special note, when laboratory tests are used as reference standards, model performance tends to 

drop relative to performance against a radiological standard; however, a small number of models have 

met the World Health Organization’s (WHO) Target Product Profile (TPP) for tuberculosis triage tests at 

90% sensitivity and at least 70% specificity
26,29

 relative to NAAT or culture, even when testing does not 

rely on initial radiographic interpretation to identify images with abnormalities (see Khan 2020 and Qin 

2021, where all study participants received both a chest x-ray and either a GeneXpert MTB/RIF test or a 

sputum culture upon enrollment).
26,30

 

 

 

Project goal 

The primary use-cases of models in the literature have mostly been clinical decision support and 

workflow improvement, with special emphasis on individual-level classification performance (often as 

measured by AUC), interpretability, and usability. With respect to TB, emphasis has also been placed on 

the potential benefit for models to bolster TB screening and diagnosis in low-resource settings, e.g., by 

rank-ordering radiographs in batches by their probability of disease to guide manual review. For this 

project, we evaluated our models’ ability to meet these goals, and we also sought to evaluate their 

performance in estimating sample-level prevalence, i.e., in predicting the number of abnormal x-rays in 

a given batch. These measures mirror two important operational use-cases of the model in the overseas 

screening program: supporting panel physicians in providing high-quality initial reads during the exams 

(an unplanned but potentially impactful application), and enabling DGMH to conduct quality control 

(QC) with the radiographs once they have been collected (the primary focus of our current project).  

 

To achieve our goals, we trained and validated models for performing three tasks: classifying images as 

abnormal (Task 1), classifying images as abnormal and suggestive of tuberculosis (Task 2), and 

identifying the specific abnormalities in the images (Task 3) (we use the same numbering scheme to 

identify the corresponding models). To meet the two use-cases above, we tested our models on a 

variety of data sets, both internal and external, and we measured their performance using two 

operating points, one chosen to optimize individual-level classification performance, and one chosen to 

optimize accuracy in predicting prevalence. Although we did not formally test abnormality localization 

methods, e.g., via object detection models, we implemented a number of common saliency methods for 

visualizing suspected abnormalities on the input images to improve model interpretability and pilot 

interactive methods for manual review. 

  

Methods 
Internal dataset curation and description 
For our internal datasets (hereafter HaMLET , from our project title, Harnessing Machine Learning to 

Eliminate Tuberculosis), we obtained an initial convenience sample of 327,650 digitized radiographs 

from four sources: eMedical, the US Department of State’s immigrant health data system, a web-based 

application for recording and transmitting immigrant medical cases between the Panel Physicians, US 
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Department of State, and the CDC
31

; the Migrant Management Operational System Application 

(MiMOSA), the International Organization for Migration’s (IOM) refugee health data system; IOM’s 

Global Teleradiology and Quality Control Centre (GTQCC); and a small number of individual US 

immigrant panel sites that screen a relatively high number of applicants with tuberculosis each year (site 

names are provided in the Acknowledgments). Importantly, all these sites have experienced radiologists 

and most conduct either double or triple readings on all chest x-ray images as a measure of quality 

control. Regardless of source, all radiographs were stored as Digital Imaging and Communications in 

Medicine (DICOM) files, and all radiographic findings were extracted directly from the structured entries 

in the DS-3030 Tuberculosis Worksheet
32

 instead of from free-text radiology reports by way of natural 

language processing (NLP).  

 

The set assembled for this project was taken from screenings conducted during a ten-year period from 

October 2011 to October 2021 and not exclusively from the digitized radiographs routinely received by 

DGMH since 2018 (Supplemental Table 2 shows the distribution of exams by region and year). The 

digitized radiographs began in 2018 due to the eMedical rollout, but we also received screenings directly 

from private immigrant panel sites and from IOM that predated the eMedical rollout. We excluded 

radiographs from applicants less than 15 years of age (n=52,523), as well as those stored in DICOM files 

whose pixel arrays were missing, corrupt, or otherwise unreadable by the software we used for 

extraction (n=107,115) (Figure 1 shows a flow diagram providing a detailed numerical accounting of 

these two exclusion steps). The remaining 168,012 radiographs constituted our final dataset, which we 

split into training, validation, and testing portions following the procedure described below. 

 

Radiologist annotations 

Chest radiograph abnormalities for the immigration exam fall into one of two groups: those suggestive 

of tuberculosis and those not. Abnormalities suggestive of tuberculosis include: infiltrates or 

consolidations; reticular markings suggestive of fibrosis; cavitary lesions; nodules or mass with poorly 

defined margins; pleural effusions; hilar or mediastinal adenopathy; miliary findings; discrete linear 

opacities; discrete nodule(s) without calcification; volume loss or retraction; and irregular thick pleural 

reaction. Abnormalities not suggestive of tuberculosis include cardiac, musculoskeletal, or other 

abnormalities; smooth pleural thickening; diaphragmatic tenting; calcified pulmonary nodules; and 

calcified lymph nodes.  

 

Most abnormal images in our internal validation and test sets were suggestive of tuberculosis. Although 

we did benchmark our generic model against two open datasets with a wider range of abnormalities 

(described below), we focused primarily on the tuberculosis classification task for our analysis. 

Importantly, however, because only a small number of the abnormal images (1,551) were from 

applicants with active tuberculosis at the time of screening—the vast majority were from applicants who 

had previously been screened, diagnosed with tuberculosis, and received treatment, or whose 

tuberculosis sputum testing results were negative—we chose not to benchmark our models against a 

microbiological or bacteriologic reference standard, focusing instead on a purely radiological reference 

standard. 

 

External test sets 

To supplement our internal testing data, we benchmarked our binary models 1 and 2 on four external 

datasets: ChestX-ray8
33

; the Montgomery County, USA (MCU) and the Shenzhen, China (SHN) 

tuberculosis datasets
34 

; and VinDr-CXR.
35

 VinDr-CXR was the largest with 2,971 images in total, 161 of 

which were suggestive of tuberculosis; the others ranged in size from 138 images (MCU) to 810 images 

(ChestX-ray8). For all datasets, we use the testing splits specified in their original publications, and the 
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original labels, with the exception of ChestX-ray8, for which we use the refined test labels provided by 

Google
23,27

.  

