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Abstract

Vision and proprioception regulate motor output during reaching. To study the effects of sensory
input on motor control, brain computer interfaces (BCIs) offer particular advantages. As part of
a long-term clinical BCI trial, we implanted two 96-channel microelectrode arrays into M1 of a
person who was completely paralyzed below the neck but retained intact somatosensation. Neural
recordings from M1 were transformed into a 2-dimensional velocity control signal for a robotic
arm using an optimal linear estimator decoder that was calibrated while the participant imagined
performing movements demonstrated by a virtual arm. Once the decoder was calibrated, we asked
the participant to move the robotic arm left and right past a pair of lines as many times as
possible in one minute. We examined how visual and proprioceptive feedback were incorporated
into BCI control during this task by providing the participant with either visual or proprioceptive
feedback, both, or neither. Proprioceptive feedback was provided by moving the participant’s own
arm to match the movement of the robotic arm. Task performance with vision or proprioception
alone was better than when neither were provided. However, providing proprioceptive feedback
impaired performance relative to visual feedback alone, unless the decoder was calibrated with
neural data collected while both visual and proprioceptive feedback were provided. Providing
proprioceptive feedback during decoder calibration rescued performance because it better captured
M1’s neural activity during BCI control with proprioceptive feedback. In general, BCI performance
was positively correlated with how well the decoder captured variance in neural activity during the
task. In summary, we found that while the BCI participant was able to use proprioceptive feedback
regardless of whether the decoder was trained with vision only or vision and proprioception, training
the decoder with both visual and proprioceptive feedback made performance more robust to the
addition or removal of visual or proprioceptive feedback. This was because training a decoder with
proprioceptive feedback allows the decoder to take advantage of proprioception-driven activity in
M1. Overall, we demonstrated that natural sensation can be effectively combined with BCI to
improve performance in humans.
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Introduction

Sensory feedback is crucial for regulating motor
output during reaching. Restoring sensory feed-
back to brain computer interface (BCI) users is a
primary goal of neuroprosthetic research today,
for both the control of action and for a restora-
tion of somatosensation. In fact, when proprio-
ceptive feedback is lost, people cannot make co-
ordinated or accurate reaching movements in the
absence of visual feedback (Ghez et al., 1995).
Human studies have demonstrated that intracor-
tical microstimulation of somatosensory cortex
can provide information about tactile sensations
(Fifer et al., 2022; Flesher et al., 2016; Hughes
et al., 2021) and can even improve motor perfor-
mance (Flesher et al., 2021). There is also inter-
est in restoring proprioceptive input (Armenta
Salas et al., 2018; Deo et al., 2021), but in order
to do so effectively, we must understand how nat-
ural proprioception influences activity in motor
cortex (M1) and BCI control.

Canonically, activity changes in M1 neurons
precede changes in movement velocity by 100-
150ms (Fetz et al., 1980; Suminski et al., 2009)
and the intended velocity of movement can be
decoded from the firing rates of these neurons
(Georgopoulos et al., 1986; Moran & Schwartz,
1999). However, the encoding of movement ve-
locity by the activity of M1 neurons has also
been shown to vary with the posture of the arm
(Scott & Kalaska, 1997; Sergio & Kalaska, 2003).
Neurons in M1 also respond to sensory informa-
tion, including proprioceptive (Evarts & Fromm,
1977; Suminski et al., 2010), visual (Georgopou-
los et al., 1989; Pellegrino & Wise, 1993; Pel-
lizzer et al., 1995; Zhang et al., 1997), and tac-
tile (Schroeder et al., 2017) inputs. Responses in
M1 to proprioceptive or kinesthetic inputs can
lag movement by several hundred milliseconds
(Evarts & Tanji, 1976; Hatsopoulos & Suminski,
2011; Suminski et al., 2009).

The postural and feedback-driven changes in
M1 activity raise questions about how proprio-
ception interacts with movement-related activ-
ity that is being decoded during BCI control.
In a previous study by Suminski et al., 2010,
monkeys using a BCI that was calibrated with

visual feedback showed improvement in a tar-
get tracking task when proprioceptive feedback
was provided via a robotic exoskeleton compared
to when monkeys were relying on visual feed-
back alone. Furthermore, despite variation in
individual neurons, proprioceptive feedback, on
average, increased the firing rates of neurons in
M1, indicating that proprioceptive feedback can
drive M1 responses and proprioceptive informa-
tion may influence BCI control.

To understand the influence of propriocep-
tive feedback on M1 activity and BCI perfor-
mance, we examined the impact of providing
proprioceptive feedback during decoder calibra-
tion and during BCI control. BCI decoders were
trained with vision, or with vision and propri-
oception, and tested in task conditions involv-
ing a variety of combinations of visual and pro-
prioceptive feedback while the participant con-
trolled the movements of a robotic arm. During
BCI control, the mapping between neural activ-
ity and movement was defined entirely by the de-
coder. This decoder was a set of weights on each
channel, which can also be thought of as a vec-
tor or axis in high-dimensional neural space. In
this scenario, we can examine how propriocep-
tive feedback influences neural activity relative
to the decode axis to understand how proprio-
ception interacts with BCI control and decoder
training.

We found that proprioceptive feedback could
be used for BCI control regardless of whether the
BCI decoder was trained with visual feedback
only, or with visual and proprioceptive feedback.
However, proprioceptive feedback impaired con-
trol of the BCI trained with vision only. While
proprioceptive feedback did not consistently in-
crease or decrease the firing rates of neurons
in M1, training the BCI decoder with proprio-
ceptive feedback ensured that the decoder cap-
tured more of the proprioception-driven changes
in neural activity during the task.

Methods

These experiments were performed under an
FDA Investigational Device Exemption as part
of an ongoing early feasibility trial to eval-
uate the safety of an intracortical brain-
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computer interface for long term neural record-
ing (NCT01364480). Described here is an
overview of the relevant components of the ex-
periment. Further details on surgical procedures,
array implantation, and decoder training are
published in Collinger et al., 2013 and Boninger
et al., 2013.

