- 1 Development of an all-in-one real-time PCR assay for simultaneous detection of
- 2 spotted fever group rickettsiae, severe fever with thrombocytopenia syndrome
- 3 virus and orthohantavirus hantanense prevalent in central China
- 4 Cuixiang Wang¹, liangjun Chen¹, xingrong Li¹, jihong Gu¹, yating Xiang¹, Liang
- Fang², Lili Chen²* Yirong Li^{1,3,4}* 5
- 6 ¹Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan
- University, Wuhan, China. 7
- 8 ²Department of Wuhan EasyDiagnosis Biomedicine, Wuhan, China.
- 9 ³Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of
- 10 Medical Sciences, Wuhan, People's Republic of China
- ⁴Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, 11
- 12 Wuhan, People's Republic of China.
- 13 These authors contributed equally to this work.
- 14 livirong838@163.com (Y-R L); chenlili@ediagnosis.can (L-L C);
- 15
- 16
- 17
- 18
- 19

20

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

21 Abstract

Central China has been reported to be one of the most important endemic areas of 22 23 zoonotic infection by spotted fever group rickettsiae(SFGR), severe fever with 24 thrombocytopenia syndrome virus (SFTSV) and orthohantavirus hantanense(HTNV). 25 Due to similar clinical symptoms, it is challenging to make a definite diagnosis rapidly 26 and accurately in the absence of microbiological tests. In the present study, an all-in-27 one real-time PCR assay was developed for the simultaneous detection of nucleic acids 28 from SFGR, SFTSV and HTNV. Three linear standard curves for determining SFGR-29 *ompA*, SFTSV-*L* and HTNV-*L* were obtained within the range of 10^{1} - 10^{6} copies/ μ L, 30 with the PCR amplification efficiencies ranging from 93.46% to 96.88% and the regression coefficients R² of >0.99. The detection limit was 1.108 copies/µL for SFGR-31 32 ompA, 1.075 copies/µL for SFTSV-L and 1.006 copies/µL for HTNV-L, respectively. 33 Both the within-run and within-laboratory coefficients of variation on the cycle 34 threshold (Ct) values were within the range of 0.53%-2.15%. It was also found there 35 was no statistical difference in the Ct values between with and without other non-target bloodborne virus nucleic acids (P_{SFGR-omnA} =0.186, P_{SFTSV-L}=0.612, P_{HTNV-L}=0.298). The 36 37 sensitivity, specificity, positive and negative predictive value were all 100% for 38 determining SFGR-ompA and SFTSV-L, 97%, 100%, 100% and 99.6% for HTNV-L, 39 respectively. Therefore, the all-in-one real-time PCR assay appears to be a reliable, 40 sensitive, rapid, high-throughput and low cost-effective method to diagnose the

41 zoonotic infection by SFGR, SFTSV and HTNV.

42	Key Words: Spotted fever group rickettsiae; Severe fever with thrombocytopenia
43	syndrome virus; Orthohantavirus hantanense; An all-in-one real-time PCR assay;
44	diagnosis
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	Author Summary

61	Spotted fever, severe fever with thrombocytopenia syndrome (SFTS), and hemorrhagic								
62	fever with renal syndrome (HFRS) sporadically have outbreaks in central China. Due								
63	to the similarities in clinical symptoms and the absence of reliable diagnostic methods,								
64	clinical diagnosis and treatment frequently result in misdiagnosis or missed diagnosis.								
65	Thus, the development of a fast and accurate diagnostic method is crucial for prevention								
66	and precise treatment. In this study, we designed an all-in-one real-time PCR assay to								
67	differentiate spotted fever group rickettsiae(SFGR), severe fever with								
68	thrombocytopenia syndrome virus (SFTSV) and orthohantavirus hantanense(HTNV).								
69	The gene $ompA$ of SFGR, as well as the gene segment L of SFTSV and HTNV, were								
70	used as targets to design primers and probes for amplification. Through the verification								
71	of nucleic acid and clinical sample detection, the sensitivity of this detection method								
72	exceeded 97%, and its specificity was 100%.								
73	This new assay could be applied in epidemiology and clinical diagnosis, to control new								
74	outbreaks, reduce diagnostic and identification time, and improve test efficiency.								
75									
76									
77									
78									
79									
80	Introduction								

81 Zoonotic infectious diseases typically occur sporadically and are more prevalent in economically underdeveloped areas, such as remote mountainous and forested regions 82 83 (1-3). Due to the limited medical laboratory resources and similar clinical symptoms, 84 timely and accurate diagnosis of zoonotic infectious diseases is often difficult, which 85 leads to inadequate and untimely treatment. Since 2009, It has been found that there is 86 a high prevalence of severe fever with thrombocytopenia syndrome (SFTS) in central China including Dabie and Yiling Mountains region(4, 5). SFTS is a zoonotic disease 87 88 infected by a tick-borne virus called severe fever with thrombocytopenia syndrome 89 virus (SFTSV), a novel Bandavirus of family Phenuiviridae, which was recently named 90 Dabie Bandavirus by The International Committee on Taxonomy of Viruses (ICTV). The main clinical manifestations include acute fever, thrombocytopenia, leukopenia, 91 92 gastrointestinal and neurological symptoms(6-8), moreover, multiple organ failure may 93 occur in severe cases with a maximum mortality of 30% (9, 10). Recently, tick-borne 94 rickettsioses, another zoonotic infectious disease caused by the spotted fever group 95 rickettsiae (SFGR), was found in succession in central China. SFGR is an intracellular 96 bacteria belonging to the spotted fever group (SFG) of the genus Rickettsia in the family 97 *Rickettsiaceae* (11). It was reported that the seroprevalence rate of anti-Rickettsia japonica antibody is about 21% among people in Yichang, a city in the Yiling 98 99 Mountains region of central China(12). The main clinical symptoms of tick-borne 100 rickettsioses also include fever and thrombocytopenia as well as headache, muscle pain,