 

MCU, SHN, and VindDr-CXR had labels indicating the suggested presence of tuberculosis (reference 

standards varied by dataset and included radiographic, clinical, and laboratory evidence of disease), but 

only ChestX-ray8 and VinDr-CXR also had labels indicating a variety of other abnormalities. Because of 

this imperfect overlap between our classification tasks and the labels in the datasets, VinDr-CXR is the 

only dataset on which we test both binary models (1 and 2); for the other three, we test only Model 1 

(ChestX-ray8) or Model 2 (MCU and SHN).  

 

Dataset splitting 

For our internal data, we began with 168,012 images in total, which we then randomly split into training 

(152,012; 15% abnormal), validation (8,000; 50% abnormal), and testing (8,000; 50% abnormal) sets, 

following a sample size calculation we used to determine the number of images we would need to 

achieve a 5% margin of error in estimating sensitivity (technical details on the procedure are provided in 

the Supplemental Methods). Training images were single-read images randomly drawn from all sites. 

Testing and validation images for Task 2 had either been double-read as part of the IOM Teleradiology 

QA/QC program or single-read at a handful of panel sites in areas with high TB burden.  

 

For ChestX-ray8, we reserved an additional 8,000 images from the original training data to serve as 

validation data for Task 1 (in our internal validation dataset, abnormalities not suggestive of tuberculosis 

were underrepresented, as the abnormal images were almost always abnormal and suggestive of 

tuberculosis).  

 

Operating point selection 

When validation data was available, we used it to select two operating points for thresholding the 

models’ predictions on the corresponding test sets: one that maximized Youden’s J index (all tasks), and 

one that minimized the relative error in predicted prevalence (Tasks 2 and 3 only). We named these two 

operating points the “J” and “count” operating points, respectively. Because the proportion of abnormal 

images in our internal test set was different than the corresponding proportion in the training set, the 

latter being generally representative of the screening program’s data distribution over a multiyear 

period of time, the count-based operating points were selected using a reweighting scheme that 

minimized error in predicting the proportion from the training set using the model’s performance 

characteristics (sensitivity and specificity) on the validation set; this procedure is described in full in the 

Supplemental Methods. Finally, when validation data was not available, as was the case for all external 

datasets except for ChestX-ray8, we selected a single operating point that maximized Youden’s J index 

on the test sets. We provide all operating points in Supplemental Table 2.  

 

Image preprocessing 

After discarding DICOM files with corrupt pixel arrays, we extracted the pixel arrays and saved them as 

1024x1024-pixel PNG files. We then used optical character recognition (OCR) software to identify 

images with evidence of burned-in patient metadata and removed them from the dataset. We describe 

both of these procedures more fully in the Supplemental Methods. 

 

Model architecture and training procedures 
To improve the model’s ability to generalize to unseen data, we used a custom image augmentation 

layer as the input layer, randomly perturbing brightness, contrast, saturation, and other characteristics 

to the radiographs during training; value ranges for these perturbations were taken from Majkowska et 
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al. 2020 and remained fixed during training.
27

 For the feature extractor, we used EfficientNetV2M
36

, 

which was pretrained on ImageNet.
37

 The final layers in our model were a dropout layer (probability = 

0.5, held fixed) and then a dense layer with a sigmoid activation and binary cross-entropy loss. 

 

We trained all models in minibatches of 12 images (4 per GPU) with the Adam
38

 optimizer and a fixed 

learning rate of 1e-4. For all tasks, we allowed training to continue until AUC began to decrease on the 

validation data at which point we saved the model weights and proceeded to testing. 

 

Statistical inference 
We calculated common classification performance metrics for all models and test sets, including AUC, 

sensitivity, specificity, and F1. For tuberculosis-specific datasets, we also calculated specificity at 90% 

sensitivity and sensitivity at 70% specificity, in line with the WHO’s TPP for tuberculosis triage tests for 

use in community settings. For the HaMLET test set, we calculated the model’s relative error in 

predicting prevalence (i.e., the true number of abnormal-TB images), mirroring our primary operational 

use-case for the model as a tool for internal QC activities.  

 

For all metrics, we calculated bias-corrected and accelerated (BCA) bootstrap confidence intervals
39

,
39

 

down-sampling abnormal images in the bootstrap replicates so the percentage of abnormal images in 

each was equal to the percentage in the training data (target percentage for each task provided in Table 

1; see the Supplemental Methods for more details). We did not adjust the intervals for multiplicity. 

 

Abnormality localization 

We used two saliency methods, Grad-CAM
40 

and XRAI
41

, to generate abnormality heatmaps for the 

images. We examined a small selection of the heatmaps for true-positive and false-positive images 

(abnormal and normal images, respectively, with high model-based probabilities of abnormality) to 

explore their use as approximate abnormality localization methods. Because we did not have ground-

truth bounding box annotation for the images, this step was primarily exploratory. 

 

Software and Hardware 
Our code is publicly available at https://github.com/cdcai/hamlet.git. Complete information on the 

software and hardware used is available in the Supplemental Methods. 

 

Ethical considerations 

This project was proposed, reviewed, and approved in accordance with CDC institutional review policies 

and procedures. Because it received a non-research determination, review by an institutional review 

board was not required. Neither trained model weights nor raw images will be made publicly available 

to protect applicant privacy.  

 

Results 
Demographic characteristics of our study sample 

Table 1 shows the demographic characteristics of the applicants in our study sample, and where their 

screening exams were conducted. Overall, 55% of the applicants were women, and most (64%) were 

between the ages of 15 and 44. Applicants 65 years and older were the rarest, constituting 7% of both 

the overall and training data, followed by applicants between 55 and 64 (12%) and those between 45 

and 54 (15%). In our validation and test sets, applicants in the youngest age group (15 to 24) were 

underrepresented (19% in each), while those in the oldest age group (65 and over) were 

overrepresented (13% in each), relative to the age distribution in both the overall sample and the 

training data. 
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Geographically, most of the exams were conducted in Asia (46%), with Southeastern Asia (20%), 

Southern Asia (13%), and Eastern Asia (7%) being the three primary contributors to the region. By sub-

region, most exams were conducted in Latin America and the Caribbean (23%), which was the main 

contributor to exam volume in the Americas region (26% of exams overall). By contrast, Oceania (1%) 

and Europe (9%) had the smallest representation by volume. In our validation and test datasets, these 

percentages changed substantially, with Latin America and the Caribbean contributing 60% of the 

images to both, and Southeastern and Southern Asia contributing 31%, with the remaining 9% 

comprising images from Africa (6%) and Europe (3%). 

