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ABSTRACT 
 

Suicide is one of the leading causes of death in the US, and the number of attributable deaths 

continues to increase. Risk of suicide-related behaviors (SRBs) is dynamic, and SRBs can occur 

across a continuum of time and locations. However, current SRB risk assessment methods, whether 

conducted by clinicians or through machine learning models, treat SRB risk as static and are 

confined to specific times and locations, such as following a hospital visit. Such a paradigm is 

unrealistic as SRB risk fluctuates and creates time gaps in the availability of risk scores. Here, we 

develop two closely related model classes, Event-GRU-ODE and Event-GRU-Discretized, that can 

predict the dynamic risk of events as a continuous trajectory based on Neural ODEs, an advanced 

AI model class for time series prediction. As such, these models can estimate changes in risk across 

the continuum of future time points, even without new observations, and can update these 

estimations as new data becomes available. We train and validate these models for SRB prediction 

using a large electronic health records database. Both models demonstrated high discrimination 

performance for SRB prediction (e.g., AUROC > 0.92 in the full, general cohort), serving as an 

initial step toward developing novel and comprehensive suicide prevention strategies based on 

dynamic changes in risk.  
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INTRODUCTION 
 

More than 700,000 people die by suicide worldwide annually, according to the World Health 

Organization1. In the US, suicide rates continue to increase despite calls for and efforts in suicide 

prevention2. One of the cornerstones of effective suicide prevention is identifying individuals at high risk 

for suicide-related behaviors (SRBs) to enable early intervention. Healthcare settings provide an 

important opportunity for risk assessment as most people who attempt or die by suicide are seen by a 

healthcare provider in the preceding weeks3. In recent years, the application of statistical and machine 

learning models to healthcare data have shown promise in improving prediction of suicide-related 

behavior4–10. Nevertheless, whether based on clinician evaluations alone or in conjunction with newer 

data-driven approaches4,5, current assessment methods are largely confined to specific time points and 

settings, such as following a healthcare visit, and treat risk as a static estimate over a given prediction 

window (Figure 1(a)). Such approaches are intrinsically limited given the dynamic nature of SRB risk, 

potentially compromising efforts to improve prevention. The precision of static risk estimates will decay 

with increasing intervals since the time point of prediction, progressively misaligning estimated and 

actual risk levels. In addition, in the absence of frequent healthcare visits, gaps in the availability of SRB 

risk estimates would occur, which could contain periods of high risk (i.e., the “uncovered time” depicted 

in Figure 1(a)). Ideally, an effective SRB risk estimate tool would provide a continuous-time, dynamic 

trajectory of risk that covers all future time points and can be updated with ongoing observations (Figure 

1(b)). 

 

In this study, we aimed to develop and validate a first iteration of continuous-time, dynamic risk 

prediction models for SRBs. We utilize data from a large-scale electronic health records (EHR) database, 

encompassing more than 1.7 million patients with a wide range of demographic and clinical features, to 

employ a recent advance in artificial intelligence (AI): Neural Ordinary Differential Equations (Neural 

ODEs) 11. Neural ODEs are a type of deep learning model that perceives the sequential evolution of data 
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as continuous-time differential equations, allowing for more flexible and efficient modeling of complex, 

dynamic systems. Specifically, our models leverage GRU-ODE12, an innovation that extends the original 

Neural ODE framework by building on Gated Recurrent Units (GRUs)13, a specialized type of recurrent 

neural network. GRU-ODE is particularly well-suited for modeling the irregularly spaced and sparse 

longitudinal trajectories such as those captured in her data. We further adapt GRU-ODE and develop two 

closely related model classes for event-based predictions (e.g., a recorded SRB), which we term “Event-

GRU-ODE” and “Event-GRU-Discretized.” In this framework, each patient's SRB risk at each time step 

is modeled as a non-linear transformation of a latent, continuous, and dynamic trajectory. Conceptually, 

such a trajectory can be interpreted as a series of abstract vectors representing the evolution of mental 

states), enabling the estimation of time-varying probabilities of SRBs within any specified future time 

window. These models have an “interleaving” design – i.e., they consist of two components— one that 

models a base latent trajectory of risk, and another that updates the trajectory based on information 

acquired from new observations. Both Event-GRU-ODE and Event-GRU-Discretized are capable of 

producing continuous-time predictions, with the only difference being that the former imposes an 

additional continuity assumption on the modeled latent trajectory – i.e., in the absence of new 

information, the change in the modeled value of the latent trajectory cannot exceed a threshold with 

respect to each time interval (see Methods for details). In short, these models can estimate continuous 

changes in risk across the continuum of future time points, even in the absence of new observations, and 

can be updated when new observations become available. By extending SRB risk estimates across the 

continuum of time, this approach effectively addresses one of the major limitations of current SRB risk 

assessment methods and could serve to inform more responsive interventions that are better able to 

address the complex nature of suicide risk. 