101 rash and local lymphadenopathy(13-16) (12, 17). It is worth noting that central China 102 including the Dabie and Yiling Mountains region is also known to be an important 103 endemic area for orthohantavirus hantanense (HTNV) infections transmitted by rodents, 104 which belongs order Bunyavirales, family Hantaviridae, to the and genus Orthohantavirus(18). The main epidemic strain of HTNV is HV004 in the past 105 106 ten years(18-20). Hemorrhagic fever with renal syndrome (HFRS), caused by HTNV, is characterized by a combination of symptoms, which include fever, hemorrhage, 107 108 thrombocytopenia and acute kidney injury (21, 22). The early clinical manifestations 109 of these pathogens infections are often similar and nonspecific, with most patients 110 experiencing systemic symptoms such as fever, thrombocytopenia, headache, fatigue and muscle aches (23, 24). Therefore, it is challenging to rapidly and accurately identify 111 112 these pathogens in febrile patients with thrombocytopenia and a history of outdoor 113 activities in central China.

114 There are a variety of methods including antigen-antibody detection and nucleic acid 115 testing to be used for the identification of microbial pathogens. Antigen-antibody 116 detection Enzyme-linked such as immunosorbent assav and indirect 117 immunofluorescence are limited in the precise diagnosis due to wide antigen crossreactivity and delayed seroconversion (25-27). Nucleic acid testing has always been 118 119 considered to be the preferred method for diagnosing viral infections, including 120 quantitative real-time fluorescence PCR assay, isothermal amplification reaction,

140	Serum or nucleic acid samples
139	Materials and methods
138	
137	
136	
135	
134	
133	real-time PCR assay following the evaluation of clinical performances.
132	and HTNV in central China, we established a rapid, convenient and accurate all-in-one
131	order to quickly diagnose these zoonotic infectious diseases caused by SFGR, SFTSV
130	commercially available kit for testing target nucleic acids of SFTSV. Therefore, in
129	accuracy, faster testing time and lower cost. It was also found that there was only one
128	assay is the preferred choice for detecting the nucleic acid of viruses due to its high
127	high cost or time-consuming procedure. It has been reported that the real-time PCR
126	carry out in hospitals located in economically underdeveloped remote areas due to their
125	quantification and unbiased microbial infection, respectively, but it is not unsuitable to
124	a multiplex PCR assay. Digital PCR assay and mNGS have their advantages in absolute
123	thermocycler, it have high requirements for primer designing and serious challenges for
122	isothermal amplification reactions is rapid and do not require a specialized
121	digital PCR assay and metagenomics next generation sequencing (mNGS). Although

141	A total of 325 serum or nucleic acid samples were collected in present study. Of them,
142	17 SFGR DNA-positive nucleic acid samples were obtained from Beijing Center For
143	Disease Control And Prevention (CDC) (n=9) and State Key Laboratory of Virology
144	(n=8), 33 HTNV RNA-positive nucleic acid samples were prepared in State Key
145	Laboratory of Virology (n=21) and Hubei CDC(n=12), the remaining including 46
146	SFTSV RNA-positive nucleic acid samples and 229 serum samples without three target
147	pathogens were garnered from Zhongnan Hospital of Wuhan University. These nucleic
148	acid samples were previously tested to be positive for SFTSV, Hepatitis B virus (HBV),
149	hepatitis C virus (HCV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) by
150	commercially available kits (DaAn Gene Co., Ltd), for SFGR DNA and HTNV RNA
151	by Sanger sequencing after nested PCR, respectively(12, 18). The study was approved
152	by the Ethics Committee of Zhongnan Hospital of Wuhan University.

153 Primers and probes

All primers and probes were synthesized by General Biosystems (Anhui, China). The detailed primers and probes sequences are listed in **Table 1**. The primers ompA-F/R, and the probe ompA-P were used to amplify the target gene *ompA* in the SFGR. The 5'ends and 3'-ends of ompA-P were labeled with FAM (6-carboxyfluorescein) and Black Hole Quencher 1 (BHQ1), respectively. The primer pair DL-F/R, and the probe DL-P were employed to amplify the gene segment *L* in SFTSV. The VIC(5-VIC phosphoramidite) and Black Hole Quencher 2 (BHQ2) were labeled in the 5'-ends and

161	3'-ends of DL-P, respectively. Two sets of primers and probes including HL-F1/R1 and
162	HL-P1, and HL-F2/R2 and HL-P2, were simultaneously adopted to amplify the gene
163	segment <i>L</i> in HTNV, and both the 5'-ends and 3'-ends of HL-P1 as well as HL-P2 were
164	labeled with Cy5 (Cyanine 5) and BHQ2, respectively. Beta-actin (ACTB) was used as
165	the endogenous reference gene in the all-in-one real-time PCR assay. ACTB-F1,
166	ACTB-R1 and ACTB-P were employed to amplify ACTB, and the 5'-ends and 3'-ends
167	of ACTB-P were labeled with 5-Carboxy-X-rhodamine (ROX) and BHQ2. All of the
168	primers and probes for amplifying $ompA$ and L were designed using PrimerPrimer 5.0
169	design software, whereas those for amplifying the ACTB were the same as those used
170	in previous studies (28). (Scheme 1).
171	
172	
173	
174	
175	
176	
177	
178	
179	Table 1. Primers and probes used in the all-in-one real-time PCR assay.