 

By data source, the majority of our images (88%) came from eMedical, the US Department of State’s 

immigrant health data system. Of the remaining images, 6% came from MiMOSA, IOM’s health data 

system, 3% from the IOM Teleradiology QC program, and 3% from our partner panel sites. Although the 

training dataset skewed heavily toward images from eMedical (92%), the validation and test datasets 

were evenly split between eMedical (50%) and the IOM Teleradiology QC program (25%) and our 

partner panels (25%). As mentioned above, the latter two primarily contributed images that were 

abnormal and suggestive of TB, and so we used eMedical as the source for normal images, noting that 

these latter images were also drawn from screenings performed by our partner panel sites and not from 

the system at random.  

 

Distribution of abnormalities 

Table 2 shows the distribution of general and specific findings across our internal training, validation, 

and test sets. In the training data, 12% of the images were abnormal and 5% were abnormal and 

suggestive of tuberculosis with 0.1% of images in the latter category from applicants who were either 

smear- or culture-positive for tuberculosis disease at the time of screening. In the validation and test 

sets, these percentages changed to 50%, 50%, and 9% respectively, both because we up-sampled 

abnormal images to increase precision in estimating sensitivity, and because we had requested 

additional images from smear- or culture-positive applicants from the IOM Teleradiology QC program 

and our partner panel sites to use for testing. 

 

By specific finding, the most common abnormalities were the discrete linear opacity (2.4% in training; 

20% in validation; 20% in testing) and the infiltrate or consolidation (1.4%; 30%; 30%). In the training 

data, the rarest abnormalities were miliary findings (<1%), cavitary lesions (0.1%), pleural effusions 

(0.1%), and hilar/mediastinal adenopathy (0.1%), all of which remained rare in the validation and testing 

data, despite the up-sampling of abnormal images.  

 

Binary classification performance 

Table 3 shows the performance metrics for our models on the two binary classification tasks. For Task 2, 

AUCs were consistently high, ranging from 0.99 (95% CI 0.97, 1.0) on MCU to 0.94 (0.93, 0.95) on VinDr-

CXR. Specificity at a sensitivity of 0.90 was similarly high, ranging from 0.83 (0.78, 0.87) on VinDr-CXR to 

0.98 (0.89, 1.0) on MCU, although for reasons we provide in the discussion, we do not suggest whether 

any of these would meet the WHO’s TPP for tuberculosis triage tests. With the count-based operating 

point, the model also fared well in predicting the number of abnormal images suggestive of tuberculosis 

in our internal test set, achieving a relative error of only -2% (-8%, 6%).  

 

Performance was similar, although slightly lower, on Task 1. On ChestX-ray8, the model achieved an AUC 

of 0.92 (0.90, 0.93) and an optimal sensitivity and specificity of 0.82 (0.78, 0.84) and 0.86 (0.81, 0.89); on 

VinDr-CXR, these numbers were 0.89 (0.88, 0.90), 0.89, (0.87, 0.90), and 0.73 (0.72, 75), respectively. 
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Because we did not have internal testing data for this task, we did not test this model with the count-

based operating point. 

 

Multilabel classification performance 

Table 4 shows the performance metrics for our models on Task 3. AUCs ranged from 0.78 (95% CI 0.73, 

0.8) in predicting discrete linear opacities to 0.96 (0.65, 0.99) in predicting pleural effusions. With the J 

operating point, sensitivity and specificity jointly reached 0.8 for four of the abnormalities: infiltrates, 

cavities, pleural effusions, and volume loss or retraction. For the other abnormalities, sensitivity at that 

operating point was higher than specificity, sometimes by a large margin (e.g., 0.91 sensitivity and 0.53 

specificity for discrete nodules without classification). Because most abnormalities were rare in our data, 

metrics that depend on prevalence, like PPV and F1, were consistently low, with F1 reaching a maximum 

of 0.13 (0.10, 0.15) for infiltrates and dipping as low as 0.00 (0.00, 0.01) for hilar adenopathies.  

 

With the count operating point, the model produced fairly accurate prevalence estimates for a number 

of the abnormalities, with three absolute relative errors under 10% (2% for infiltrates, -6% for discrete 

linear opacities, and -9% for both kinds of nodules), and three under 20% (12% for irregular thick pleural 

reactions, 17% for pleural effusions, and 19% for volume loss or retraction). We note here that 

operating point selection is crucial for accuracy on this task with relative errors rising by several orders 

of magnitude when the J operating point was used instead of the count operating point (Supplemental 

Table 2). 

 

Approximate abnormality localization 

Figure 2 shows Grad-CAM (second and third columns) and XRAI (fourth and fifth columns) for five 

radiographs correctly identified as abnormal by Model 1; the radiographs were drawn from the 

abnormal examples in ChestX-ray8, SHN, and VinDR-CXR. Figure 3 shows the same panel of heatmaps, 

but for five images incorrectly identified as abnormal, also by Model 1 and drawn from the same 

datasets. In general, the two methods identify similar regions of the radiographs as being abnormal, 

although they do occasionally diverge in both the extent and the severity of the highlighted regions.  

  

Discussion 

Applications of current models 
Our binary models showed strong results on our internal datasets at both of our chosen operating 

points. Although we do not currently intend for either model to be used for individual-level classification 

tasks, e.g., as part of the overseas immigration exam clinical workflow, their performance is on-par with 

top-performing models published in the literature, including several commercial products designed 

largely to detect radiographic signs of tuberculosis (see Codlin 2021 and Kik 2022).
42,43

 Performance on 

the external datasets also suggests that the models may generalize well to unseen data, even on tasks 

for which we did not have clean validation or testing data, like Task 1, on which our models come within 

two percentage points of what we believe to be the current state-of-the-art on AUC (0.92 from Model 1 

vs. 0.94 from Nabulsi et al. 2021).
23 

The main exception to this trend is Model 3, which despite achieving 

good AUCs in identifying many of the specific findings, is not likely to be clinically useful, at least in the 

population represented by our internal data, owing to the rarity of most of the findings and the model’s 

resulting poor PPV.  