 

RESULTS 
 
Patient Cohort Characteristics 
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Data were obtained for 1,706,417 patients from the Research Patient Data Registry (RPDR)14, the EHR 

data repository of the Mass General Brigham (MGB) Healthcare system. From this patient set, 1,536,179 

were randomly sampled for model development (80% of all patients for training, and 10 % for 

validation/hyperparameter tuning), and 170,238 patients (10%) were included as a hold-out test set. Table 

1 summarizes the demographic composition of the data sets. Overall, the patients were predominantly 

females (i.e., 58% females in both training and test sets), and a majority self-identified as White (77.8% in 

the training/validation sets, and 77.6% in the test set) and were in the age range of 45-65 years old (Table 

1 and Supplementary Figure 1). As shown in Supplementary Figure 2, most patients had fewer than 50 

healthcare encounters within our “study time frame” (i.e., between Jan. 1, 2016 and Dec. 31, 2019).  

 

Our models continuously generate predictions on a daily basis for each patient, with each prediction 

varying in its temporal distance from both the patient's first recorded observation and the last observation 

before the prediction was made. We illustrate the distribution of the number of months between the 

prediction timepoint and (1) the first observation (representing the total length of information available 

for the prediction in question) and (2) the last available observation in Supplementary Figure 3. Most 

predictions were made with less than 2 years of data from the first observation and less than 5 months 

from the last observation. See below for the effect of length of observed patient history on model 

performance. 

 

Main Model Performance Metrics 

Table 2 shows the prediction performance of the Event-GRU-ODE and Event-GRU-Discretized models. 

In general, both models achieved excellent discrimination (area under the receiver operator curve, 

AUROC > 0.9) across different prediction windows (ROC curves are shown in Supplementary Figure 4). 

All model metrics were reported at a fixed 95% specificity. The highest AUROCs were recorded with a 1-

month prediction window (Event-GRU-ODE=0.940, Event-GRU-Discretized=0.942), while the highest 

area under the precision-recall curve (AUPRC) and positive predictive value (PPV) were observed using a 
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1.5-year prediction window, for both models (AUPRC=0.089 and PPV=0.016 for Event-GRU-ODE; 

AUPRC=0.089 and PPV=0.017 for Event-GRU-Discretized). All AUPRCs and PPVs were less than 0.09 

and 0.02, respectively, due to the low SRB prevalence in the data (0.01% - 0.12%). Although we observed 

the lowest PPV with the shortest prediction window, those classified as high risk were 15 times 

(RR=15.16) more likely to have an SRB than those classified as low risk. While both models had nearly 

identical AUROC, AUPRC and PPV, the Event-GRU-Discretized model achieved slightly better results in 

sensitivity and relative risk (at 95% specificity) than Event-GRU-ODE, with longer prediction windows 

(e.g., 1 year or 1.5 years).  

 

Effect of Time Length of Observed Patient History on Model Performance 

Figure 3 plots model metrics for the Event-GRU-ODE model as a function of the time length of observed 

patient history, smoothed by the locally weighted scatterplot smoothing (LOWESS) method and 

bootstrapped 95% confidence intervals. In general, performance tended to be better with longer observed 

patient history trajectories (and, therefore, more accumulated information), except for the AUPRC curve 

using the 1-month prediction window. We observe wider confidence intervals around the LOWESS fits 

towards the end of the follow-up period and with longer prediction windows. This widening may be 

attributed to a combination of factors: patients moving in and out of the hospital system, resulting in not 

all being followed for the entire study period; and the exclusion of time steps from the model training 

when their prediction windows extend beyond the study period. Both of these factors contribute to a 

reduction in the amount of data available for training during the later time steps, relative to the initial 

records of each patient. The aggregated prediction plots for the discretized model are shown in 

Supplementary Figure 5.   

 

Subgroup Analysis by Clinical Settings and Demographic Factors of Interest 

Figure 4 presents model metrics for Event-GRU-ODE stratified by three different clinical settings: (1) 

“General,” including all available patients and visits; (2) “Psych ED,” for which predictions were made at 
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the time of an emergency department visits involving psychiatric evaluation/consultation; and (3) “Psych 

Inpatient,” for which predictions were made at time of a psychiatric inpatient admission. AUPRC and 

PPV were significantly higher for the “Psych ED” and “Psych Inpatient” cohort compared to the 

“General” cohort, presumably due to the increased prevalence of SRB events among the two sub-cohorts 

the across different prediction windows (2.43% - 11.38% for “Psych ED”, and 0.78% - 7.24% for “Psych 

Inpatient”). The highest PPV (42.2%) was achieved for the Psych ED setting, with a prediction window of 

1.5 years. 

 

Event-GRU-ODE performance metrics stratified by important patient demographic characteristics (i.e., 

gender, self-reported race, age, income, and public payor for healthcare) are shown in Supplementary 

Figures 6-10. In general, AUROCs demonstrated modest variation across different demographic groups 

but were good (AUROC > 0.8) in all settings except for longer prediction windows among those with age 

< 20. There was greater variation in AUPRCs which were highest among individuals whose self-reported 

race was Black (for prediction windows of 6 months or more), and also tended to be higher among 

individuals aged 20-60 years and those gender was male. The discrete model version demonstrated 

similar characteristics in both subgroup analyses (data not shown).    

 

Effect of Training Data Size on Model Performance 

The size of available training data can be a limiting factor in settings with constrained resources. 