pathogen	Primers and probes	Nucleotide sequence (5'-3') Gene of segment		Position	Product length (bp)
SFGR	OmpA- probe	FAM- ATGCTCCCAATGGTTCAGATGCAC- BHQ1	OmpA	1176385 - 1176473 a	89
	OmpA-F OmpA-R	GCTGSAAATATAAAGAAATCGCTT ATTARACCAAAGTTATTGAAAGCTTG			
SFTSV	DL-probe DL-F DL-R	VIC- CGTGGAGAATGGGCTGTCTCTTGG- BHQ2 GGAAGTGCTTTGTGGTAGGATAA CTRTCGTAGATTTGGTCRTACAGG	L	9-89 ^b	81
HTNV	HL-probe1 HL-F1 HL-R1 HL-probe2	Cy5- ACACATTCTCCCCATCCTCGGACAA- BHQ2 CCRTATGATTTAACRGARYTAGAGA GC CAACCATAYTYTGAGCCTCTCTATC Cy5- TGTAACTGCCATGACCATGCAATCA- BHQ2	L	6278- 6377° 4155-	100
	HL-F2 HL-R2 ACTB-	CMAAAGGHMGGGATAATTTGCTTAT GCATACGGAATCKTAATTGTAAAG ROX-ACCACCACGGCCGAGCGG-		4262 ^d	100
ACTB	probe ACTB-F ACTB-R	BHQ2 GAGCGCGGGCTACAGCTT TCCTTAATGTCACGCACGATTT	ACTB	648-706 ^e	59

180 a:AE006914.1; b:NC_043450.1;c:NC_005222.1; d:JQ083393.1; e:KR710455.1.

10

182 Scheme 1. Schematic illustration of the proposed all-in-one real-time PCR assay

183 (a) Detection principle schematic diagram; (b) Schematic of the SFGR, SFTSV or

184 HTNV genome and corresponding primer sequence design.

185

186 DNA/RNA extraction

187 DNA and RNA were extracted according to the instructions of the Vazyme Fast Pure

- 188 Viral DNA/RNA Mini Kit Pro (Vazyme Biotech Co.,Ltd). All of the nucleic acid
- 189 samples used in the present study were stored at -80 °C until further experiments.

190

191 Construction of the plasmids

192 Plasmids SFGR-ompA, SFTSV-L, HTNV-L1 and HTNV-L2 constructed by General 193 Biol (Anhui) Co., Ltd were used to create standard curves and determine the limit of 194 detection (LOD) for the all-in-one real-time PCR assay. The copy number of plasmid 195 was calculated using the formula: plasmid copy number (copies/ μ L) = plasmid 196 concentration \times 10⁻⁹ \times diluted multiples \times 6.02 \times 10²³) / (660 Dalton/bases \times DNA 197 length in nucleotides). The initial concentrations of these plasmids were determined to be 6.92×10^9 copies/µL for SFGR-*ompA*, 5.30×10^9 copies/µL for SFTSV-L, $6.80 \times$ 198 10^9 for HTNV-L1 and 5.79 \times 10⁹ copies/µL for HTNV-L2, respectively. All of them 199 200 were stored at -80°C for future experiments.

201

202 All-in-one real-time PCR assay

203 The all-in-one real-time PCR assay was carried out in an Eppendorf tube for the 204 simultaneous detection of gene ompA in the SFGR, segment L in both SFTSV and HTNV, and the house-keeping gene ACTB with a Gentier 96E/96R real-time 205 206 thermocycler (Tianlong, Xi'an, China). The final volume of the all-in-one real-time 207 PCR was 25µL, comprising 5.0µL of 5× Neoscript Fast RT Premix Buffer, 1.0µL of 25× Neoscript Fast RTase/UNG Mix, 0.5µL of an ompA-F and ompA-R 208 mixture(300pmol/mL), 0.5µL of a DL-F and DL-R mixture(200pmol/mL), 0.5µL of an 209 210 HL-F1 and HL-R1 mixture(600pmol/mL), 0.5µL of an HL-F2 and HL-R2 211 mixture(600pmol/mL), 0.5µL of an ACTB forward and reverse primers mixture. 1µL 12

212	each of ompA-P, DL-P, HL-P1, HL-P2 and ACTB probes (100pmol/mL), 2 μ L of
213	template and $9.5\mu L$ of ddH2O. The optimized thermal cycling conditions for
214	amplification were as follows: 1 cycle of reverse transcription at 50°C for 15 minutes
215	and pre-denaturation at 95°C for 3 minutes, followed by 45 cycles of denaturation at 95°C
216	for 10 seconds and annealing/ extension at 60°C for 30 seconds. Monitoring of
217	fluorescence occurred at the extension phase. The Cycle threshold (Ct) values obtained
218	from the all-in-one real-time PCR assay were adopted for the discrimination of the
219	presence of the target gene in clinical samples or not.