 

A relatively clear use-case for our tuberculosis-specific models (2 and 3), however, is in estimating 

sample-level counts of abnormal images and, depending on the abnormality in question, specific 

findings. As a tool for conducting internal QC on radiographs read during the overseas immigration 

exam, we can imagine running the models on batches of incoming images and comparing their number 
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of positive calls to the number of reported abnormal radiographs, raising an alert when the difference in 

counts exceeds a predefined threshold and triggering a model-guided manual review for further 

investigation. In the case of Model 2, for example, which underestimated the number of abnormal 

images suggestive of tuberculosis in our internal test set by only 2%, a reasonable threshold might be +/- 

10%, just beyond the bounds of the 95% CI (-8% to 6%), and the corresponding manual review might 

begin with the images with the highest model-based probability of abnormality among those initially 

reported normal. This kind of process may be stratified by key operational variables, like exam site or 

country, and may also be informed by existing epidemiologic information, like the expected background 

rates of tuberculosis disease in the screening areas or site-specific historical rates of abnormal 

radiographs confirmed by earlier QC efforts.  

 

Directions for future research 

In our case, a natural first step for future research would be a follow-up validation study with manual 

review to explore our models’ utility tools for supporting internal QC efforts. A number of studies have 

examined the performance of already-trained models, mostly in the form of commercial software, in 

detecting abnormalities
43 

and, in certain cases, tuberculosis disease (Khan 2020; Qin 2021).
26,30

 To our 

knowledge, ours is the first study to propose evaluating models’ ability to estimate sample-level counts, 

and more evaluation would be needed before integrating them with existing QC workflows. A designed 

QC study would also allow for the evaluation of attribution methods, like the saliency heatmaps we 

produced for Figures 2 and 3, as tools for abnormality localization to assist with manual review, which 

only a small number of prior studies have rigorously addressed.
44,45 

 

Similarly, an operational analysis to decide when, where, and how to use the models to improve 

screening programs would fill a gap in the literature, which to date has focused primarily on examining 

model performance in clinical contexts rather than the downstream effects of incorporating them into 

larger workflows. Remaining problems include establishing best practices for selecting operating points 

by country or facility to optimize detection given local constraints on resources and background rates of 

tuberculosis; estimating minimum diagnostic performance needed to achieve cost-effectiveness and 

programmatic efficiency under different operating scenarios; and evaluating the epidemiologic and 

economic impact of allowing radiologists to use the models for decision support during the overseas 

screening exams. There is evidence that similar models can improve turnaround time
23

 or lower costs
29

 

associated with diagnostic workflows, and because of the scope of the CDC’s overseas screening 

program, these seem like potentially fruitful avenues of investigation. 

 

A final direction for future research is in developing and evaluating models for predicting active 

tuberculosis disease from chest radiographs in combination with relevant clinical, demographic, and 

immunologic information. To our knowledge, no model in the literature has been trained from the start 

to predict tuberculosis disease from the radiograph directly, although training datasets may use a mix of 

radiographic, clinical, and microbiological results as reference standards; and no model has been 

developed that accepts multimodal (i.e., non-radiographic) inputs. Given these limitations, performance 

in predicting tuberculosis disease is determined primarily by two pieces of information: a model’s 

performance in identifying images with abnormalities, and the correlation between the presence of 

those abnormalities and tuberculosis disease in the target population. Occasionally the correlation is 

high enough for models to meet the TPP, but often it is not, with observed specificities at 90% sensitivity 

ranging from well over 70%
26

 to 60% and below
25

 in several well-known commercial algorithms. Using 

other available information for prediction, whether by stacking an additional model on top of the image-

processing module or by altering the module itself to accept multimodal inputs, may yield diagnostic 

gains, not only because the approach mirrors the process by which clinical diagnoses are made and thus 
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seems a priori sensible, but also because patient characteristics like HIV status and history of 

tuberculosis are known to affect model performance based on the radiographs alone.
26,46

 Although 

some technical innovation may be required to make this approach feasible, it may well improve our 

ability to predict tuberculosis disease, especially in low-resourced settings where access to trained 

radiologists is limited, and thus seems well worth pursuing.  

 

Conclusion 

Using data collected from immigrants and refugees during overseas immigration exams prior to entry 

into the US, we trained and tested three deep learning models for identifying abnormalities on chest 

radiographs. The models performed well, achieving high scores on our internal test dataset, and nearing 

state-of-the-art on several external test datasets.  
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  All Training Validation Testing 

N % N % N % N % 

 Total 168,012 -- 152,012 90 8000 5 8000 5 

          

Age Group 15-24 37837 23 34797 23 1541 19 1499 19 

25-34 40715 24 37549 25 1567 20 1599 20 

35-44 28614 17 26035 17 1268 16 1311 16 

45-54 25581 15 23032 15 1302 16 1247 16 

55-64 19949 12 17581 12 1159 14 1209 15 

>=65 12029 7 9973 7 1050 13 1006 13 

N/A 3286 2 3044 2 113 1 129 2 

Sex F 92851 55 86364 57 3261 41 3226 40 

M 70826 42 65301 43 2742 34 2783 35 

N/A 4334 3 346 0 1997 25 1991 25 

Data Source
+

 IOM GTQCC 4334 3 346 0 1997 25 1991 25 

MiMOSA 10727 6 10727 7 0 0 0 0 

Private Panel Sites 4397 3 385 0 2003 25 2009 25 

eMedical 148553 88 140553 92 4000 50 4000 50 

Exam Region* Africa 29753 18 28854 19 430 5 469 6 

Americas 43296 26 33707 22 4803 60 4786 60 

Asia 77755 46 72722 48 2538 32 2495 31 

Europe 15369 9 14895 10 228 3 246 3 

Oceania 1453 1 1453 1 0 0 0 0 

N/A 385 0 380 0 1 0 4 0 

Exam Sub-

Region 

Australia and New 

Zealand 

1276 1 1276 1 0 0 0 0 

 
Central Asia 996 1 996 1 0 0 0 0 

Eastern Asia 11634 7 11634 8 0 0 0 0 

Eastern Europe 7884 5 7410 5 228 3 246 3 

Latin America and the 

Caribbean 

38336 23 28747 19 4803 60 4786 60 

Melanesia 172 0 172 0 0 0 0 0 

Northern Africa 4883 3 4882 3 0 0 1 0 

Northern America 4960 3 4960 3 0 0 0 0 

Northern Europe 1204 1 1204 1 0 0 0 0 

Polynesia 5 0 5 0 0 0 0 0 

South-eastern Asia 34368 20 30552 20 1912 24 1904 24 

Southern Asia 21561 13 20452 13 564 7 545 7 

Southern Europe 5020 3 5020 3 0 0 0 0 

Sub-Saharan Africa 24870 15 23972 16 430 5 468 6 

Western Asia 9196 5 9088 6 62 1 46 1 

Western Europe 1261 1 1261 1 0 0 0 0 

N/A 385 0 380 0 1 0 4 0 
+IOM GlobalGlobal Teleradiology and Quality Control Center (GTQCC) and the private panel sites all have their own internal quality control processes.  