Theoretically, if the continuity assumption underlying the Event-GRU-ODE model holds true, this 

assumption should benefit model performance when training data is limited. To examine the overall effect 

of training data size on performance across both model versions, as well as the impact of the continuity 

assumption (demonstrated by contrasting the ODE and discretized models), we present in Table 3 the 

results (in AUROC and AUPRC) from training both models with various data sample sizes (i.e., 1/8, 3/8, 

5/8, and 8/8 or 100% of the training set). Additionally, we plot the comparison of prediction performance 

(in AUROC, AUPRC, and PPV at 95% specificity) between the ODE and discretized models for the 3-
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month prediction in Figure 2. We choose the 3-month (i.e., 90-days) prediction window due to the clinical 

utility of shorter-term prediction intervals. In general, model performance was only modestly reduced 

when training data was 3/8 (37.5%) of the full training dataset. We observe a more significant decline in 

model performance when the training data size is reduced from 3/8 to 1/8 of all available training data. 

However, discriminative metrics were still robust (AUROC > 0.84 for both model classes) under the 1/8 

training data setting. Of note, Event-GRU-ODE achieved higher AUPRC and PPV (a model metric which 

have been shown to be more informative than AUROC when base prevalence is low15,16) compared to 

Event-GRU-Discretized with smaller training data sizes, i.e., with only 3/8 or 1/8 of training data. 

Performance plots for the other prediction windows are shown in Supplementary Figures 11-14. 

 

DISCUSSION 
 

In this study, we present a continuous-time, dynamic modeling approach for predicting SRB risks. Unlike 

current assessment methods, this approach accommodates the time-varying nature of SRB risks and, by 

generating risk estimates across the entire time trajectory, it mitigates gaps in risk score availability. We 

utilized data from a large-scale EHR database containing data from multiple medical centers and 

hospitals, including features extracted from unstructured clinical notes, to develop and validate two model 

classes (Event-GRU-ODE and Event-GRU-Discretized) based on an advanced neural network 

architecture - Neural ODEs. Both model classes achieved high discrimination performance across 

different clinical settings. For example, in the general setting, AUROCs were between 0.93-0.94, and 

relative risks (the modeled risk divided by baseline prevalence during the designated prediction window) 

ranged from 13.2 and 15.2 across different prediction windows at 95% specificity. Such performance is 

better or comparable to those observed in previous analyses based on conventional static risk estimates by 

our group and others4,6–10,17–19.   

 

With respect to analyses by clinical setting, the results largely tracked the base rate of SRBs. As expected, 
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AUROCs were generally higher and PPVs lower for the “General” (all patients) cohort than the inpatient 

or ED sub-cohorts where base rates are higher. Stratified analyses by demographics found good 

discrimination across groups (AUROCs > 0.80) while AUPRCs were more variable (again, consistent 

with varying base rates of the outcome). For prediction windows of 6 months or longer, AUPRCs tended 

to be highest among those who identified as Black and lowest among those who identified as Asian.  

 

While the two model classes achieved similar performance across various metrics when all training data 

were used, Event-GRU-ODE attained higher AUPRC and PPVs than its discretized counterpart for the 

majority of configurations in the settings where the size of training data is limited. This implies that the 

continuity prior assumption12 (see Methods) may be beneficial in such settings.  

 

While these proof-of-concept analyses focused solely on EHR data for model development, a key 

advantage of our model classes lies in their flexible architecture, including their natural incorporation of a 

time dimension. This flexibility facilitates the easy integration of additional data modalities, such as 

genetic data or other biomarkers, and enables updates to the modeled future risk trajectory based on new 

incoming information at any point in time. This is crucial because, although a risk trajectory generated at 

a certain point can theoretically cover all future times, it may diverge from reality if it extends too far into 

the future without incorporating updated information. Sources of new information can include future 

healthcare visits, data from digital sensors, or outputs from mobile devices, which may themselves be 

structured as time series. Crucially, updating the modeled risk trajectory with incoming information at a 

specific time step requires only the modeled latent state vector from the previous time step, the relevant 

new information content, and the model parameters. This approach eliminates the need for access to the 

original data utilized to generate the risk trajectory up to the current time point, which may contain 

protected health information, thereby mitigating privacy concerns when updating predictions outside 

healthcare facilities.  
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Our results should be interpreted with several limitations in mind. Firstly, in this initial iteration of 

continuous-time SRB prediction models, our models rely solely on EHR data, with limited use of 

information contained within clinical notes (i.e., only utilizing the presence of specific extracted terms). A 

natural next step would be to refine the precision of event timing (including SRBs), potentially through 

the application of natural language processing techniques (e.g., large language models20–22) in 

combination with the information contained in clinical notes. Moreover, integrating sources of 

information beyond the healthcare system could further ensure timely updates of the modeled trajectory 

and potentially enhance model performance. Secondly, this initial study on continuous-time SRB 

prediction models has not yet explored their generalizability in depth. Lastly, model interpretation in time 

series modeling is an evolving field. While applying standard interpretation techniques, such as SHAP 

(Shapley Additive Explanations)23, is technically possible, it often leads to complex and non-

straightforward interpretations. Due to this complexity, we didn’t include an analysis of feature 

importance. 

 

Effective suicide prevention strategies necessitate a collaborative approach between the healthcare system 

and the broader community, including schools, workplaces, and families. The long-term goal of 

developing risk prediction tools that can adapt to dynamic changes in SRB risk, integrate new information 

continuously, and offer timely assessments, is to enhance the design of suicide prevention strategies. For 

example, data from community settings could be integrated into real-time risk assessments for more 

timely delivery of support or interventions. Alternatively, healthcare visits might be strategically 

scheduled during periods of predicted spikes in risk, facilitating better planning around times of the year 

or following specific life events that may elevate risk. 