220

221 Evaluation of PCR efficiency, LOD and precision of the all-

222 in-one real-time PCR assay

The amplification efficiency of the all-in-one real-time PCR assay was deduced from standard curves as described previously(29), which were generated by plotting the Ct values versus the log_{10} DNA concentration of the standards followed by constructing a linear regression equation. To construct the standard curve, six 10-fold dilutions of the plasmids SFGR-*ompA*, SFTSV-*L*, and HTNV-*L*2 starting with ~10⁶ copies/µL and ending with ~10¹ copies/µL, were yielded, respectively.

229 LOD was determined according to Chinese National Standard GB/T 37871-2019(30).

230 In brief, plasmids standards at $\sim 10^1$ copies/ μ L were absolutely quantified using a digital

231 PCR assay, then were serially two-fold diluted to be about 1 copies/ μ L. Each diluted

232 plasmid was run in 20 replicates to determine the LOD of the all-in-one real-time PCR 233 assay.

- 234 The precision of the all-in-one real-time PCR assay was evaluated according to EP15-
- 235 A2 (31). In brief, the evaluation was performed per day with three replicate samples at
- 236 each of two concentrations (~ 10^4 and ~ 10^0 copies/µL) daily for five days. Imprecision

237 was assessed by using the coefficient of variation (CV) on the Ct values.

238

Analysis of specificity and interference 239

240 A total of 4 nucleic acid samples from other bloodborne viruses were adopted to analyze 241 specificity. Then they were separately tested using the all-in-one real-time PCR assay

to investigate nonspecific amplification. In addition, single or multiple target nucleic 242

243 acids at a concentration of LOD were performed on the all-in-one real-time PCR assay

244 without or with these nucleic acids from other bloodborne viruses in three replicates,

245 then the statistical difference was calculated by an independent samples *t*-test on the Ct

values to evaluate interference from HBV, HCV, EBV and CMV nucleic acids. 246

247

Evaluation of the accuracy of the all-in-one real-time PCR 248

assay 249

To evaluate of accuracy of the all-in-one real-time PCR assay, 321 nucleic acid samples 250 251 were tested. The results were compared to those reported previously. Sensitivity,

252	specificity, positive and negative predictive values (PPV and NPV) were calculated .
253	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	Results
271	Optimal conditions for the all-in-one real-time PCR assay

272 Our experimental data indicated that the optimal annealing/extension temperature was 273 60°C (Table S1). In addition, to ensure the optimal conditions for detection, the 274 concentrations of primers and probes for amplifying the target gene or gene fragments 275 of SFGR, SFTSV and HTNV were elaboratively optimized. As seen in Fig 1, the 276 optimal concentration of primers ompA-F/R, DL-F/R, HL-F1/R1 and HL-F2/R2 is 277 300pmol/mL, 200pmol/mL, 600pmol/mL and 600pmol/mL, respectively. While the optimal concentration of all probes is 100pmol/mL. It was shown that when the all-in-278 279 one real-time PCR assay had primers and probes at the optimal concentrations, the 280 lowest Ct values were yielded (Table S2-S4).

282 Fig 1. Primer and probe concentration optimization. (a) SFGR's amplification curve; (b)SFTSV's amplification curve; (c)HTNV's amplification curve;(d) SFGR best primer 283 284 concentration 300pmol/mL, best probe concentration 200pmol/mL; (e) SFTSV best primer concentration 200pmol/mL, best probe concentration 100pmol/mL;(f) HTNV 285

281

286 best primer concentration 600pmol/mL, best probe concentration 100pmol/mL

287 PCR efficiency, LOD and precision of all-in-one real-time

PCR assay

289 Serial dilutions of four plasmids were co-amplified using the all-in-one real-time PCR 290 assay to construct standard curves. Three linear standard curves were obtained within the range of 10^{1} - 10^{6} copies/ μ L with regression coefficients R² ranging from 0.9995 to 291 292 0.9999, and amplification efficiencies ranging from 93.46% to 96.88% (Fig 2). The 293 LOD were determined to be 1.108 copies/µL for the SFGR-*ompA*, 1.075 copies/µL for 294 the SFTSV-L and 1.006 copies/ μ L for the HTNV-L with a detection rate of more than 295 95%. Regardless of target nucleic acids, the within-run CVs ranged from 0.53%~1.99%, whereas the within-laboratory CVs were limited to the range between 0.79% and 2.15%. 296

299 Fig 2. Amplification curves and standard curve construction used about 10⁶-~10¹

300	copies/µL plasmids. (a) SFGR's amplification curve; (b)SFTSV's amplification curve;
301	(c)HTNV's amplification curve; (d) SFGR's standard curve; (e)SFTSV's standard curve;
302	(f)HTNV's standard curve; The all-in-one real-time PCR assay reaction is performed
303	using the optimal primer concentration. 95°C for 3 minutes; denaturation at 95°C for 10
304	seconds; annealing/elongation at 60°C for 30 seconds. 45 cycles.
305	
306	
307	
308	

- 309
- 310

311 Table 2. Within-run and within-laboratory reproducibility of the all-in-one real-

Pathogen	Standard concentration (copies/µL)	Within-run			Within-laboratory			
		Mean Ct	SD	CV(%)	Mean Ct	SD	CV(%)	
SFGR- ompA	32,629.9	20.46200	0.10752	0.53%	20.61280	0.16201	0.79%	
1	2.217	34.87633	0.35874	1.03%	35.17633	0.63580	1.81%	
SFTSV- L	36,294.4	21.95167	0.20802	0.95%	21.83000	0.30018	1.38%	
	2.151	35.80333	0.55486	1.55%	35.45907	0.68253	1.92%	
HTNV-L	35,303.3	20.41267	0.14856	0.73%	20.99873	0.38912	1.85%	
	2.013	34.00400	0.67554	1.99%	33.94393	1.11306	2.15%	

312 time PCR assay.