*Exam Region:  

Africa: Algeria, Angola, Benin, Burkina Faso, Burundi, Cameroon, Cape Verde, Chad, Democratic Republic of the Congo, Republic of the Congo, Djibouti, Egypt, 

Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Malawi, Morocco, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, South Africa, Sudan, Tanzania, 

Togo, Tunisia, Uganda, Zambia, and Zimbabwe 

Americas: Argentina, Barbados, Belize, Bolivia, Brazil, Canada, Chile, Colombia, Costa Rica, Dominican Republic, Ecuador, Guatemala, Guyana, Haiti, Honduras, 

Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Trinidad and Tobago, and Uruguay 

Asia: Afghanistan, Azerbaijan, Bahrain, Bangladesh, Cambodia, China, Hong Kong, India, Indonesia, Iraq, Israel, Japan, Jordan, Kazakhstan, Republic of Korea, 

Kuwait, Kyrgyzstan, Laos, Lebanon, Malaysia, Mongolia, Myanmar, Nepal, Oman, Pakistan, Philippines, Saudi Arabia, Singapore, Sri Lanka, Taiwan, Tajikistan, 

Thailand, Turkey, Turkmenistan, United Arab Emirates, Uzbekistan, Vietnam, and West Bank 

Europe: Albania, Austria, Belarus, Belgium, Bosnia and Hercegovina, Bulgaria, Croatia, Cyprus, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, 

Hungary, Italy, Kosovo, Latvia, Lithuania, Malta, Moldova, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovak Republic, 

Slovenia, Spain, Sweden, Switzerland, Ukraine, and United Kingdom 

Oceania: Australia, Fiji, New Zealand, Papua New Guinea, and Tonga 
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Table 1. Distributions of age and sex for the applicants in our training, validation, and testing datasets, 

along with the geographic distribution of their corresponding health screening exam sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  All Training Validation Testing 

  N % N % N % N % 

Overall 

Classification 

Abnormal 25655 15.3 17655 11.6 4000 50 4000 50 

 Abnormal (Suggestive of 

TB) 

15156 9 7157 4.7 3999 50 4000 50 

Specific 

Findings 

Infiltrate or Consolidation 6970 4.1 2187 1.4 2397 30 2386 29.8 

 Reticular Findings 2215 1.3 895 0.6 663 8.3 657 8.2 

 Cavitary Lesion 455 0.3 130 0.1 164 2.1 161 2 

 Nodule or Mass with 

Poorly Defined Margins 

1297 0.8 521 0.3 400 5 376 4.7 

 Pleural Effusion 557 0.3 183 0.1 194 2.4 180 2.2 

 Hilar/mediastinal 

Adenopathy 

269 0.2 107 0.1 84 1 78 1 

 Miliary Findings 20 0 10 0 8 0.1 2 0 

 Discrete Linear Opacity 6718 4 3628 2.4 1528 19.1 1562 19.5 

 Discrete Nodule(s) Without 

Calcification 

1763 1 819 0.5 473 5.9 471 5.9 

 Volume Loss or Retraction 1346 0.8 558 0.4 398 5 390 4.9 

 Irregular Thick Pleural 

Reaction 

1317 0.8 513 0.3 401 5 403 5 

 Other 891 0.5 406 0.3 236 2.9 249 3.1 

TB Status* SM/CX+ at Prior Exam 9546 5.7 6973 4.6 1287 16.1 1286 16.1 

 SM/CX+ at Current Exam 1551 0.9 150 0.1 689 8.6 712 8.9 

*Positive TB Status (+) is defined as having positive sputum smear (SM) and/or culture (CX) results at either the latest 

recorded exam in the screening process (“Current”) or at one of the previous exams in the same (“Prior”). 

 

Table 2. Counts and proportions of radiographic findings suggestive of tuberculosis (TB) in our internal 

training, validation, and testing datasets. 
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 Dataset* Sensitivity Specificity PPV NPV J F1 AUC Spec@90 Sens@70 Rel. Prev. 

Diff. 

Abn. TB HaMLET  0.89 (0.86, 

0.92) 

0.93 (0.93, 

0.94) 

0.36 (0.32, 

0.39) 

1.0 (0.99, 

1.0) 

0.82 (0.79, 

0.86) 

0.51 (0.47, 

0.54) 

0.97 (0.95, 

0.98) 

0.92 (0.87, 

0.95) 

0.96 (0.94, 

0.98) 

-0.02 (-

0.08, 0.06) 

 VinDr-CXR 0.88 (0.83, 

0.91) 

0.85 (0.84, 

0.86) 

0.25 (0.23, 

0.27) 

0.99 (0.99, 

0.99) 

0.73 (0.68, 

0.77) 

0.39 (0.37, 

0.41) 

0.94 (0.93, 

0.95) 

0.83 (0.78, 

0.87) 

0.98 (0.95, 

0.99) 

--  

 Shenzhen 0.82 (0.78, 

0.85) 

0.98 (0.96, 

0.99) 

0.98 (0.96, 

0.99) 

0.84 (0.81, 

0.87) 

0.8 (0.76, 

0.85) 

0.89 (0.87, 

0.92) 

0.97 (0.96, 

0.98) 

0.91 (0.86, 

0.96) 

0.99 (0.96, 

1.0) 

--  

 Montgomery 0.67 (0.53, 

0.78) 

1.0 (1.0, 

1.0) 

1.0 (1.0, 

1.0) 