Neural recordings

Two 96-channel intracortical microelectrode ar-
rays (4mm x 4mm, Blackrock Microsystems, Salt
Lake City, UT, USA) were implanted in the
hand and arm region of the left motor cortex
(M1) of a woman who had been diagnosed with
spinocerebellar degeneration (Collinger et al.,
2013) that resulted in complete motor paralysis
below the level of C4, but intact sensation. Dur-
ing each recording session, neural signals were
recorded with a NeuroPort data acquisition sys-
tem (Blackrock Microsystems, Inc., Salt Lake
City, UT), and single- and multi-unit activity
was identified via threshold crossings. Thresh-
old crossings were converted to spike counts in 30
ms bins (Collinger et al., 2013). For the analy-
ses presented here, spike counts were reprocessed
into 90 ms bins and smoothed with a Gaussian
kernel with a width of 180 ms.

Decoder training

The BCI decoder was trained with neural data
collected while the participant watched a virtual
reality model of an arm moving automatically to
5 targets in a 2D workspace in a virtual reality
environment (Virtual Integration Environment,
Applied Physics Laboratory, Johns Hopkins Uni-
versity) (Armiger et al., 2011). While watching
the visual cue, the participant was instructed to
imagine moving the virtual arm to the target.
Neural data and endpoint velocity of the virtual
hand were recorded continuously during the cali-
bration trials and used to train a linear encoding
model that mapped the velocity in the horizontal
and vertical directions to the square-root trans-
formed firing rate of each unit. The model co-
efficients were fit with an ordinary least squares
estimator with ridge regression (Collinger et al.,
2013; Marquardt, 1970). An initial decoder for
2D (horizontal and vertical) velocity was com-

puted using indirect optimal linear estimation
(Wang et al., 2007).

In a second calibration step, the participant
used this decoder to control the velocity of a
robotic arm to reach to 5 possible targets in
space, while the decoded output was restricted
to a path reflecting the optimal reach direction
(Velliste et al., 2008). A new BCI decoder was
computed from the neural data and kinematics
collected during this second step of closed-loop
calibration. This decoder was then used for the
rest of the testing session with some gain adjust-
ment as needed based on feedback from the par-
ticipant. See Collinger et al., 2013 for full details
and equations.

Figure 1: Overview of experimental setup. A:
Neural firing rates, recorded from multielectrode
arrays implanted in M1, were transformed into
the horizontal and vertical velocity of a robot
arm. The participant was instructed to move the
robot arm back and forth across two lines (shown
in red) as many times as possible in one minute.
B: On each day, the BCI decoder was trained to
map M1 neural firing rates to the velocity of the
robotic arm. On 5 out of 9 days, the decoder was
trained with visual feedback only; on the remain-
ing 4 days, the decoder was trained with vision
and proprioception. C: During the line-crossing
task, the participant was provided with different
combinations of visual and proprioceptive feed-
back. Each decoder training modality was paired
with all task feedback conditions.

Line-crossing task

This study was conducted on nine days span-
ning a 156-day period beginning 361 days af-
ter implant. On each day, the participant used
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a BCI decoder to control the movements of a
robotic arm (Figure 1A) (Johannes et al., 2011;
Johannes et al., 2020). Two types of decoders
were trained: one with visual feedback alone (V
Decoder), and one in which proprioceptive feed-
back was provided by physically moving the par-
ticipants arm to match the movement of the vir-
tual robot arm (VP Decoder). The participant
was provided with a V Decoder on five out of
the nine days, and with a VP Decoder on the re-
maining four days (Figure 1B). Only one decoder
was used each day.

In the line-crossing task, the participant’s
goal was to move the BCI-controlled robotic arm
over a pair of lines near the right and left edge of
the workspace. A single trial in the line-crossing
task lasted for one minute, during which the
participant attempted to move the robot arm
leftward and rightward across the workspace as
many times as possible. A pair of lines spaced
0.2m apart on the edges of the workspace served
as the minimum horizontal displacement that
counted as a single crossing. In each trial, the
participant was provided with one of the follow-
ing combinations of visual and/or proprioceptive
feedback:

1. Eyes Open, No Proprioception
2. Eyes Open, Proprioception
3. Eyes Closed, No Proprioception
4. Eyes Closed, Proprioception
5. Eyes Open, Incongruent Proprioception

Four to five of each of trial types 1-4 were run on
each day. On one or two trials a day, the partic-
ipant was also provided with incongruent pro-
prioceptive feedback (Eyes Open, Incongruent
Proprioception), where the proprioceptive feed-
back was in the opposite direction relative to the
movement of the robot arm (Figure 1C). In other
words, as the robotic arm moved to the left, the
participants own arm was moved to the right.
On these trials, the participant was instructed to
ignore proprioceptive feedback and focus on the
visual feedback only. In total, the participant
performed 25-30 trials each day. Proprioceptive
feedback was provided by an experimenter man-
ually moving the participant’s arm to match the

movements of the robotic arm.

Segmentation of kinematics and neural data

The robot arm used in this study was the Modu-
lar Prosthetic Limb (MPL, Johns Hopkins, Ap-
plied Physics Laboratory) (Johannes et al., 2011;
Johannes et al., 2020). The motion of the robot
hand was confined to the frontal plane and the
subject controlled the horizontal and vertical ve-
locity. The horizontal position of the robot hand
was used to identify epochs corresponding to left-
to-right and right-to-left reaches. Each reach was
identified as the segment in which the robotic
arm started from one local positional extrema
(left or right), and moved to the opposite posi-
tional extrema (right or left). In the conditions
where the participant was receiving no sensory
feedback or incongruent sensory feedback, seg-
menting by the position of the robot arm re-
sulted in the inclusion of segments where the
participant did not successfully cross the target
lines. We therefore identified each reach epoch
as the segment between one positional extrema
to the time point corresponding to the median
length across all trials. Neural firing rates were
smoothed with a 180 ms Gaussian kernel and
segmented into the same reach epochs.

Principal components analysis within sensory
feedback conditions

During the task, the BCI user attempts to con-
trol the neural population activity to complete
the task effectively, but the pattern of neural ac-
tivity may also depend on the presence of vi-
sual and/or proprioceptive feedback. Typically,
BCI control tasks are performed only with vi-
sual feedback. However, as M1 contains neurons
that receive proprioceptive inputs, adding pro-
prioceptive feedback may alter the firing rates
of these neurons, thus shifting the neural pop-
ulation activity vector and the velocity control
outputs from the decoder. Since N ąą 2, the de-
coder represents one of many possible mappings
from the N-dimensional space of the neurons to
the 2D plane of the decoder output.