 

In conclusion, leveraging neural ODE—a recent advance in deep learning for time-series analysis—we 

have developed continuous-time and dynamic risk prediction models to assess the risk of SRB using EHR 

data. We validated their effectiveness across various prediction windows, with robust performance across 
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diverse demographics and clinical settings. Our results confirm the feasibility of continuous-time and 

dynamic prediction for SRB and highlight the value of continued innovation in this area to enable more 

accurate and comprehensive SRB risk stratification methods.   

 

METHODS 
 
Data source and study population 
 
The data used for this study were derived from RPDR14 , the research EHR data registry of the MGB 

healthcare system located in Massachusetts, USA. The RPDR is a centralized data registry that collects 

and compiles clinical information from multiple EHR systems within MGB, which includes more than 7 

million patients with over 3 billion records seen across more than 8 hospitals, including two major 

teaching hospitals14. In this study, we used data between the period of Jan. 1, 2016 and Dec. 31, 2019 (the 

“study time frame”) and included all patients who had at least 3 visits and a minimum of 30 days of 

medical record, and were older than age 10 at the time of their first medical record entry within this time 

period. We chose the start date to minimize the impact of data heterogeneity caused by different recording 

practices due to the hospital system’s transition from ICD (International Classification of Disease)-9 to 

ICD-10. 

 

Suicide-related behavior definition 

For the purpose of this study, we adopt a list of ICD codes, previously developed and validated8,24, as the 

definition of SRB. These codes were shown to have to be valid for capturing intentional self-harm by 

extensive chart review by expert clinicians, a PPV of greater than 70%24. An “SRB event” is then defined 

by the occurrence of any of the codes in the list. 

 

Predictors 

We include two types of predictors: (1) covariates, including the demographic variables (total of 7, a full 
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list is provided in Table 1). These enter the model at the beginning of the trajectories; and (2) 

observations, which are recorded for each hospital encounter during the patient trajectory, including: a. 

diagnosis codes, which were mapped from ICD codes25,26 to PheWAS codes27 which have been shown to 

capture clinically meaningful concepts28 (total 1,871 features); b. medications, which were mapped to 

RXNORM codes29 (total 1,712 features); and c. a set of previously defined features derived using natural 

language processing (NLP)30,31, which we named as “NLP CUIs” (i.e., concept unique identifiers32), 

indicating the presence of mental health-related concepts as defined in the Unified Medical Language 

System (UMLS32) in the clinical notes (total of 2,488 features). Observations were ordered temporally 

and enter the model as inputs according to their recorded date relative to the date of the first entry of each 

patient (see Figure 5 for a schematic illustration of the data setup). Note that while we chose a time 

resolution of one day as the basic unit for a time step, any time resolution can theoretically be chosen 

given that data are available (the smaller the time step, the closer the approximation to continuity). 

Continuous-valued features (e.g., age range at the time follow-up started) were discretized by binning, 

and all features were converted to one-hot encoding before entering the models.  

 

Prediction task definition 

Based on the SRB definition, we formulate the suicide risk prediction task as follows:  

 

 𝑌𝑌𝑡𝑡 = �1, 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜏𝜏 ∈ (𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡] 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝜏𝜏 = 1
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                 (1) 

 

where ∆𝑡𝑡 is the length of the “prediction window” and 𝑒𝑒𝜏𝜏 is 1 if an event (i.e., suicide-related behavior) 

was recorded at time 𝜏𝜏. This means 𝑌𝑌𝑡𝑡 (i.e., the prediction label) is set to 1 if an event happens within 

the next ∆𝑡𝑡 time (i.e., a “prediction window”). In this study, we look at prediction windows of 1 month, 

3 months, 6 months, 1 year, and 1.5 years. 
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Prediction labels are created for each patient, for each day, from the date of the first visit up to the date of 

the last visit, minus the length of the prediction window to ensure the full length of prediction window is 

observed. Of note, to compensate for the fact that events recorded toward the end of patient history would 

contribute fewer labels under this scheme, a “buffering time” of 30 days is appended to the date of the last 

visit, during which the label of the last visit will be carried over up to the 30th day after the last visit.  

 

Event-GRU-ODE model 
 
We model a patient trajectory as a D-dimensional stochastic process 𝒀𝒀(𝑡𝑡) whose dynamics is driven by a 

stochastic differential equation (SDE): 

 

 𝑑𝑑𝒀𝒀(𝑡𝑡)  =  𝜇𝜇(𝒀𝒀(𝑡𝑡))𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝒀𝒀(𝑡𝑡))𝑑𝑑𝑾𝑾(𝑡𝑡) (2) 

 

where d𝑾𝑾(t) is a Wiener process. The EHR records in a patient trajectory typically consist of sparse and 

irregularly observed longitudinal data, which makes modeling the SDE directly very difficult.  