0.81 (0.75, 

0.85) 

0.67 (0.53, 

0.78) 

0.8 (0.7, 

0.87) 

0.99 (0.97, 

1.0) 

0.98 (0.88, 

1.0) 

1.00 (1.0, 

1.0) 

--  

Abn. ChestX-ray8 0.82 (0.78, 

0.84) 

0.86 (0.81, 

0.89) 

0.94 (0.92, 

0.95) 

0.65 (0.61, 

0.69) 

0.68 (0.62, 

0.72) 

0.87 (0.85, 

0.89) 

0.92 (0.9, 

0.93) 

-- -- --  

 VinDr-CXR 0.89 (0.87, 

0.9) 

0.73 (0.72, 

0.75) 

0.6 (0.59, 

0.63) 

0.93 (0.92, 

0.94) 

0.62 (0.59, 

0.64) 

0.72 (0.7, 

0.73) 

0.89 (0.88, 

0.9) 

--  --  --  

*Datasets included: HaMLET; VinDr-CXR, an open dataset of chest x-rays with radiologist annotations from 2 major hospitals in Vietnam; Shenzhen, collected from outpatient 

clinics and collected in collaboration with Shenzhen No.3 People’s Hospital, Guangdong Medical College, Shenzhen, China; Montgomery, chest x-ray dataset collected in 

Montgomery County, Maryland, in collaboration with the Department of Health and Human Services; ChestX-ray8, hospital-scale chest x-ray database with disease image 

labels, provided by the National Institutes for Health (NIH). 

            

Table 3. Classification results for our abnormal-TB and abnormal models on our internal dataset and on four external datasets.  

 

Finding Sensitivity Specificity PPV NPV J F1 AUC Rel. Prev. Diff.* 

Infiltrate 0.91 (0.88, 0.95) 0.81 (0.81, 0.82) 0.07 (0.06, 0.08) 1.0 (1.0, 1.0) 0.73 (0.68, 0.77) 0.13 (0.1, 0.15) 0.93 (0.91, 0.95) 0.02 (-0.15, 0.2) 

Reticular 

Markings 

0.93 (0.84, 1.0) 0.63 (0.63, 0.65) 0.01 (0.01, 0.02) 1.0 (1.0, 1.0) 0.56 (0.47, 0.63) 0.02 (0.01, 0.03) 0.86 (0.82, 0.9) -0.21 (-0.51, 0.3) 

Cavity 0.84 (0.5, 1.0) 0.84 (0.83, 0.84) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.68 (0.33, 0.84) 0.0 (0.0, 0.01) 0.92 (0.78, 0.98) 1.5 (-0.29, 12.0) 

Nodule 0.89 (0.75, 1.0) 0.72 (0.71, 0.73) 0.01 (0.01, 0.01) 1.0 (1.0, 1.0) 0.62 (0.48, 0.73) 0.02 (0.01, 0.02) 0.88 (0.84, 0.92) -0.09 (-0.45, 

0.92) 

Pleural Effusion 0.92 (0.0, 1.0) 0.93 (0.92, 0.93) 0.01 (0.0, 0.02) 1.0 (1.0, 1.0) 0.84 (0.43, 0.93) 0.02 (0.01, 0.04) 0.96 (0.65, 0.99) 0.17 (-0.5, 3.0) 

Hilar 

Adenopathy 

0.69 (0.0, 1.0) 0.79 (0.79, 0.8) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.49 (-0.2, 0.8) 0.0 (0.0, 0.01) 0.82 (0.44, 0.97) -0.5 (-1.0, 3.0) 

Discrete Linear 

Opacity 

0.86 (0.8, 0.91) 0.6 (0.59, 0.61) 0.04 (0.03, 0.05) 1.0 (0.99, 1.0) 0.46 (0.4, 0.51) 0.08 (0.06, 0.09) 0.78 (0.73, 0.8) -0.06 (-0.2, 0.17) 

Discrete Nodule 0.91 (0.83, 1.0) 0.53 (0.52, 0.55) 0.01 (0.01, 0.01) 1.0 (1.0, 1.0) 0.44 (0.35, 0.53) 0.02 (0.01, 0.02) 0.8 (0.75, 0.84) -0.09 (-0.4, 0.41) 

Volume Loss 0.88 (0.74, 1.0) 0.85 (0.84, 0.86) 0.02 (0.01, 0.02) 1.0 (1.0, 1.0) 0.73 (0.53, 0.85) 0.03 (0.02, 0.04) 0.93 (0.88, 0.97) 0.19 (-0.33, 1.4) 

Irreg. Thick 

Pleural Reaction 

0.92 (0.79, 1.0) 0.69 (0.68, 0.7) 0.01 (0.01, 0.01) 1.0 (1.0, 1.0) 0.61 (0.51, 0.7) 0.02 (0.01, 0.02) 0.86 (0.81, 0.91) 0.12 (-0.32, 

1.08) 

Other 0.78 (0.56, 0.91) 0.68 (0.67, 0.69) 0.01 (0.0, 0.01) 1.0 (1.0, 1.0) 0.46 (0.24, 0.59) 0.01 (0.01, 0.02) 0.82 (0.73, 0.88) 0.22 (-0.21, 
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1.44) 

         

Table 4. Classification metrics for our findings-specific model on our internal dataset. 
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 Source
+
 Total Abnormal Abnormal TB  

  N N % N %  

All Ages* 

(N=327,650) 

eMedical 304142 28705 9.4 10033 3.3  

IOM GTQCC 4435 4435 100.0 4434 100.0  

Private Panel Sites 5113 5113 100.0 5111 100.0  

 MiMOSA 13960 2670 19.1 1106 7.9  

 
 

 

   

Age >= 15 years 

(N=275,127) 

eMedical 252353 28620 11.3 10000 4.0  

IOM GTQCC 4368 4368 100.0 4367 100.0  

Private Panel Sites 5042 5042 100.0 5040 100.0  

 MiMOSA 13364 2610 19.5 1080 8.1  

    
 

   

        

Valid Images 

(N=168,012) 

eMedical 148554 14797 10.0 5565 3.7  

IOM GTQCC 4334 4334 100.0 4333 100.0  

Private Panel Sites 4397 4397 100.0 4397 100.0  

 MiMOSA 10727 2127 19.8 861 8.0  
+ 

Data sources were eMedical, the US Department of State’s immigrant health information system; the International 

Organization for Migration’s Global Teleradiology and Quality Control Centre (IOM GTQCC); individual private panel sites; 

and MiMOSA, IOM’s migrant health information system 

*All ages ranged from 0 – 102 years old 

 

Figure 1. Flow diagram detailing the number of radiographs by data source and abnormality 

status from before exclusion for age (All Ages), after exclusion for age under 15 years, and 

after exclusion for whether the DICOM pixel arrays were Python-readable (Valid Images). 