Training the decoder with vision alone re-
sults in a mapping that is optimized for that
condition, but an alternate mapping may likely
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work better when proproprioceptive feedback is
added. To explore alternate mappings, we used
principal components analysis (PCA) to find
axes of neural activity that captured variance
within each sensory feedback condition. Neu-
ral activity segmented into left and right reaches
was used to identify the axes that best explained
the variance in neural activity for each sensory
feedback condition. To ensure that movement
direction contributed equal variance to the train-
ing data, trials for each sensory feedback modal-
ity were subsampled so that each crossing direc-
tion was equally represented in the training data.
Subsampling in this way accounts for crossings
that vary in length and prevents longer cross-
ings from dominating the variance of the over-
all neural activity used for PCA. This was done
ten times with non-overlapping training sets each
time to provide a 10-fold cross-validated estimate
of the PC space that captured the most variance
in neural activity for each condition.

To quantify how proprioceptive feedback
during the line-crossing task influenced the BCI
decoders trained with vision only or with both
vision and proprioception, we compared how well
decoders captured neural variance across differ-
ent sensory feedback conditions. To do so, we
represented the neural subspace by taking the
top n principal components that explained at
least 90% of the variance, and computed the
principal angle between this space and the hori-
zontal decode axis. A smaller angle would mean
that there is greater overlap between neural ac-
tivity and the decode axis, meaning that the
fluctuations in neural activity contribute more
to fluctuations along the decode axis and there-
fore the decoded velocity. In contrast, an angle
closer to 900 suggests that the projection of neu-
ral activity onto the decode axis is smaller, so
variance in neural activity has less influence on
the decoded velocity.

Neural gradient analysis

We next determined whether sensory feedback
resulted in smoother dynamics, or more consis-
tent time evolution of neural activity. To do so,
we took the top n PC components that explained
90% of the variance of the neural population ac-

tivity across all conditions and divided this space
into a number of bins such that each bin ex-
plained 5% of the variance of the overall neural
activity. Since each PC dimension explains a dif-
ferent amount of variance of neural activity, each
dimension is divided into a different number of
bins. This allows dimensions that explain more
of the overall variance to be divided into more
bins, while PCs that explain less of the overall
neural variance are divided into fewer bins, en-
suring that each bin in neural space captures the
same amount of variance of the overall neural ac-
tivity. For example, if the first PC explained 30%
of the overall variance, it would be divided into 6
bins, and if the second PC explained 10% of the
variance, it would be divided into 2 bins. To-
gether, this discretization of the PC space would
result in a space comprising of 12 bins. The gray
lines in Figure 7B illustrate how the PC space
was divided into bins.

Bc “ r
V arpPCcq

0.05
s

Bc is the number of bins for principal compo-
nent c, and V arpPCcq is the variance of the over-
all neural activity explained by principal compo-
nent c. To completely discretize the PC space
into bins, the range of PC values for a single
component c is divided into the number of bins
computed above, Bc. This gives a set of scalars
of size Bc for each component, where each value
denotes a bin edge along PC axis c. Each of
these bin edges is then paired with all other bin
edges for all other components to create a set of
C dimensional vectors, where C is the number
of components that explains 90% of the overall
neural variance. Each bin is therefore delineated
by two C dimensional vectors, where any neural
activity that falls between the edges of each bin
is considered as a point in neural space within
that bin. This allows us to divide the neural
subspace into a set of discrete states. For each
bin, we identify all points at which neural activ-
ity falls within that bin and compute the deriva-
tive of the neural activity with respect to time.
This results in a set of vectors for each bin that
represent the time derivative of the neural firing
rates projected into the space of the n princi-
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pal components. We normalize all vectors in a
given bin to focus on the direction of the neu-
ral trajectories and not the speed of the neural
trajectory. To estimate the consistency of the
neural trajectory at any bin in the PC space,
we average all the neural derivative vectors in
a single bin. The length of the mean gradient
vector will therefore be longer if the collection of
vectors are pointing in consistent directions and
shorter if the collection of vectors are pointing in
disparate directions. Figure 7B shows an exam-
ple of the derivative of the neural activity in two
bins for two hypothetical trajectories, indicated
by the blue or red traces. In each bin, these
derivative vectors are normalized and the length
of the average vector represents a measure of the
consistency of the neural activity over time for
any given point in the neural subspace. If the
evolution of neural activity at a given point in
neural space is consistent, then the average vec-
tor length will be longer (Figure 7C, top) than
if the vector orientation is highly variable over
time (Figure 7C, bottom).

Results

The goal of this study was to examine how pro-
prioceptive and visual feedback influence neural
activity in M1 during BCI control of reaching
with a robotic arm. Providing a BCI user with
proprioceptive feedback enabled her to success-
fully control a robotic arm. However, proprio-
ceptive feedback also influenced behavior due to
interactions with M1 activity.

Visual or proprioceptive feedback is required to
perform the line-crossing task

Task performance was measured by counting
the number of times the robot arm crossed the
target lines (Figure 2). Performance on the
task differed across sensory feedback conditions
and interactions between decoder training and
sensory feedback conditions, but not between
training conditions alone (multi-way ANOVA
Fdecoder “ 0.35, pdecoder “ 0.55;Ffeedback “

103.88, pfeedback “ 2.02 ˚ 10´46;Finteraction “

5.51, pinteraction “ 3.28 ˚ 10´4). The average
number of crossings for each sensory feedback
condition on each experiment day are shown in

Figure 2A. The participant was able to perform
the task successfully during all conditions that
were tested, so long as the sensory feedback be-
ing provided was congruent; without visual or
proprioceptive feedback, performance was very
poor (Figure 2A, gray), as was performance
when proprioceptive feedback was incongruent
with movement (Figure 2A, orange).