 

We follow the idea from statistical mechanics, that instead of modeling SDE directly, one models the time 

evolution of the probability density function of the observables. Therefore, we propose to use a latent 

variable process 𝒉𝒉(𝑡𝑡) that can be mapped to the mean and covariance of the target variables of interest, 

i.e., the SRB labels 𝒀𝒀t (see “Prediction task definition”). In detail, we model the probabilities of a SRB 

event happening between time period 𝑡𝑡 and 𝑡𝑡 + Δ𝑡𝑡, in the form of a Bernoulli distribution. This means 

that the latent process 𝒉𝒉(𝑡𝑡), varying in time, is mapped to the parameter 𝑝𝑝(𝑡𝑡) of the Bernoulli 

distribution, which determines its mean and variance varying in time. The dynamics of the underlying 

latent process are governed by ordinary differential equations (ODEs), whose parameters are learned from 

data. 
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Specifically, we model the mapping from the observed variables to the hidden variable with “Event-

GRU-ODE” as described below, and use a feed-forward neural network to map the hidden variable 𝒉𝒉(𝑡𝑡) 

to the output probabilities (i.e., the parameter 𝑝𝑝 of Bernoulli distribution of the random variable). This 

SDE formulation reflects the evolving uncertainty of the patient’s future condition regarding SRB. 

 

Model components 

To model the latent variable 𝒉𝒉(𝑡𝑡), used for predicting the probabilities of SRB events, and incorporate 

incoming health-related observations, such as diagnosis and measurements, we propose a two-mode 

system, consisting of: (1) Continuous time propagation of the latent variable 𝒉𝒉(𝑡𝑡); and (2) Discrete 

updates that happen each time a new observation 𝑥𝑥𝑡𝑡 is received at time 𝑡𝑡. Each time there is an 

observation that triggers the discrete update the system switches to a new state of the ODE (which still 

has the same parameters and dynamics as before). 

 

Continuous time propagation 

For the continuous time propagation, we employ recently proposed methods in the field of Neural ODEs, 

specifically GRU-ODE33. This means when there are no observations, the latent variable follows an ODE 

whose trajectory is controlled by the GRU-ODE:  

 

 𝑑𝑑𝒉𝒉(𝑡𝑡)
𝑑𝑑𝑑𝑑

= GRUODE(ℎ(𝑡𝑡);𝑊𝑊𝑐𝑐), (3) 

 

where 𝑊𝑊𝑐𝑐 are the weights of the neural networks of GRU-ODE (learned end-to-end with other 

components of the model).  

 

To derive GRU-ODE we start with the standard classic GRU13, given by its equations for update gate 𝑧𝑧, 

reset gate r and candidate hidden vector ℎ�: 
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 𝑧𝑧𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧)  (4) 

 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟)  (5) 

 ℎ𝑡𝑡� = tanh(𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ(𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1) + 𝑏𝑏ℎ) (6) 

 ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡 ⊙ ℎ𝑡𝑡� + (1 − 𝑧𝑧𝑡𝑡)⊙ℎ𝑡𝑡−1 (7) 

 

The key idea is to observe that the last equation, which combines the candidate hidden vector ℎ𝑡𝑡�  and the 

previous hidden vector ℎ𝑡𝑡−1, can be rewritten as a difference equation for ℎ𝑡𝑡: 

 

 Δℎ𝑡𝑡 = ℎ𝑡𝑡 − ℎ𝑡𝑡−1 = 𝑧𝑧𝑡𝑡 ⊙ �ℎ𝑡𝑡� − ℎ𝑡𝑡−1�. (8) 

 

Taken to the limit of Δ𝑡𝑡 → 0 the difference equation gives an ODE with negative feedback on the current 

hidden state ℎ(𝑡𝑡): 

 

 ℎ(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑧𝑧(𝑡𝑡) ⊙�ℎ�(𝑡𝑡) − ℎ(𝑡𝑡)�. (9) 

 

GRU-ODE has several useful properties, such as stability due to negative feedback and Lipschitz 

continuity with respect to time with constant K = 2, which helps make the model robust to numerical 

errors as well as effective even with smaller data sample size33.  

 
Initial hidden state 

The initial hidden state, ℎ(0), is computed from the static covariates of the patient using a multilayer 

feed-forward neural network. 

 

Discrete update 
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The continuous-time GRU-ODE component propagates the latent vector up to the observation time (𝑡𝑡) 

where the model then updates the hidden state ℎ(𝑡𝑡) to a new value 𝒉𝒉′ by using a discrete network, 

which is a standard GRU13: 

 

 𝒉𝒉′(𝑡𝑡) = GRU(𝒉𝒉(𝑡𝑡), 𝑥𝑥𝑡𝑡;𝑊𝑊𝑑𝑑), (10) 

 

where 𝑥𝑥𝑡𝑡 is the observation at time 𝑡𝑡 and 𝑊𝑊𝑑𝑑 are the weights of the update GRU network and a 

multilayer feed-forward network that preprocesses 𝑥𝑥𝑡𝑡. After this update the system switches back to 

continuous-time propagation (GRU-ODE) starting from the state ℎ′(𝑡𝑡). 

 

Finally, we use an output network 𝑓𝑓(ℎ(𝑡𝑡);𝑊𝑊𝑜𝑜) that maps the hidden state ℎ(𝑡𝑡) to the SRB event 

probabilities 𝑝𝑝(𝑡𝑡) for the time 𝑡𝑡. Using cross-entropy loss on the outputs of the network and feeding in 

observations 𝑥𝑥𝑡𝑡 we can train Event-GRU-ODE in fully end-to-end manner. 