Radiographs were collected between the years of 2011 and 2021 and constitute a 

convenience sample of the total applicant population for that time period. 
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Figure 2. XRAI (left) and GradCAM (right) heatmaps for true positive images. The original radiographs are 

on the left, the Grad-CAM activations and heatmaps are in the middle, and the XRAI activations and 

overlays are on the right. For the XRAI overlays, only regions reaching the 70
th

 percentile of activation 

strength are shown. 
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Figure 3. XRAI (left) and GradCAM (right) heatmaps for false positive images. The original radiographs 

are on the left, the Grad-CAM activations and heatmaps are in the middle, and the XRAI activations 

and overlays are on the right. For the XRAI overlays, only regions reaching the 70
th

 percentile of 

activation strength are shown. 
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SUPPLEMENT 

Additional Information on the Overseas Screening Procedures 

X-ray images collected during the overseas health screenings are interpreted by a radiologist at the 

panel physician’s office (panel site) and reviewed by the panel physician. The process is to first 

determine if the chest x-ray image is normal or abnormal, if abnormal then the radiologist will 

determine if the image suggests that the applicant has tuberculosis (TB). If the image is suggestive of TB, 

then the applicant needs sputum smears and culture testing done. For the images that suggest the 

applicant has TB, the radiologist identifies and records the specific radiographic features associated with 

this determination, and the panel physician then determines each applicant’s TB classification and 

records that information on the applicant’s US Department of State TB Worksheet (DS-3030 form).  

 

Any applicant diagnosed with pulmonary TB disease must receive a classification of Class A TB and is not 

cleared for travel until successfully finishing directly observed treatment under the supervision of a 

panel physician. Those who receive a classification of Class B0 TB (applicants, previously classified as 

Class A, who successfully completed treatment), Class B1 TB (applicants with signs or symptoms or chest 

x-ray findings suggestive of TB disease, or known HIV infection, but negative sputum smears and 

cultures and are not diagnosed with TB disease), Class B2 TB (applicants with a positive IGRA, but 

otherwise have a negative evaluation for TB; i.e., latent TB infection), or Class B3 TB (applicants who are 

a recent contact of a known TB disease case, regardless of IGRA or TST results) are cleared and 

permitted to travel. 

 

Supplemental Methods 

Sample size calculation 

We used a simulation procedure to determine the number of abnormal images we would need in our 

validation and test sets to accurately estimate sensitivity, specificity, and other key performance metrics 

for our models. As a starting point, we assumed the models would achieve a sensitivity and specificity of 

80% for the binary classification tasks, which is roughly in line with similar models in the literature (see 

main manuscript for examples). The estimation procedure itself followed these steps: 

 

1. Choose a sample size Ns. In our simulation, these ranged from 100 to 15,000. 

2. Generate a single random variate kabn from a binomial distribution with n = Ns and p = pabn, 

where pabn is the expected prevalence of abnormal images suggestive of TB (in our case, this was 

7%). 

3. Generate random variates for true positives (TP), false positives (FP), false negatives (FN), and 

true negatives (TN) with a single draw from a multinomial distribution, where n = Ns and pk is the 

probability of success for each category k as determined by the prespecified levels pse and psp of 

sensitivity and specificity, respectively. Explicitly, these are: 

 

PTP  = pse * pabn 

pTN = psp * (1 – pabn) 

pFP = 1 – pTP 

pFN = 1 – pTN 

 

4. Repeat steps 1 and 2 a large number of times (in our case 1,000) and record the full spectrum of 

performance metrics based on the resulting confusion matrices. 

5. Record the 2.5
th

 and 97.5
th

 percentiles for each metric, and take the half-width of the resulting 

interval as the statistical precision in estimating the metric at the given sample size Ns.  
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6. Increase sample size by 100 and repeat steps 2 through 6 until the maximum sample size has 

been exceeded. 

 

We aimed for a minimum sample size that would allow us to calculate sensitivity and specificity to 

within 5%. Both our validation and test sets exceeded this minimum by a large margin with an 

approximate precision for each metric of 1.25%. 

 

Image preprocessing 

We began by excluding from our datasets radiographs with corrupt DICOM files or corrupt pixel arrays. 

For DICOM files without such corruptions, we then extracted their raw pixel arrays, converted them to 

grayscale, and exported them to 1,024x1,024-pixel PNG files. Once the image files were saved, we ran a 

separate script that used optical character recognition (OCR) software (detailed in Software and 

hardware below) to identify radiographs with burned-in annotations and discarded any identified as 

containing more than three words of text. This exclusion step served mainly to protect the identities of 

the entrants by removing personally identifiable information (PII) from the images, but it also prevented 

the text information from affecting the model’s performance. Finally, we discarded images with mean 

pixel values (out of 255) below 50 or above 215 which were either too dark or too light, respectively, for 

radiographic features to be visible. 

 

Model architecture 

To improve the model’s ability to generalize to unseen data, we used a custom image augmentation 

layer as the input layer with the following transformations and deltas: 

 

Horizontal flips (0.5 probability); 

Resizing (either 0.7x, 0.85x, 1.15x, or 1.3x the original dimensions); 

Changes in brightness (delta range -0.525 to 0.525); 

Changes in contrast (delta range 0.349 to 1.346); 

Changes in saturation (delta range 0.382 to 1.403); and 

Changes in hue (delta range -0.127 to 0.127). 

 

The delta ranges were taken from Majkowska 2020 and did not vary during training, and the 

transformations were turned off during validation and testing. The (sometimes perturbed) images were 

then passed to the EfficientNetV2M feature extractor for processing, after which they passed through a 

dropout layer (p=0.5) and then a randomly initialized final dense layer with either binary or categorical 

cross-entropy loss, depending on the task, for final classification.  