313 SFGR: spotted fever group rickettsiae; SFTSV: severe fever with thrombocytopenia

314 syndrome virus; HTNV: orthohantavirus hantanense.

315 Specificity and the anti-interference ability of the all-in-one

Four nucleic acid samples which were previously tested positive for HBV-DNA, HCV-

316 real-time PCR assay

317

RNA, EBV-DNA and CMV-DNA, respectively, were performed to evaluate the
specificity of the all-in-one real-time PCR assay. All of them yielded horizontal
amplification plots, whereas only plasmids SFGR-*ompA*, SFTSV-*L*, and HTNV-*L*yielded classical "S" type curves (Fig 3). Then the plasmids were tested to evaluate the
interference from HBV-DNA, HCV-RNA, EBV-DNA and CMV-DNA. The resulting
Ct values are listed in Table 3. It was found there was no statistical difference in the Ct

324 values between single fluorescence and multiple fluorescence assays for all three targets

- 325 ($P_{SFGR}=0.186$, $P_{SFTSV}=0.612$, $P_{HTNV}=0.298$). It was also shown that the Ct value
- 326 fluctuation was less than 1.1 when the non-target bloodborne virus nucleic acids were
- 327 added (Table 3).

328

329 Fig 3. Results of specificity experiment. Only the positive control well has an

amplification curve; HBV, HCV, EBV and CMV show no reaction curves.

331	Table 3. The Ct values variation after adding non-specific nucleic acids.

pathogens		Ct values						
					HBV	HCV	EBV	CMV
Single	SFGR- <i>ompA</i>	34.996	35.262	35.066	34.965	35.707	35.207	35.574
Single	SFTSV-L	36.926	36.645	36.520	35.918	36.121	36.121	35.887
tempiate	HTNV-L	35.621	35.793	35.652	36.355	36.059	36.309	35.941
Multiple	SFGR-ompA	35.316	35.496	35.137	35.723	35.699	36.160	35.988
template	SFTSV-L	36.707	36.707	36.426	35.730	35.527	36.387	35.910
a	HTNV-L	35.301	35.598	35.699	36.027	36.293	35.590	36.395

332 ^aMultiple template: SFGR, SFTSV and HTNV mixed as a template (SFGR:1.108

333 copies/µL; SFTSV:1.075 copies/µL; HTNV:1.006 copies/µL).

334 Evaluation accuracy of all-in-one real-time PCR assay with

335 clinical samples

336 Judgment criteria are as follows: (a) Positive: Ct<37 and a typical amplification curve

337	is observed (Ct_{ACTB} 22.48-27.67). (b) Negative: no Ct value and no amplification
338	curve(Ct_{ACTB} 22.48-27.67). (c) Retesting: Ct>37 and a typical amplification curve is
339	observed. If the retest result is the same as mentioned above, it is considered positive;
340	otherwise, it is deemed negative(Ct_{ACTB} 22.48-27.67). (d) Unqualified DNA sample:
341	Ct_{ACTB} < 22.48 and Ct_{ACTB} > 27.67 (Ct_{ACTB} were calculated from the Ct values of 321
342	characterized samples with mean and standard deviation (SD): 25.07±2.60).
343	A total of 321 samples were collected to evaluate the accuracy of the all-in-one real-
344	time PCR assay. It was found the sensitivity, specificity, positive and negative
345	predictive value for testing SFGR-ompA and SFTSV-L nucleic acids were all 100%,
346	whereas the detection of HTNV-L was 97%, 100%, 100% and 99.6%, respectively.
347	(Table 4)
348	
349	
350	
351	
352	
353	
354	Table 4. The sensitivity, specificity, PPV and NPV of the all-in-one real-time PCR
355	assay.

	Outcome	Control method	All-in-one real-time PCR assay	Sensitivity	Specificity	PPV ^a	NPV ^b
SFGR- ompA	Positive Negative	17 225	17 225	100%	100%	100%	100%
SFTSV-L	Positive Negative	46 225	46 225	100%	100%	100%	100%
HTNV-L	Positive Negative	33 225	32 225	97%	100%	100%	99.6%

370 In the present study, an all-in-one real-time PCR was successfully established to

371 simultaneously detect the nucleic acids from SFGR, SFTSV and HTNV. The SFGR-372 ompA, as well as the gene segment L of SFTSV and HTNV, were used as targets for 373 amplification. It was worth noting that two sets of primer and probe were used to 374 amplify gene segment L of HTNV due to high variation in China(32). China has had 375 the highest number of HFRS cases worldwide. There exist numerous branches of 376 HTNV, with highly diverse genetics in Heilongjiang, Shanxi, Liaoning, Shandong, Jilin, Hebei, Hunan, Zhejiang, Jiangxi, Jiangsu and Hubei provinces(33). Recently, the 377 378 genetic evolution analysis of the L segment revealed that the viral sequences prevalent 379 in Hubei province cluster together, forming a distinct lineage with genetic variations 380 from viruses in other regions(18). To enhance our detection capabilities, we have designed two sets of primer and probe for HTNV infection. HTNV-L2 is primarily 381 382 utilized to detect the unique lineage (HV004-like) that is prevalent in Hubei province, 383 whereas HTNV-L1 is employed for detecting infection in other regions. 384 The all-in-one real-time PCR method demonstrated high sensitivity, with the ability to 385 detect approximately 1000 copies/ml of the virus genome. It also exhibited an excellent 386 linear range between 10^6 and 10^1 copies/ μ L, where the regression coefficients R² for 387 the target nucleic acids ranged from 0.9995 to 0.9999 and the PCR amplification efficiencies ranged from 93.46% to 96.88%, with a dynamic range of six orders of 388