 

Event-GRU-Discretized model 
 
The Event-GRU-ODE model makes the assumption that between two observations (e.g., two healthcare 

encounters) the latent vector ℎ is propagating by following an ODE, forcing the trajectory to be 

continuous in time.  

 

We can relax this continuity assumption by allowing the time propagation to be updated by the discrete 

GRU. This propagation is still carried out in iterative fashion using time step size as in Event-GRU-ODE. 

Relaxing the continuity assumption could allow the model to be more flexible and might affect 

performance. We name this model “Event-GRU-Discretized.” 

 

Model training and evaluation 
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We implemented and evaluated two models, namely “Event-GRU-ODE” and “Event-GRU-Discretized”, 

for the continuous time suicide risk prediction task, with 5 different prediction windows (i.e., 1 month, 3 

months, 6 months, 1 year and 1.5 years). We randomly split the data into 10 “folds,” each contains data 

from 10% of all patients. Among them, 8 folds (80%) were used as a training set, one fold (10%) as a 

hold-out validation set (10%) for tuning all the model hyperparameters, and one fold (10%) as a hold-out 

test set for model evaluation (10%). During training, models were optimized using the Adam optimizer34. 

More detailed training procedures, including hyperparameter settings, are provided in Supplementary 

Note A. 

 

For model performance evaluation, we report area under the receiver operator characteristic curve 

(AUROC), area under Precision-Recall curve (AUPRC), as well as positive predictive value (PPV) and 

sensitivity with specificity set to 0.95.  

 

In order to evaluate how well Event-GRU-ODE makes its predictions as a function of the length of 

observed patient history trajectories, we aggregated all the model predictions made on each day after the 

first EHR entry of each patient, measured model performance (in AUROC and AUPRC) along the time 

trajectory, and plotted the model metrics over time for the study time frame. To increase the signal-to-

noise ratio, plots were smoothed by the LOWESS method with its smoothing window (i.e., the fraction 

parameter) set to be 0.3. We also performed bootstrap resampling to add the estimated 95% confidence 

intervals around each LOWESS fit on the plot.   

 

In addition, we assessed potential differences in model performance across various patient subgroups. 

First, we defined three patient groups of interest based on clinical settings to stratify prediction results and 

evaluate model performance in each patient population: (1) “General” representing the general outpatient 

cohort, which encompasses the full study population and their complete trajectories within the study 

period; (2) “Psych ED” for predictions during emergency department visits involving psychiatric 
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evaluation/consultation within the study period; (3) “Psych Inpatient” for predictions made during 

psychiatric inpatient admissions within the study period. Furthermore, we conducted stratified analyses 

on key demographic groups (gender, race, age group, income level by ZIP code, whether the patient has a 

public insurance payor) to examine potential heterogeneity in model performance across different 

subgroups. 

 

Lastly, to further compare the two models and their capabilities to learn from fewer samples, we trained 

each model using all the training data as well as randomly sampling 5/8, 3/8 and 1/8 (i.e., 5, 3, and one 

fold, respectively) of the training data.  
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Table 1 | Demographic breakdown of the development (training and validation) and test sets.  
Setting Training Validation Testing 

N % N % N % 
Gender  
 Female 792,786 58.1 98,770 57.9 98,660 58.0 
 Male 572,798 41.9 71,787 42.1 71,573 42.0 
 Unknown 33 0.0 5 0.0 5 0.0 
Age group   
 < 25 y/o 202,003 14.8 25,421 14.9 25,132 14.8 
 25−45 y/o 382,994 28.1 47,543 27.9 47,704 28.0 
 45−65 y/o 463,454 33.9 58,010 34.0 57,966 34.0 
 > 65 y/o 317,166 23.2 39,588 23.2 39,436 23.2 
Race  
 Asian 63,510 4.7 8,029 4.7 7,876 4.6 
 Black/African 
American 

86,681 6.3 10,739 6.3 10,850 6.4 

 White 1,062,099 77.8 132,638 77.8 132,141 77.6 
 Other 108,984 8.0 13,600 8.0 13,827 8.1 
 Unknown 44,343 3.2 5,556 3.3 5,544 3.3 
Marital status  
 Single 493,167 36.1 61,958 36.3 61,264 36.0 
 Married 673,403 49.3 83,912 49.2 84,310 49.5 
 Partner 8,135 0.6 993 0.6 1,024 0.6 
 Divorced 73,209 5.4 9,163 5.4 9,226 5.4 
 Separated 12,366 0.9 1,530 0.9 1,504 0.9 
 Widowed 58,504 4.3 7,188 4.2 7,189 4.2 
 Other/unknown 46,833 3.4 5,818 3.4 5,721 3.4 
Veteran status  
 Yes  66,325 4.9 8,280 4.9 8,360 4.9 
 No 1,081,395 79.2 135,128 79.2 134,750 79.2 
 Unknown 217,897 16.0 27,154 15.9 27,128 15.9 
Public payor  
 Yes 627,056 45.9 78,060 45.8 78,392 46.0 
 No 738,561 54.1 92,502 54.2 91,846 54.0 
Income level  
 < $40k 96,897 7.1 12,094 7.1 12,027 7.1 
 $40k−$70k 572,996 42.0 71,915 42.2 71,381 41.9 
 $70k−$100k 476,069 34.9 59,451 34.9 59,499 35.0 
 > $100k 219,655 16.1 27,102 15.9 27,331 16.1 
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Table 2 | Model performance comparison between Event-GRU-ODE (i.e., “ODE” in the table) and Event-
GRU-Discretized (i.e., “Discretized” in the table), for the five prediction windows (Pred. win.). 
Performance metrics are AUROC, AUPRC, positive predictive value (PPV), sensitivity and relative risk 
(RR = PPV/prevalence), reported at 95% specificity. 
 