 

Model training and validation procedures 

We trained all models with a minibatch size of 12 (4 per GPU), which allowed us to fine-tune all blocks of 

the feature extractor at once (in larger minibatches, or on GPUs with lower amounts of memory, the 

blocks may need to be unfrozen sequentially to prevent out-of-memory errors). We trained each model 

until its AUC on the validation data began to decrease; in our case, this yielded one epoch of training for 

the abnormal/normal model (Model 1), two for the abnormal-TB model (Model 2), and two for the 

multilabel model (Model 3). In all cases, we used the Adam optimizer (Kingma 2014) with a fixed 

learning rate of 0.001.  

 

Operating point selection 

When validation data was available, we used it to select two operating points for thresholding a model’s 

predictions on the test data: one that maximized Youden’s J index and one that minimized the model’s 
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error in predicting the positive samples. We calculated the first directly from the model’s predicted 

probabilities on the validation data, but we calculated the second by reweighting the positive samples so 

that test data prevalence equaled the prevalence in the entire dataset before splitting (they were up-

weighted in the validation and test sets to improve precision in estimating sensitivity). Our reweighting 

method was informed by the following observations: 

 

1. Sensitivity (true positive rate, or TPR) and specificity (1 minus the false positive rate, or FPR) are 

conditional on the true label (e.g., abnormality or the presence of a specific abnormality) and 

thus independent of prevalence. 

2. True prevalence and predicted prevalence are equal when the false positive rate (FPR) and false 

negative rate (FNR) are equal.  

3. When FPR and FNR are equal, the number of counts in the off-diagonal cells of the confusion 

matrix are equal (this is the mathematical insight behind McNemar’s test for the difference in 

paired proportions). 

4. The off-diagonal cells are equal to the expressions FPR * (1 – p) and FNR * p, respectively, where 

p is equal to true prevalence. 

5. FNR is equal to 1 – sensitivity, and FPR is equal to 1 – specificity. 

6. The ROC curve for a given classifier on a test set contains all possible pairs of sensitivity and 

specificity.  

7. The relative difference in prevalence for any given tuple of TPR, FPR, and p is given by the 

expression |[FPR * (1 – p)] – [FNR * p]| / p, where FPR = 1 – specificity and FNR = 1 – sensitivity. 

 

To select the second operating point, then, we simply used the FPR, TPR pairs from a model’s ROC curve 

on the validation data to calculate the difference between true prevalence and predicted prevalence 

given a target true prevalence pt for each possible operating point (using the formula from observation 4 

above) and selected the one with the smallest difference. 

 

Software and hardware 

All models were built with Keras using the TensorFlow 2 backend. DICOM work was done with the 

pydicom Python package; image preprocessing with the pytesseract, scikit-image, and NumPy packages; 

data visualization with the seaborn package; and statistical analysis with custom functions for bootstrap 

resampling. All code is publicly available at https://github.com/cdcai/hamlet.git, and top-level scripts are 

designed to be rerun on different datasets to aid replication of our results and future research efforts. 

 

Models were trained on a scientific workstation with 32 logical processors, 128GB of RAM, and 3 NVIDIA 

RTX A6000 GPUs. 

 

Bootstrap resampling procedures 

To create confidence intervals for the performance metrics, we used the nonparametric bootstrap with 

bias correction and acceleration (BCA), following Efron 1987. Because the test set contained an even 

number (4,000) of normal and abnormal images each (we up-sampled abnormal images to increase 

precision in estimating AUROC and sensitivity), naively constructing the intervals would yield inflated 

estimates for metrics like positive predictive value (PPV), F1-score, and the relative difference in 

prevalence that are affected by the underlying prevalence of the abnormal images. To account for this 

inflation, we constructed each bootstrap replicate by sampling nab abnormal images from the test set, 

where nab is a random draw from a binomial distribution B(n, p), n is the total number of images in the 

test set (8,000), and p is the proportion of abnormal images in the training data. Each replicate was then 

filled out with 1 – nab normal images, also sampled from the test data with replacement, and then the 
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replicate was used to calculate the full range of performance metrics, including sensitivity and specificity 

(although these are not affected by prevalence). We used this sampling distribution to generate the bias 

correction parameters z0 and acceleration parameters for the metrics and construct the resulting 95% 

confidence intervals. As noted in the main manuscript, we did not adjust the intervals for multiplicity. 

 

Supplemental Results 

 

Finding j count count_adj    

abnormal 0.15459 0.147612 0.448105 

   

abnormal_tb 0.056503 0.037703 0.355039 

   

infiltrate 0.042922 0.317821 0.860177 

   

reticular 0.020081 0.381927 0.530253 

   

cavity 0.098012 0.358573 0.773157 

   

nodule 0.063748 0.388444 0.890132 

   

pleural_effusion 0.056165 0.736675 0.998791 

   

hilar_adenopathy 0.024143 0.328604 0.922602 

   

linear_opacity 0.036351 0.371436 0.612073 

   

discrete_nodule 0.008291 0.366458 0.754047 

   

volume_loss 0.052816 0.305774 0.853881 

   

pleural_reaction 0.028239 0.298953 0.809463 

   

other 0.010258 0.203865 0.672526 

   

    

   

Supplemental Table 1. Operating points for our internal validation set that optimized three criteria: 

Youden’s J index (j); the absolute relative error in predicted counts (count); and the same relative but 

reweighted to take the difference in prevalence for each finding between the validation set and the 

total available data into account (count_adj). We used only the first and third operating points in our 

analysis. 
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Exam Region 

  
Africa Americas Asia Europe Oceania N/A 

Exam Year 2011 0 3 0 0 0 0 3 

2012 0 26 0 0 0 0 26 

2013 0 75 170 0 0 0 245 

2014 0 27 275 0 0 0 302 

2015 66 54 774 79 0 0 973 

2016 217 91 846 88 0 2 1244 

2017 173 127 928 83 0 3 1314 

2018 709 694 1388 196 58 0 3045 

2019 8826 8794 18298 4038 349 78 40383 

2020 10010 15246 31419 6006 613 186 63480 

2021 9752 18159 23657 4879 433 116 56996 

 
29753 43296 77755 15369 1453 385 

 

 

Supplemental Table 2. Distribution of health screenings by year and region. Row and column 

totals are on the margins. 
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