389 magnitude $(10^1-10^6 \text{ copies}/\mu\text{L})$. To assess its specificity, we confirmed that other

390 related viruses such as HBV, HCV, EBV and CMV did not produce positive signals

391	and did not affect the Ct value of the positive target, indicating the high specificity of
392	the detection method. Furthermore, the detection method showed high reproducibility,
393	with relatively small variations observed in both intra-assay and inter-assay capabilities.
394	The average coefficients of variation (CVs) for within-run and within-laboratory was
395	limited to the range between 0.53%-2.15%, which is considered acceptable in terms of
396	reproducibility. Using the all-in-one real-time PCR method, we successfully detected
397	SFGR, SFTSV and HTNV in 321 expected clinical samples. Among these samples, 17
398	were identified as SFGR positive, 46 as SFTSV positive and 33 as HTNV positive. The
399	detection system's sensitivity, specificity, PPV and NPV for SFGR and SFTSV were
400	all 100%, while the detection of HTNV was 97%, 100%, 100% and 99.6%. These
401	results demonstrate the effectiveness of the all-in-one real-time PCR assay in detecting
402	and differentiating these pathogens in clinical samples.
403	Since zoonotic infectious diseases like SFTSV, HTNV and SFGR are often prevalent
404	in economically underdeveloped areas, the risk of misdiagnosis is high due to their
405	similar clinical symptoms. Therefore, it is crucial to develop and evaluate a multiplex
406	assay that can detect and identify these similar pathogens simultaneously. So far, there
407	only exists single real-time fluorescence PCR detection methods for SFTSV and HTNV.
408	In comparison, our all-in-one real-time PCR method can simultaneously detect SFGR,
409	SFTSV, and HTNV, making it advantageous for identifying and detecting similar

410 symptoms in patients, as well as conducting large-scale screenings in epidemic

411 areas(34-36). In comparison to the immunochromatographic assay (ICA), which is a 412 cheaper and more convenient on-site testing method but has limitations in terms of 413 sensitivity and delayed detection windows, our method offers a longer detection 414 window and higher sensitivity(37). Compared to the SFTSV CRISPR detection method 415 established by Zou et al., our detection method offers lower detection limits (about 1 416 $copy/\mu L$), reduced costs, and the ability to conduct multiple detections. However, it should be noted that our method has a slightly longer detection time of 60 minutes when 417 418 compared to their CRISPR detection method(38, 39). For other methods, such as virus 419 isolation, a long experimental cycle of about 10 to 15 days is required in comparison 420 with PCR, thus rendering them unsuitable for clinical promotion. Metagenomic sequencing offers the advantage of detecting a wide range of pathogens without bias 421 422 and conducting systematic geographical analysis, but its lack of standardization, limited 423 personnel expertise, and high cost hinder its widespread application in clinical 424 practice(40). Overall, the all-in-one real-time PCR assay we have established has the 425 advantages of lower detection limits, lower costs, shorter processing time, and longer 426 detection window period, making it suitable for application in primary medical 427 institutions and remote areas.

428 Our research demonstrates that all-in-one real-time PCR assay testing has high
429 sensitivity, specificity and reproducibility. Additionally, the turnaround time for
430 experiments is approximately 2 hours, including nucleic acid extraction steps. This

25

431	makes it a high-throughput, reliable and cost-effective diagnostic and screening tool for
432	early clinical diagnosis of acute-phase SFTSV, HTNV and SFGR. Consequently, the
433	all-in-one real-time PCR assay enables the simultaneous detection of multiple
434	pathogens in a single reaction system, offering great potential for future clinical point-
435	of-care applications. This advancement holds promise in assisting with early and
436	accurate diagnosis, as well as contributing to effective public health management and
437	infectious disease control.
438	Acknowledgments
439	We are grateful to the Beijing Center For Disease Control And Prevention and State
440	Key Laboratory of Virology for providing experimental facilitates.
441	
442	
443	
444	
445	
446	
447	
448	
449	Uncategorized References

- 450 1. Han BA, Kramer AM, Drake JM. Global Patterns of Zoonotic Disease in Mammals. Trends
- 451 in Parasitology. 2016;32(7):565-77.
- 452 2. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. Pathways to
- 453 zoonotic spillover. Nature Reviews Microbiology. 2017;15(8):502-10.
- 454 3. Tomori O, Oluwayelu DO. Domestic Animals as Potential Reservoirs of Zoonotic Viral
- 455 Diseases. Annual Review of Animal Biosciences. 2023;11:33-55.
- 456 4. Zhang YZ, He YW, Dai YA, Xiong Y, Zheng H, Zhou DJ, et al. Hemorrhagic fever caused
- 457 by a novel Bunyavirus in China: pathogenesis and correlates of fatal outcome. Clin Infect Dis.
- 458 2012;54(4):527-33.
- 459 5. Ren YT, Tian HP, Xu JL, Liu MQ, Cai K, Chen SL, et al. Extensive genetic diversity of
- 460 severe fever with thrombocytopenia syndrome virus circulating in Hubei Province, China, 2018-
- 461 2022. PLoS Negl Trop Dis. 2023;17(9):e0011654.
- 462 6. Zhuang L, Sun Y, Cui XM, Tang F, Hu JG, Wang LY, et al. Transmission of Severe Fever
- 463 with Thrombocytopenia Syndrome Virus by Haemaphysalis longicornis Ticks, China. Emerg
- 464 Infect Dis. 2018;24(5):868-71.
- 465 7. Wang M, Huang P, Liu W, Tan W, Chen T, Zeng T, et al. Risk factors of severe fever with
- 466 thrombocytopenia syndrome combined with central neurological complications: A five-year
- 467 retrospective case-control study. Front Microbiol. 2022;13:1033946.
- 468 8. Li DX. Severe fever with thrombocytopenia syndrome: a newly discovered emerging
- 469 infectious disease. Clin Microbiol Infect. 2015;21(7):614-20.