Average crossings for each sensory feedback
condition are shown in Figure 2B. Providing
proprioceptive feedback alone recovered perfor-
mance compared to when no feedback was pro-
vided (p ă 1 ˚ 10´10, ** in Figure 2B), and the
same was true when visual feedback alone was
provided (p ă 1˚10´10), for both decoders. How-
ever, incongruent proprioceptive feedback inhib-
ited performance as much as no sensory feedback
(Figure 2B, p ą 0.95 for both decoders).

Proprioceptive feedback impairs performance un-
less decoders are trained with proprioception

Although proprioceptive feedback rescued per-
formance compared to no sensory feedback for
the V decoder, performance on the task was more
varied compared to when the participant was
provided with visual and proprioceptive feed-
back. In contrast, training the decoder with vi-
sion and proprioception made BCI performance
on these days (days 6-9) more robust to the ad-
dition of proprioceptive feedback during the task
(Figure 2A, purple trace is consistently compa-
rable to blue and pink traces for VP decoder but
not V decoder). Averaged across days, providing
proprioceptive feedback impaired performance
when a decoder was trained with vision alone,
as measured by the average number of reaches
(line crossings) across all days (p “ 1.3 ˚ 10´3,
Figure 2B, indicated by *). However, when the
decoder was trained with both vision and propri-
oception, providing proprioceptive feedback in
conjunction with vision did not impair task per-
formance (p “ 0.6).

Sensory feedback conditions influence kinematics

Providing visual or proprioceptive feedback dif-
ferently influenced the kinematics of the robotic
arm, suggesting that sensory feedback influenced
neural activity in M1 and through this, decoder
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Figure 2: Summary of BCI Performance under various feedback conditions. A: Number of cross-
ings on each day of the experiment. Color corresponds to sensory feedback condition during the
BCI task. B: Number of crossings (mean and standard deviation across days) all combinations of
sensory feedback. Green outline (left) is average of all days with the V Decoder, and black outlines
(right) indicate average of all days with the VP decoder. * = the Eyes Open, No Proprioception
condition with the V decoder is better than the Eyes Open, Proprioception condition for the same
decoder; ** = the Eyes Closed, Proprioception condition is better than both the no feedback and the
incongruent proprioceptive feedback trials.

performance. Figure 3A shows the horizontal
position of the robot hand during representative
trials when the decoder was trained with both vi-
sion and proprioception. When performing the
task without sensory feedback, the robotic arm
drifted to the right side of the workspace, but the
hand continued to alternate leftward and right-
ward throughout the trial. When either visual or

proprioceptive feedback was provided, the par-
ticipant was able to move the robotic arm sym-
metrically in both directions. The velocity vs.
position traces for individual trials of each sen-
sory feedback condition on day 6 of the experi-
ment (VP Decoder) are shown in Figure 3B.

When visual feedback was provided, regard-
less of whether proprioceptive feedback was pro-

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.26.24303289doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.26.24303289


Figure 3: Kinematics of BCI control under various feedback conditions. A and B: Sample kine-
matics of the robotic arm on a VP decoder day. Time vs. horizontal position of robot arm (A)
or horizontal position vs. horizontal velocity (B). Dashed gray lines correspond to markings the
participant was asked to move robot arm across. Reach/crossing length (C) and (D) speed averaged
across decoder types for each sensory feedback condition

vided, the BCI-controlled movements were more
accurate, with each reach passing just over the
right and left boundaries before changing direc-
tion. In contrast, in trials without visual feed-
back, the addition of proprioceptive feedback
resulted in longer reaches and movements that
were faster. Reach lengths were longer when pro-
prioceptive feedback was the only modality pro-
vided compared to any of the other visual feed-
back conditions (ANOVA with Tukey post-hoc
comparison (F “ 33.9, p “ 1.59 ˚ 10´20, Eyes
Open, No Proprioception: p “ 0.0; Eyes Open,
Proprioception: p “ 2.26 ˚ 10´13; Eyes Open,
Incongruent: p “ 2.50 ˚ 10´10, Figure 3C). Sim-
ilarly, movements when proprioceptive feedback
was provided in the absence of vision were faster
than movements when visual feedback was pro-

vided (p ă 0.049, Figure 3D).

Since reach length and speed were higher
when proprioception was the only available feed-
back modality, but similar when vision was avail-
able, regardless of whether proprioception was
provided, it is likely that the difference in kine-
matics was due to a strategy change on the part
of the participant as opposed to a proprioceptive
effect on M1 activity. If the increase in speed in
the Eyes Closed, Proprioception condition had
been due to an effect of proprioception on M1
activity, then we would have expected to see in-
creases in movement speed across all conditions
in which proprioceptive feedback is provided.

Combined, these results raise the question of
how proprioceptive feedback interacts with the
control of movement in M1 to impair or im-
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prove performance. To address this question,
we first examined how proprioceptive feedback
influenced the population activity of neurons in
M1. Then we examined how training a BCI de-
coder with visual feedback or combined visual
and proprioceptive feedback influences popula-
tion neural activity driven by different sensory
feedback conditions.

Proprioceptive feedback decreases M1 activity
when provided in combination with visual feed-
back

Previously, proprioceptive feedback during BCI
control has been shown to increase the firing
rate of neurons in M1 (Suminski et al., 2010).
We therefore examined the average firing rates
of each channel across different sensory feedback
conditions during the task. For each channel, we
averaged the firing rate across all trials of a given
sensory feedback condition and plotted it against
the average firing rate in another sensory feed-
back condition (Figure 4). Points that fall along
the dashed gray line indicate neurons that have
the same average firing rate across the two sen-
sory feedback conditions indicated on the hori-
zontal and vertical axis labels. The green and
black lines respectively show the linear regres-
sion model fit between the average firing rates
across the two sensory feedback conditions for
channels used in the V decoder and the VP de-
coder, respectively. A linear model with a slope
below the dashed gray lines indicate that neu-
rons on average had lower activity in the sen-
sory feedback condition indicated by the vertical
axis than in the sensory feedback condition indi-
cated by the horizontal axis. In contrast to pre-
vious studies (Suminski et al., 2010), we found
that firing rates of individual channels decreased
when proprioceptive feedback was provided in
combination with visual feedback (Figure 4A;
t-test with Bonferroni correction pV ă 0.005;
pV P ă 0.005), but increased when propriocep-
tive feedback was provided without visual feed-
back (Figure 4B;pV ă 0.05; pV P ă 0.005). How-
ever, firing rates for the Eyes Open, No Propri-
oception condition were similar relative to the
Eyes Closed, Proprioception condition (Figure
4C; p ą 0.05 for both decoders). Based on the

changes in average firing rates when propriocep-
tion is provided or not provided across the Eyes
Open and Eyes Closed conditions, the influence
of proprioception on M1 activity depends on the
presence of visual feedback. The differences in
average firing rates between the visual-only or
proprioception-only conditions between the two
decoder types also suggests that there are inter-
actions between motor activity during BCI con-
trol and sensory feedback that influences neural
activity in M1. Thus, the influence of propri-
oceptive feedback on M1 activity depends not
only upon the presence of visual feedback during
the task, but also the sensory feedback provided
during decoder training.