 

Model Prediction 
Window 

AUROC AUPRC PPV Sensitivity RR Prevalence 

ODE 1 month 0.940 0.023 0.002 0.759 15.16 0.01% 

Discretized 1 month 0.942 0.024 0.002 0.759 15.16 0.01% 

ODE 3 months 0.935 0.046 0.005 0.732 14.58 0.03% 

Discretized 3 months 0.938 0.044 0.005 0.735 14.64 0.03% 

ODE 6 months 0.933 0.062 0.008 0.701 13.91 0.06% 

Discretized 6 months 0.936 0.061 0.008 0.718 14.25 0.06% 

ODE 1 year 0.927 0.080 0.014 0.675 13.32 0.11% 

Discretized 1 year 0.930 0.080 0.014 0.694 13.70 0.11% 

ODE 1.5 years 0.925 0.089 0.016 0.668 13.16 0.12% 

Discretized 1.5 years 0.929 0.089 0.017 0.688 13.55 0.12% 
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Table 3 | AUROC and AUPRC scores of models trained using different proportions of the data set (1 fold, 
3 folds, 5 folds and 8 folds, which are 1/8, 3/8, 5/8 and 100% of the training set, respectively). 
  

Model Metric Prediction 
Window 

Fraction of data used for training 

1 fold 3 folds 5 folds 8 folds (all) 

ODE AUROC 1 month 0.862 0.928 0.937 0.94 

ODE AUPRC 1 month 0.009 0.017 0.024 0.023 

ODE AUROC 3 months 0.848 0.924 0.933 0.935 

ODE AUPRC 3 months 0.02 0.036 0.042 0.046 

ODE AUROC 6 months 0.841 0.923 0.932 0.933 

ODE AUPRC 6 months 0.034 0.049 0.056 0.062 

ODE AUROC 1 year 0.824 0.917 0.926 0.927 

ODE AUPRC 1 year 0.044 0.063 0.071 0.08 

ODE AUROC 1.5 years 0.822 0.916 0.925 0.925 

ODE AUPRC 1.5 years 0.047 0.07 0.078 0.089 

Discretized AUROC 1 month 0.872 0.917 0.935 0.942 

Discretized AUPRC 1 month 0.006 0.018 0.023 0.024 

Discretized AUROC 3 months 0.858 0.908 0.929 0.938 

Discretized AUPRC 3 months 0.012 0.031 0.041 0.044 

Discretized AUROC 6 months 0.848 0.907 0.928 0.936 

Discretized AUPRC 6 months 0.018 0.039 0.056 0.061 

Discretized AUROC 1 year 0.835 0.897 0.922 0.93 

Discretized AUPRC 1 year 0.025 0.046 0.073 0.08 

Discretized AUROC 1.5 years 0.832 0.896 0.921 0.929 

Discretized AUPRC 1.5 years 0.028 0.05 0.081 0.089 
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Figure Legends 

Figure 1 | Schematic diagram for (a) static SRB risk predictions. In the static paradigm, risks of SRB are 

modeled as uniform probabilities for a pre-defined prediction window (Δt) evaluated at a specific time 

point, usually following a hospital visit (e.g., t0, t1). Δt may vary in length based on the query. The 

estimated static risk is carried over through the entire prediction window to represent the SRB risk at any 

given point until the end of the prediction window (e.g., between t0 and t0+Δt). This approach is 

vulnerable to errors due to its inherent mismatch with the dynamic nature of SRBs, and fails to provide 

comprehensive coverage of estimated risk throughout the entire trajectory. On the x-axis: time since the 

first hospital visit; on the y-axis: actual (blue) and modeled (orange) SRB risk (cumulative incidence) for 

a given prediction window. t0: the time of the first hospital visit; t1: a subsequent hospital visit when new 

information regarding a life event is recorded; Δt1: the corresponding prediction window queried; Error: 

the discrepancies between estimated and actual risks; tLE: the time a life event occurred, potentially 

affecting SRB risk; Uncovered time: periods when an estimated suicide risk is not available; (b) An ideal 

continuous-time and dynamic SRB risk prediction paradigm. In this paradigm, risks are dynamically 

modeled to fluctuate naturally, i.e., for every time point, the model produces an estimated SRB risk for a 

given prediction window following that time point, thus reducing errors associated with static approach. 

The continuous-time approach also provides coverage of the entire time trajectory (i.e., no “uncovered 

time”). tupdate: the time when new information, such as a life event, is recorded and incorporated into the 

risk model. Notably, if data from sources outside healthcare settings is available, tupdate can occur 

independently of hospital visits, allowing for more timely updates based on the information source. 

Similarly, equating the timing of SRB events with the recording of diagnosis codes can introduce 

inaccuracies in the modeled trajectories. Further details are discussed in the Discussion section. 