- 470 9. Li J, Li S, Yang L, Cao P, Lu J. Severe fever with thrombocytopenia syndrome virus: a
- 471 highly lethal bunyavirus. Crit Rev Microbiol. 2021;47(1):112-25.
- 472 10. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. Fever with thrombocytopenia
- 473 associated with a novel bunyavirus in China. N Engl J Med. 2011;364(16):1523-32.
- 474 11. Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: emerging
- 475 diseases challenging old concepts. Clin Microbiol Rev. 2005;18(4):719-56.
- 476 12. Teng Z, Gong P, Wang W, Zhao N, Jin X, Sun X, et al. Clinical Forms of Japanese Spotted
- 477 Fever from Case-Series Study, Zigui County, Hubei Province, China, 2021. Emerg Infect Dis.
- 478 2023;29(1):202-6.
- 479 13. Efstratiou A, Karanis G, Karanis P. Tick-Borne Pathogens and Diseases in Greece.
- 480 Microorganisms. 2021;9(8).
- 481 14. Noguchi M, Oshita S, Yamazoe N, Miyazaki M, Takemura YC. Important Clinical Features
- 482 of Japanese Spotted Fever. Am J Trop Med Hyg. 2018;99(2):466-9.
- 483 15. Parola P, Davoust B, Raoult D. Tick- and flea-borne rickettsial emerging zoonoses. Vet
 484 Res. 2005;36(3):469-92.
- 485 16. Helmick CG, Bernard KW, D'Angelo LJ. Rocky Mountain spotted fever: clinical, laboratory,
- 486 and epidemiological features of 262 cases. J Infect Dis. 1984;150(4):480-8.
- 487 17. Li W, Liu SN. Rickettsia japonica infections in Huanggang, China, in 2021. IDCases.
- 488 2021;26:e01309.
- 489 18. Chen JT, Zhan JB, Zhu MC, Li KJ, Liu MQ, Hu B, et al. Diversity and genetic

- 490 characterization of orthohantavirus from small mammals and humans during 2012-2022 in
- 491 Hubei Province, Central China. Acta Trop. 2023;249:107046.
- 492 19. Li JL, Ling JX, Liu DY, Liu J, Liu YY, Wei F, et al. Genetic characterization of a new subtype
- 493 of Hantaan virus isolated from a hemorrhagic fever with renal syndrome (HFRS) epidemic area
- 494 in Hubei Province, China. Arch Virol. 2012;157(10):1981-7.
- 495 20. Brocato RL, Hooper JW. Progress on the Prevention and Treatment of Hantavirus Disease.
- 496 Viruses. 2019;11(7).
- 497 21. Jonsson CB, Figueiredo LT, Vapalahti O. A global perspective on hantavirus ecology,
- 498 epidemiology, and disease. Clin Microbiol Rev. 2010;23(2):412-41.
- 499 22. Wang ML, Wang JP, Wang TP, Li J, Hui L, Ha XQ. Thrombocytopenia as a Predictor of
- 500 Severe Acute Kidney Injury in Patients with Hantaan Virus Infections. Plos One. 2013;8(1).
- 501 23. Zhao B, Hou HH, Gao R, Tian B, Deng BC. Mononucleosis-like illnesses due to co-
- 502 infection with severe fever with thrombocytopenia syndrome virus and spotted fever group
- 503 rickettsia:a case report. Bmc Infectious Diseases. 2021;21(1).
- 504 24. Zhan JB, Cheng J, Hu B, Li J, Pan RG, Yang ZH, et al. Pathogens and epidemiologic
- 505 feature of severe fever with thrombocytopenia syndrome in Hubei province, China. Virus
- 506 Research. 2017;232:63-8.
- 507 25. Lee K, Choi MJ, Cho MH, Choi DO, Bhoo SH. Antibody production and characterization of
- 508 the nucleoprotein of sever fever with thrombocytopenia syndrome virus (SFTSV) for effective
- 509 diagnosis of SFTSV. Virol J. 2023;20(1):206.