Training the decoder with vision and propriocep-
tion allows the decoder to take advantage of pro-
prioceptive driven signals in M1

To better understand how changes in the firing
rates of individual neurons affected the overall
population activity, we next examined how pro-
viding proprioceptive feedback during decoder
training interacted with proprioceptive feedback
during BCI control. Using PCA, we identified
the axes that best captured the variance of neu-
ral activity in each sensory feedback condition
on each experiment day. Sample neural tra-
jectories for each sensory feedback and decoder
condition are shown in Figure 5A-B. Trajecto-
ries in the green rectangle are trajectories where
the V decoder was used (Figure 5A), and those
in the gray rectangle are trajectories where the
VP decoder was used (Figure 5B). The 2-headed
arrow indicates the decode axis projected into
each PC space. When the V decoder is used
but proprioceptive feedback is provided with vi-
sual feedback during the task, neural trajectories
are less smooth compared to when task feedback
matches decoder feedback (Figure 5A, right).

We then measured the principal angle be-
tween this low-dimensional neural subspace that
encompasses 90% of the overall variance of neu-
ral activity for each sensory feedback condition
and the horizontal decode axis. The principal
angle estimates the projection length of the neu-
ral subspace defined by sensory feedback on the
decode axis. An angle of 90˝ means that there
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Figure 4: Changes in firing rates of M1 neurons across sensory feedback conditions. A: Average
firing rate for each channel in the Eyes Open, No Proprioception condition is plotted against the
average firing rate for each channel in trials with the Eyes Open, Proprioception condition. Green
circles indicate a channel on a day when the decoder was trained with vision only, a black square
indicates a channel on a day when the decoder was trained with vision and proprioception. B: Same
as (A) but the average firing rate in the Eyes Open, Proprioception condition is plotted against the
Eyes Closed, Proprioception condition. C: Same as (A) and (B) for the Eyes Open, No Propri-
oception condition and the Eyes Closed, Proprioception condition. Dashed gray line is the unity
line. Points that fall on this line are units that fire equally in both sensory feedback conditions.
Solid lines are the linear best fit for the relationship between average firing rates for the two sensory
feedback conditions for the V decoder (green) and the VP decoder (black). Gains (slopes) for each
line are labeled.

is the projection length between the neural vari-
ability driven by sensory feedback and the de-
code axis is zero, and therefore the variation in
neural activity due to sensory feedback during
the task does not influence neural activity along
the decode axis. Conversely, a principal angle of
0circ indicates that sensory feedback drives vari-
ability in neural responses along the same axis
as the decoder. We found that when propriocep-
tive feedback was provided during the task, vari-
ation in neural activity aligned better with the
decode axis, because the angle between the PC
space capturing 90% of neural variance and the
decode axis was smaller for the vision and pro-
prioception decoder than the vision only decoder
(Figure 5D, E). In contrast, when proprioceptive
feedback is not provided, the angle between the
decode axis and neural activity is not different
across decoders (Figure 5C). Thus, training the
decoder with vision and proprioception ensures
that proprioceptive-driven features of M1 neu-

ral population activity are taken into account by
the decoder, as the principal angle between the
decode axis and proprioceptive-driven variability
in neural activity is smaller.

Across all conditions where the participant
was receiving sensory feedback, the number of
crossings on each day was negatively correlated
with the overlap in the PC space and the de-
coder axis (V Decoder = R “ ´0.68, VP De-
coder = R “ ´0.69) (Figure 5F). Thus, perfor-
mance is better when neural activity during the
task aligns well with the decoder axis.

To ensure that this alignment between neu-
ral variability and the decoder axis was due to
decoder training and not to the participant’s
ability to successfully use the BCI, we exam-
ined the relationship between neural activity in
the incongruent proprioceptive feedback condi-
tion and the decode axis. We found that the an-
gle between the decoder and neural activity dur-
ing BCI control was smaller for the VP decoder
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Figure 5: Neural subspace analysis across sensory feedback conditions. A: Example neural trajecto-
ries in the top 3 PCs for the Eyes Open, No Proprioception condition (left, red traces) and the top
3 PCs for the Eyes Open, Proprioception condition (right, purple traces) on a day when the decoder
was trained with vision alone. B: Example neural trajectories for the same conditions as in (A)
on a day when the decoder was trained with vision and proprioception. C: The angle between the
neural subspace defined by the set of basis vectors identified via PCA and the decode axis averaged
across all days for each decoder for the Eyes Open, No Proprioception condition D: Same as (C)
for the Eyes Open, Proprioception condition E: Same as (C, D) for the Eyes Closed, Proprioception
condition. Error bars indicate standard deviation across days. F: Average number of line crossings
plotted against the angle between decode axis and PC axis for each sensory feedback condition on
each day. Circular markers indicate days in which the decoder was trained with vision only, square
markers indicate days in which the decoder was trained with vision and proprioception. The num-
ber in each marker indicates the day in the overall experiment. Solid lines indicate lines of best fit
between the principal angle and the number of reaches for the V Decoder (green) and VP decoder
(black)

(37.47˝˘ 5.46) than the V decoder (61.45˝˘

7.92), indicating that training the decoder with
proprioceptive feedback better encapsulates the
proprioceptive space (Figure 6A). However, de-
spite good alignment between neural activity

and the decode axis, task performance in the
eyes open, incongruent condition was poor, and
there was no correlation between the overlap be-
tween the decoder and neural activity during
BCI control and BCI performance (R “ ´0.24,
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Figure 6: Summary of neural analysis of incongruent proprioception condition. A: Angle between
the PC space and the decode axis averaged across all days for each decoder for the eyes open, in-
congruent condition. B: Average number of crossings for the eyes open, incongruent condition on
each day plotted against the angle between decode axis and PC space. C: Average firing rate for
each channel in trials with the eyes open, incongruent proprioception condition is plotted against
the average firing rate for each channel in the eyes open, proprioception condition. D: Same as (C)
but the average firing rate in the eyes open, incongruent proprioception condition is plotted against
the eyes closed, no proprioception condition.