 

Figure 2 | Model performance (in (a) AUROC; (b) AUPRC; and (c) PPV at 95% specificity) comparison 

between the two models trained with different proportions of the training data (1 fold, 3 folds, 5 folds and 

8 folds, i.e., 1/8, 3/8, 5/8, and all of the training set), using a 3-month prediction window. 

 

Figure 3 | Aggregated prediction performance (in (a) AUROC and (b) AUPRC) by the length of observed 

history (smoothed by LOWESS) since the beginning of every patient trajectory, for Event-GRU-ODE. 

 

Figure 4 | Model performance by clinical settings, namely “General” (general setting, green), “Psych 

ED” (psychiatric emergency department, blue) and “Psych Inpatient” (psychiatric inpatients, orange), for 

Event-GRU-ODE. The percentages in the parentheses along the x-axis indicate the prevalence of SRB in 

each setting. 
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Figure 5 | Schematic diagram of the data setup for one hypothetical patient. Static covariates 

(demographic observations), which may include any combination of diagnoses, medications, and NLP 

CUIs, are entered into the model at time t0 (i.e., the time of the first patient entry). Subsequent 

observations are ordered sequentially over time, with the exact time steps (days after the first record) 

preserved. Labels are created for each time step, considering the presence of a SRB record. For any time 

step tA within the interval where data is available, its associated prediction Window A, starting from tA+1, 

is assigned a label value of 1 if SRB is recorded within that period. Note that tA is not bounded to the 

dates of where there are recorded entries. With the trained model, predictions can be made for any future 

time step (tB, tC, ...) occurring after the last recorded entry at tf (note that labels are not available for future 

times and the probability of their occurrences are the targets for predictions (red circle with question 

mark)). 
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Figure 1 | Schematic diagram for (a) static SRB risk predictions. In the static paradigm, risks of SRB are modeled as 
uniform probabilities for a pre-defined prediction window (Δt) evaluated at a specific time point, usually following a 
hospital visit (e.g., t0, t1). Δt may vary in length based on the query. The estimated static risk is carried over through 
the entire prediction window to represent the SRB risk at any given point until the end of the prediction window 
(e.g., between t0 and t0+Δt). This approach is vulnerable to errors due to its inherent mismatch with the dynamic 
nature of SRBs, and fails to provide comprehensive coverage of estimated risk throughout the entire trajectory. On 
the x-axis: time since the first hospital visit; on the y-axis: actual (blue) and modeled (orange) SRB risk (cumulative 
incidence) for a given prediction window. t0: the time of the first hospital visit; t1: a subsequent hospital visit when 
new information regarding a life event is recorded; Δt1: the corresponding prediction window queried; Error: the 
discrepancies between estimated and actual risks; tLE: the time a life event occurred, potentially affecting SRB risk; 
Uncovered time: periods when an estimated suicide risk is not available; (b) An ideal continuous-time and dynamic 
SRB risk prediction paradigm. In this paradigm, risks are dynamically modeled to fluctuate naturally, i.e., for every 
time point, the model produces an estimated SRB risk for a given prediction window following that time point, thus 
reducing errors associated with static approach. The continuous-time approach also provides coverage of the entire 
time trajectory (i.e., no “uncovered time”). tupdate: the time when new information, such as a life event, is recorded 
and incorporated into the risk model. Notably, if data from sources outside healthcare settings is available, tupdate can 
occur independently of hospital visits, allowing for more timely updates based on the information source. Similarly, 
equating the timing of SRB events with the recording of diagnosis codes can introduce inaccuracies in the modeled 
trajectories. Further details are discussed in the Discussion section.  
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Figure 2 | Model performance (in (a) AUROC; (b) AUPRC; and (c) PPV at 95% specificity) comparison between 
the two models trained with different proportions of the training data (1 fold, 3 folds, 5 folds and 8 folds, i.e., 1/8, 
3/8, 5/8, and all of the training set), using a 3-month prediction window. 
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Figure 3 | Aggregated prediction performance (in (a) AUROC and (b) AUPRC) by the length of observed history 
(smoothed by LOWESS) since the beginning of every patient trajectory, for Event-GRU-ODE. 
  

(a) (b) 
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Figure 4 | Model performance by clinical settings, namely “General” (general setting, green), “Psych ED” 
(psychiatric emergency department, blue) and “Psych Inpatient” (psychiatric inpatients, orange), for Event-GRU-
ODE. The percentages in the parentheses along the x-axis indicate the prevalence of SRB in each setting. 
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Figure 5 | Schematic diagram of the data setup for one hypothetical patient. Static covariates (demographic 
observations), which may include any combination of diagnoses, medications, and NLP CUIs, are entered into the 
model at time t0 (i.e., the time of the first patient entry). Subsequent observations are ordered sequentially over time, 
with the exact time steps (days after the first record) preserved. Labels are created for each time step, considering the 
presence of a SRB record. For any time step tA within the interval where data is available, its associated prediction 
Window A, starting from tA+1, is assigned a label value of 1 if SRB is recorded within that period. Note that tA is not 
bounded to the dates of where there are recorded entries. With the trained model, predictions can be made for any 
future time step (tB, tC, ...) occurring after the last recorded entry at tf (note that labels are not available for future 
times and the probability of their occurrences are the targets for predictions (red circle with question mark)). 
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