510 26. Noden BH, Tshavuka FI, van der Colf BE, Chipare I, Wilkinson R. Exposure and risk

- 511 factors to coxiella burnetii, spotted fever group and typhus group Rickettsiae, and Bartonella
- 512 henselae among volunteer blood donors in Namibia. PLoS One. 2014;9(9):e108674.
- 513 27. Lederer S, Lattwein E, Hanke M, Sonnenberg K, Stoecker W, Lundkvist Å, et al. Indirect
- 514 Immunofluorescence Assay for the Simultaneous Detection of Antibodies against Clinically
- 515 Important Old and New World Hantaviruses. Plos Neglected Tropical Diseases. 2013;7(4).
- 516 28. Nakamura A, Nakajima G, Okuyama R, Kuramochi H, Kondoh Y, Kanemura T, et al.
- 517 Enhancement of 5-fluorouracil-induced cytotoxicity by leucovorin in 5-fluorouracil-resistant
- 518 gastric cancer cells with upregulated expression of thymidylate synthase. Gastric Cancer.
- **519 2014;17(1):188-95**.
- 520 29. Andersen CB, Holst-Jensen A, Berdal KG, Thorstensen T, Tengs T. Equal performance of
- 521 TaqMan, MGB, molecular beacon, and SYBR green-based detection assays in detection and
- 522 quantification of roundup ready soybean. J Agric Food Chem. 2006;54(26):9658-63.
- 523 30. China SAotPsRo. Technical specification for quality evaluation of nucleic acid test kit.
- 524 Standardization Administration of the People's Republic of China. 2013.
- 525 31. R. Neill Carey P, F. Philip Anderson P, Harvey George P, Alfred E. Hartmann M, Verlin K.
- 526 Janzen M, Anders Kallner M, PhD, et al. < User Verification of Performance for Precision and
- 527 Trueness; Approved Guideline-Second Edition.pdf>. CLSI. 2006.
- 528 32. Liu XJ, Feng JP, Zhang QH, Guo D, Zhang L, Suo T, et al. Analytical comparisons of
- 529 SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emerging

530 Microbes & Infections. 2020;9(1):1175-9.

- 531 33. Zhang S, Wang S, Yin W, Liang M, Li J, Zhang Q, et al. Epidemic characteristics of
- 532 hemorrhagic fever with renal syndrome in China, 2006-2012. BMC Infect Dis. 2014;14:384.
- 533 34. Jiang W, Wang PZ, Yu HT, Zhang Y, Zhao K, Du H, et al. Development of a SYBR Green
- 534 I based one-step real-time PCR assay for the detection of Hantaan virus. Journal of Virological
- 535 Methods. 2014;196:145-51.
- 536 35. Zeng P, Yang Z, Bakkour S, Wang B, Qing S, Wang J, et al. Development and validation
- 537 of a real-time reverse transcriptase PCR assay for sensitive detection of SFTSV. J Med Virol.
- 538 2017;89(7):1131-8.
- 539 36. Jalal S, Hwang SY, Kim CM, Kim DM, Yun NR, Seo JW, et al. Comparison of RT-PCR,
- 540 RT-nested PCRs, and real-time PCR for diagnosis of severe fever with thrombocytopenia
- 541 syndrome: a prospective study. Sci Rep. 2021;11(1):16764.
- 542 37. Wang XG, Zhang QF, Hao F, Gao XNA, Wu W, Liang MY, et al. Development of a Colloidal
- 543 Gold Kit for the Diagnosis of Severe Fever with Thrombocytopenia Syndrome Virus Infection.
- 544 Biomed Research International. 2014;2014.
- 545 38. Zuo LL, Miao J, He DM, Fang ZX, Zhang X, Sun CY, et al. Development and
- 546 characterization of a digital CRISPR/Cas13a based assay for rapid and sensitive diagnosis of
- 547 severe fever with thrombocytopenia syndrome virus. Sensors and Actuators B-Chemical.
- 548 2023;388.
- 549 39. Park BJ, Yoo JR, Heo ST, Kim M, Lee KH, Song YJ. A CRISPR-Cas12a-based diagnostic

550 method for multiple genotypes of severe fever with thrombocytopenia syndrome virus. PLoS

- 551 Negl Trop Dis. 2022;16(8):e0010666.
- 552 40. Kim WK, Kim JA, Song DH, Lee D, Kim YC, Lee SY, et al. Phylogeographic analysis of
- 553 hemorrhagic fever with renal syndrome patients using multiplex PCR-based next generation
- 554 sequencing. Sci Rep. 2016;6:26017.

568 Supporting information

569 S1 Fig. Digital PCR Results of SFGR 10³ copies/µL concentration (a)The scatter

- **570** plot of SFGR 10^3 copies/ μ L. 3,262.99 copies/ μ L (b)The scatter plot of SFGR 10^1
- **571** copies/μL. 22.17 copies/μL.

572 S2 Fig. Digital PCR Results of SFTSV 10³ copies/µL concentration (a)The scatter

- **573** plot of SFTSV 10^3 copies/ μ L.3,629.44 copies/ μ L (b)The scatter plot of SFTSV 10^1
- 574 copies/ μ L.21.51 copies/ μ L
- 575 S3 Fig. Digital PCR Results of HTNV10³ copies/µL concentration (a)The scatter
- **576** plot of HTNV 10^3 copies/ μ L. 3,530.33 copies/ μ L (b)The scatter plot of HTNV 10^1
- 577 copies/ μ L. 20.13 copies/ μ L
- 578 S1 Table. The Ct value of tempreture optimization.
- 579 S2 Table. The Ct values correspond to the concentrations of SFGR different
- 580 gradient primers and probes.
- 581 S3 Table. The Ct values correspond to the concentrations of SFTSV different582 gradient primers and probes.
- 583 S4 Table. The Ct values correspond to the concentrations of HTNV different
- 584 gradient primers and probes.

585

586

- **587**
- 588
- 589

590

591

Figure.2

Figure.3

scheme.1

Figure.1