Figure 6B). To summarize, training a decoder
with proprioception allows the decoder to cap-
ture proprioceptive-driven signals, and erroneous
proprioception disrupts performance.

To understand how incongruent propriocep-
tion influences neural activity in M1, we com-
pared the average firing rates of M1 neurons in
the incongruent proprioception condition to the
eyes open, proprioception condition. Interest-
ingly, we found that across both decoder types,
firing rates across neurons in M1 were reduced
relative to the eyes open, proprioception condi-
tion (Figure 6C; t-test with Bonferroni correc-
tion p ă 0.005 for both decoders), suggesting
that some activity in M1 is inhibited due to er-
roneous sensory feedback. Additionally, firing

rates were slightly reduced compared to the no
sensory feedback condition for the VP decoder
(p ă 0.005) but not the V decoder (p ą 0.05),
further reinforcing the finding that sensory feed-
back provided during decoder training influences
how sensory feedback during the task modulates
M1 activity (Figure 6D). To better understand
the influence of sensory feedback on BCI control,
we next examined how neural activity evolved
over time in a single trial.

Smooth neural trajectories correlate with good
control

After establishing that overlap between the de-
code axis and neural activity in each sensory
feedback condition was correlated with task per-
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formance, we wanted to determine how sensory
feedback influenced the time-varying neural ac-
tivity over the course of a single trial. To do
so, we examined how neural activity evolves over
time in the PC space that explains at least 90%
of the variance of neural activity in each sensory
feedback condition. Example neural trajectories
for single trials are shown in Figure 5A (V De-
coder) and 5B (VP Decoder). When the decoder
was trained with vision alone (V Decoder, Fig-
ure 5A), neural trajectories were smooth for the
eyes open, no proprioception condition, but did
not display smooth trajectories in the eyes open,
proprioception condition. In contrast, when the
decoder was trained with vision and propriocep-
tion (VP Decoder, Figure 5B), neural trajecto-
ries were smooth across both conditions. Thus,
sensory feedback influences how smoothly neu-
ral trajectories evolve over the course of a single
trial.

To quantify the smoothness of the neural
trajectories for each sensory feedback condition,
we divided the PC space for the top n com-
ponents that explains 90% of the variance into
small bins (Figure 7B,C). We graded bin sizes so
that axes that explained more variance were di-
vided into smaller bins and axes that explained
less variance were divided into larger bins. At
each time point during which neural activity
passed through a particular bin, we computed
the derivative of the neural activity with respect
to time. This allowed us to visualize the direc-
tion in which neural activity was moving in time
at each point in PC space by providing a single
vector for each time point. For each point in PC
space, we then averaged these vectors of neural
activity to estimate a flow field of neural activity
for each condition (Figure 7A). This is similar to
the tangling metric introduced in Russo et al.,
2018, but allows us to better capture points in
neural space where we have few samples via dis-
cretization.

We estimated the smoothness of the neural
trajectories by computing the length of the av-
erage gradient vector of the trajectories at dif-
ferent points in neural space. If neural trajec-
tories are smooth, then we would expect the
length of the average vector to be long, because

the gradients in each point are pointing in the
same direction. In contrast, if the neural tra-
jectories are not smooth, then we would expect
the length of the average gradient vector to be
short because disparate directions average out
to a zero-length vector. We found that the mean
normalized gradient length was longer when vi-
sual and proprioceptive feedback were provided
alone or combined, than when no sensory feed-
back was provided or incongruent proprioceptive
feedback was provided, suggesting that neural
state is more predictive of where neural activity
will go when sensory feedback is provided (Fig-
ure 7D) (ANOVA with post hoc t-test; p ă 0.005
for all sensory congruent sensory feedback con-
ditions). In contrast, when no sensory feedback
or incongruent proprioceptive feedback was pro-
vided, neural gradients were less smooth and
more variable. A decoder trained with vision
and proprioception, had longer gradients than a
decoder trained with vision only, suggesting that
volitional control of movement via a BCI may be
influenced by sensory feedback provided during
decoder training. Together, these results suggest
that when sensory feedback is provided, neural
trajectories evolve more smoothly over time and
results in smoother control of the robotic hand.

Discussion

Proprioceptive feedback is crucial across many
stages of motor control. We found that dur-
ing BCI control, M1 responds to proprioceptive
feedback in complex ways that depend on both
the presence of visual feedback and the sensory
modalities provided while training the BCI de-
coder. Understanding these interactions can of-
fer insight into both sensory restoration for BCI
users as well as decoder training paradigms that
take into account multiple modalities of sensory
feedback.

Proprioceptive feedback impairs performance
when decoder is trained with vision only

We observed that providing proprioceptive feed-
back during the task (eyes open, proprioception
condition) impaired performance relative to pro-
viding visual feedback alone (eyes open, no pro-
prioception), but only when the decoder was
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Figure 7: Smoothness of neural trajectories during BCI control. A: Average neural gradients vi-
sualized at each point in the top 3 PCs in five different feedback conditions. B: The PC subspace
explaining 90% of the variance was divided into n dimensional bins, with 5% of the total variance
explained per bin. The time derivative of the neural trajectory passing through each bin was calcu-
lated to build a set of vectors in each bin. These vectors were normalized and averaged to derive
a metric of how consistent neural dynamics were at different neural states. C: When vectors in a
particular bin have a very consistent direction as in the top example, the mean vector (dark black
arrow) will be longer in length than when vectors in a bin do not point in similar directions (bottom
example). D: Average length of the mean gradient vector across all bins in neural space for each
sensory feedback condition for a vision only decoder (top) and a vision and proprioception decoder
(bottom)

trained on visual feedback only (V Decoder).
This contrasts with a previous study by Sum-
inski et al., 2010, which found that when con-
gruent visual and proprioceptive feedback were
provided, performance in a random target pur-
suit task improved. Several differences in exper-
imental design may explain these differences in
results. First, the decoder in Suminski et al.,
2010 was trained to generate a position signal
from neural activity, whereas the decoder used
here generated velocity commands from neural
signals. Since previous studies have shown that
proprioceptive feedback is essential for generat-
ing motor commands for movement velocity and
joint torques (Sober & Sabes, 2003), it is possi-
ble that proprioceptive feedback has a greater ef-
fect on velocity decoders than position decoders.
Taken together, these findings raise interesting
questions as to how M1 integrates proprioceptive

feedback—if differences between Suminski et al.,
2010 and our results are primarily due to the
decoded kinematic parameter (position or veloc-
ity), this suggests that proprioceptive feedback
in M1 is largely informative about arm velocity,
but that M1 can transform velocity feedback into
a positional command. Further experiments are
needed to examine the neural coding of velocity
or position in M1, as well as a BCI user’s ability
to transform velocity information into position
commands and vice versa.

Training a decoder with visual and proprioceptive
feedback restores performance

While proprioceptive feedback paired with a V
decoder impaired performance, training the de-
coder with visual and proprioceptive feedback
restored performance to that of a V decoder
paired with visual only feedback. One explana-
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tion for this is that training the decoder with
vision and proprioception increased the overlap
between neural activity and the decode axis. In
other words, proprioceptive feedback influences
M1 activity, and a V decoder is not guaranteed
to fit a decode axis that is well-aligned with the
proprioception-driven variability. Training a de-
coder with vision and proprioception, however,
ensures there is good alignment between the de-
code axis and the proprioception-driven variabil-
ity in M1 activity. In some regards, this re-
sult is intuitive in that the proprioceptive feed-
back is well-correlated with velocity during de-
coder training, and therefore a straightforward
linear estimation will capture the variance re-
sulting from proprioceptive-modulated neurons
in M1. However, we would like to note that if
this were the case, we might expect to see that
performance in the incongruent proprioceptive
feedback condition could be as good as in the
proprioception-only condition if the participant
simply lets the proprioceptive signal dominate
control. In contrast, we see that incongruent pro-
prioceptive feedback significantly impairs perfor-
mance, suggesting that proprioceptive feedback
is not simply driving neural activity along the
decode axis, but that proprioceptive feedback in-
teracts with the participant’s volitional control
of the BCI in some way.

Proprioception directly influences M1 activity

The finding that proprioceptive feedback influ-
ences BCI performance is unsurprising given that
M1 has been shown to respond to proprioception
and other forms of sensory feedback (Evarts &
Fromm, 1977; Hatsopoulos & Suminski, 2011).
In accordance with many of these studies, we
found that proprioceptive responses in M1 vary
depending on whether the participant’s eyes were
open or closed. More specifically, proprioceptive
neurons appeared to increase firing in the ab-
sence of visual feedback and decrease firing in the
presence of visual feedback. Such differential ac-
tivation can be the result of several possibilities:
1) the participant is able to, via gating or other
methods, volitionally “turn off” proprioceptive
neurons when visual feedback is provided, be-
cause visual feedback is more reliable for move-

ment direction and arm positioning (Rosenkranz
& Rothwell, 2012; Seki & Fetz, 2012); 2) M1
neurons encode errors in sensory estimation, and
when congruent visual and proprioceptive feed-
back are provided, error cancellation between vi-
sual and proprioceptive feedback reduces firing
(Inoue et al., 2016); and 3) sensory state rep-
resentations are integrated across sensory feed-
back modalities to generate a motor command,
and when congruent visual and proprioceptive
feedback are provided, the participant generates
a smoother movement and therefore a less noisy
motor plan (Wolpert & Ghahramani, 2000).

The decrease in firing rate due to propriocep-
tive feedback that we observed seems unlikely to
be caused by a gating mechanism, as BCI perfor-
mance is impaired in the eyes open, propriocep-
tion condition for the V decoder, suggesting that
proprioception is influencing performance and its
effect on M1 activity cannot be downmodulated.
Additionally, the participant is unable to per-
form the task when incongruent proprioceptive
feedback is provided, suggesting that erroneous
proprioceptive feedback cannot be ignored. If
the decrease in firing rate is due to some cancel-
lation between visual and proprioceptive feed-
back, we would expect that firing rates are also
higher for the eyes open, incongruent proprocep-
tion condition relative to the eyes open, no pro-
prioception condition. We did not find this to be
the case, however, as firing rates were lower for
the eyes open, incongruent proprioception con-
dition compared to the eyes open, propriocep-
tion condition. Lastly, if smoother movements
correspond to lower firing rates, then we would
expect that the sensory feedback condition with
best performance for each decoder type is also
the sensory feedback condition with the lowest
average firing rates. While this was true for the
V decoder, it was not the case for the VP de-
coder, suggesting that there are interactions be-
tween decoder training and task feedback that
contribute to how proprioceptive feedback influ-
ences M1 activity. Our findings are once again
different from those of Suminski et al., 2010, but
this could be due to differences in how M1 re-
sponds to proprioceptive feedback when the BCI
user is generating position or velocity signals.
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Further analysis into how M1 encodes movement
and responds to sensory feedback based on veloc-
ity or position coordinates is needed.

We lastly examined the relationship between
neural activity and kinematic control. Many re-
cent studies have examined dynamics in M1, and
the role of sensory feedback in these dynamics
(Churchland et al., 2012; Lara et al., 2018; Russo
et al., 2018; Shenoy et al., 2013; Suresh et al.,
2020). We found that neural trajectories ap-
peared smooth when control was good, and sim-
ilarly, neural trajectories were not smooth when
control was poor. If smooth dynamical trajecto-
ries are indicative of more innately dynamical
systems, then external inputs such as sensory
feedback would degenerate deviations from the
dynamic behavior (Russo et al., 2018). In con-
trast, we found that sensory feedback made neu-
ral activity in M1 more dynamical. While we did
not see smooth dynamical trajectories when no
sensory feedback was provided, there are a num-
ber of reasons why this might be the case. One
possibility is that sensory feedback is required
to drive smooth dynamics in M1—particularly
in the context of a task. Another possibility is
that BCI control is very different from natural
arm control. In particular, in many of the tasks
which examine dynamics, monkeys are using nat-
ural arm movements in reaching tasks (Church-
land et al., 2012; Lara et al., 2018; Russo et al.,
2018). Thus, it may be that when the monkey
is using natural arm movements that they are
already familiar with, dynamical activity in M1
is smooth and can help drive motor control and
provide signals to downstream motor neurons.
In contrast, control of a BCI decoder may utilize
a different mechanism and require more sensory
feedback to drive control in M1.

When visual feedback is not provided, propriocep-
tive feedback provides useful information

Although proprioceptive feedback impaired per-
formance when provided alongside visual feed-
back to a V Decoder, this feedback was still suf-
ficient for the participant to perform the task
successfully compared to having no feedback at
all about arm position. However, different sen-
sory modalities can be more or less informative

about movement and therefore influence move-
ment accuracy and precision. Indeed, we found
that proprioceptive feedback in the absence of vi-
sual feedback led to larger amplitude movements
at higher speed. Since this increase in velocity
occurred only in the eyes closed, proprioception
condition but not in the eyes open, propriocep-
tion condition, it is likely that this effect is due
to a shift in participant strategy rather than a
result of proprioceptive feedback on M1, or that
visual feedback is slower. Previous studies have
shown that removal of visual feedback during
reaching tasks induces accumulating drift in arm
position from the optimal trajectory (Desmurget
et al., 1997; Ghez et al., 1995), although the di-
rection and distance of movement remains rela-
tively constant (Brown et al., 2003). The strat-
egy shift we saw is in line with these studies in
that without a visual cue to guide robot arm po-
sition, an effective way to maximize line crossings
is to move quickly over longer distances. From
these results, one might expect that when no
sensory feedback was provided, the participant
might adopt a strategy similar to her strategy
in the proprioceptive feedback-only condition.
However, when no sensory feedback is provided,
the robotic arm drifts to one side and continues
to make leftward and rightward movements that
are smaller in amplitude and slower. Thus, in
accordance with previous literature that shows
that proprioceptive feedback is essential for gen-
erating motor commands and movement extent
(Brown et al., 2003; Scheidt et al., 2005; Sober &
Sabes, 2003), the movements in the no sensory
feedback condition were neither positionally cen-
tered nor large in amplitude.

Implications for BCI control

One of the major goals of examining the im-
pact of sensory feedback in M1 is evaluating
the potential benefits of sensory restoration for
BCI users. Sensory restoration via intracorti-
cal microstimulation (ICMS) (Fifer et al., 2022;
Flesher et al., 2016; Flesher et al., 2021; Hughes
et al., 2021; Shelchkova et al., 2023) has been
shown to provide valuable feedback to BCI
users, although ICMS can impair BCI control, as
evoked activity in M1 due to ICMS disrupts the
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mapping between neural activity and velocity
(Shelchkova et al., 2023). One advantage of pro-
prioceptive feedback, however, is that it allows
the BCI user to make relatively accurate move-
ment in the absence of visual feedback. This
is perhaps not surprising in that proprioceptors
encode limb position as well as movement direc-
tion and velocity (Bosco & Poppele, 2001; Weber
et al., 2011) variables that definitionally change
with movement. Thus, developing ways to pro-
vide proprioceptive feedback to BCI users will
broaden the range of tasks and activities in which
BCI control can be used.

The results presented here, when combined
with results by Suminski et al., 2010 that show
that providing proprioceptive feedback to a po-
sition decoder trained with visual feedback only,
indicate that more works needs to be done both
in understanding how different sensory feedback
modalities impact neural activity in M1, as well
as the coordinates by which M1 controls and
represents movement. For example, one might
imagine that M1 is highly sensitive to velocity
signals of the proprioceptors, but that training
the decoder to output position rather than ve-
locity requires the BCI user to transform posi-
tional signals to velocity signals and therefore
reduces the direct impact of velocity-based pro-
prioceptive signals on M1 activity. Therefore,
understanding how M1 represents or integrates
proprioceptive feedback into velocity or position
signals can offer greater insight as to how to de-
liver proprioceptive feedback during BCI control.

The study presented here had some limita-
tions. We had a single participant (n=1) with
intact somatosensation. Additionally, while our
participant received a diagnosis of spinocerebel-
lar degeneration, it is unclear whether this is
the true pathology. Finally, proprioceptive feed-
back was provided via an experimenter moving
the participant’s arm–more accurate propriocep-
tive feedback provided with lower latency would
make the impacts of proprioceptive feedback on
M1 more clear.

Conclusion

We provided proprioceptive feedback to a person
using a BCI decoder to perform a reaching task.

We found that removing visual feedback signif-
icantly disrupted performance, but that provid-
ing proprioceptive feedback about the robotic
arm recovered much of the task performance.
Interestingly, however, when proprioceptive and
visual feedback were provided together, task per-
formance suffered if the decoder was trained with
visual feedback alone. This penalty for including
proprioceptive feedback was eliminated when the
decoder was trained with both visual and pro-
prioceptive feedback.This impairment seemed to
arise because neurons in M1 respond to propri-
oceptive feedback in different ways depending
on the presence of visual feedback and the sen-
sory feedback provided during decoder training.
Moreover, training the decoder with visual and
proprioceptive feedback recovered decoder per-
formance because the decoder was better able to
account for the activity of proprioception-driven
neurons in M1. Not only was the overlap be-
tween the decoder and the neural activity for
each sensory feedback condition correlated with
performance, the smoothness of the neural tra-
jectory also correlated with the smoothness of
the robot kinematics. Taken together with pre-
vious studies, these results suggest that proprio-
ceptive feedback interacts with volitional control
in M1 by impacting neural activity, which im-
pacts decoder performance. Restoring sensory
feedback to BCI may require taking into account
the interactions between sensory feedback and
volitional control in M1.
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