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ABSTRACT  

Background: Alzheimer’s disease (AD) is characterized by progressive cognitive decline, 

including impairments in speech production and fluency. Mild cognitive impairment (MCI), a 

prodrome of AD, has also been linked with changes in speech behavior but to a more subtle degree. 

Objective: This study aimed to investigate whether speech behavior immediately following both 

filled and unfilled pauses (post-pause speech behavior) differs between individuals with MCI and 

healthy controls (HCs), and how these differences are influenced by the cognitive demands of 

various speech tasks. 

Methods: Transcribed speech samples were analyzed from both groups across different tasks, 

including immediate and delayed narrative recall, picture descriptions, and free responses. Key 

metrics including lexical and syntactic complexity, lexical frequency and diversity, and part of 

speech usage, both overall and post-pause, were examined. 

Results: Significant differences in pause usage were observed between groups, with a higher 

incidence and longer latencies following these pauses in the MCI group. Lexical frequency 

following filled pauses was higher among MCI participants in the free response task but not in 

other tasks, potentially due to the relative cognitive load of the tasks. The immediate recall task 

was most useful at differentiating between groups. Predictive analyses utilizing random forest 

classifiers demonstrated high specificity in using speech behavior metrics to differentiate between 

MCI and HCs. 

Conclusions: Speech behavior following pauses differs between MCI participants and healthy 

controls, with these differences being influenced by the cognitive demands of the speech tasks. 

These post-pause speech metrics can be easily integrated into existing speech analysis paradigms.  
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INTRODUCTION 1 

Alzheimer’s disease (AD) is characterized by progressive degradation of cognitive abilities that 2 

interfere with everyday functioning. While episodic memory is often impacted early, other 3 

domains also may show early deficits. The regions associated with language and speech production 4 

are often among the earliest affected [1,2]. Recent studies have provided insight into how AD 5 

affects speech production, including the increased use of more common words [3,4], a potentially 6 

compensatory mechanism of declining executive functioning, and less content-filled language [5] 7 

which may reflect degradation of semantic memory. Individuals with AD have also been found to 8 

exhibit increased pauses during speech [5–7], potentially indicative of difficulties in planning and 9 

increased lexical search. 10 

Mild cognitive impairment (MCI), a prodromal stage of AD [8], has been associated with the 11 

degradation of more subtle measures of speech behavior in its earliest stages. Measures of speech 12 

fluency, including rate of speech and syllable count, have been shown to significantly degrade in 13 

MCI [9,10]. These are generally measures of connected speech performance; a form of speech in 14 

which each individual word is “connected” lexically to the next, as in a passage or narrative. One 15 

of the most common methods of obtaining a sample of connected speech is directing the participant 16 

to describe a scene or image, such as the Cookie Theft image [11], which enables participants to 17 

produce a descriptive sample of speech that is also restricted to a particular topic to promote 18 

scoring ability. A more open-ended approach is to simply ask the participant to freely answer a 19 

given question, such as “what did you do yesterday?”, which prompts the production of more 20 

natural and conversational speech behavior. When scoring episodic memory is more important 21 

than capturing naturalistic speech, a paragraph recall task may also be used, as in the Wechler 22 

Logical Memory or Craft Story tests [12,13]. In these tasks, a story is read or shown to a participant 23 
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who is then asked to recall as many details about the story as possible both immediately following 24 

the story, as well as after a delay.  25 

In connected speech tasks, some studies find that MCI is associated with more common, less 26 

complex language [14–16], which may be related to a delay in accessing lexical information [17] 27 

resulting in a tendency to use high frequency (more common) words, however some other studies 28 

do not observe this increase in lexical frequency within MCI participants [18]. This trend towards 29 

common language is most visible in more severe forms of dementia, including primary progressive 30 

aphasia [19,20] and AD [3,4], suggesting that while the limited findings of increased lexical 31 

frequency due to MCI may be reflective of markers of future decline, the heterogeneity of the 32 

disorder may make it more difficult for these markers to be detected. 33 

Pauses, or periods between clauses where a speaker hesitates or stops speaking, have also been 34 

shown to be affected in MCI. Pauses are characterized as either filled or unfilled. While unfilled 35 

pauses consist of extended pauses between words without any vocalization, often defined at greater 36 

than 250ms [21] but occasionally at a lower threshold or with no minimum threshold [22], filled 37 

pauses include utterances such as “uh”, “um”, and “er”, and are often used when a speaker is 38 

attempting to think of the next word or phrase, marking a region in which the speaker is engaging 39 

in word retrieval or language planning [23]. The usage of different “forms” of filled pauses have 40 

also been shown to vary in their usage; “uh” is typically used to indicate a short pause, while “um” 41 

is more often followed by longer pauses [24]. The frequency of these pause forms differ based on 42 

the task administered [25] which matches findings showing that pause usage in MCI changes based 43 

on the type of assessment; MCI is associated with increases in only filled pauses in free-response 44 

tasks [26,27] and either only unfilled pauses [27] or both filled and unfilled pauses [28] in narrative 45 

recall tasks. 46 
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Given that pauses are often produced during word searching behavior [23] and impaired word 47 

searching behavior has been found to lead to increased lexical frequency in MCI [14,16,17], we 48 

hypothesize that words immediately following pauses (“post-pause” behavior) are more likely to 49 

be higher frequency and syntactically simple in MCI participants compared to post-pause word 50 

choices in cognitively-intact healthy controls (HCs). Further, previous studies have shown that 51 

speech behavior is variably affected by task [16,27,29], as well as by the cognitive demands 52 

involved in performing that task [10]. As a result, we expect that differences in pauses and post-53 

pause word choices will differ based on the degree of task demands for each of the three tasks that 54 

we will examine: narrative recall (immediate and delayed), picture descriptions, and free response. 55 

In particular, both the immediate and delayed narrative recall tasks which involve participants 56 

engaging in episodic memory recall are more difficult and require more attention and focus 57 

compared to tasks with lesser demands such as describing a picture or simply answering a question. 58 

We thus secondarily hypothesize that not all pauses are lexically-driven; more difficult tasks, 59 

especially the delayed narrative recall task, may increase pauses but without affecting post-pause 60 

lexical frequency, and vice versa.  61 

METHODS 62 

Participants 63 

53 participants (39 HCs and 14 participants with MCI) were selected from the Healthy Brain 64 

Initiative, a longitudinal study of brain health and cognition at the University of Miami 65 

Comprehensive Center for Brain Health [30] based on their consensus clinical diagnosis (no 66 

cognitive impairment or mild cognitive impairment) and their age (greater than 60 years old). A 67 

full description of the study protocol is described elsewhere [30], but in-brief every participant 68 

undergoes identical annual comprehensive clinical, cognitive, functional, and behavioral 69 
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assessments, including the Clinical Dementia Rating (CDR) [31], a complete physical and 70 

neurological examination, and neuropsychological test battery from the Uniform Data Set [32], 71 

supplemented with additional tests. Healthy controls are defined as individuals with a global CDR 72 

of 0, unimpaired activities of daily living, and normal age- and education-normed 73 

neuropsychological test performance. Individuals with MCI were defined as a global CDR 0.5, 74 

unimpaired activities of daily living, and neuropsychological test performance in at least 1 domain 75 

greater than 1.5 standard deviations below the norm. Imaging and plasma biomarker collection is 76 

ongoing so only clinical diagnoses were considered here. Exclusion criteria for this study included 77 

presence of clinically diagnosed aphasia, schizophrenia, generalized anxiety disorder or major 78 

depressive disorder, non-Alzheimer’s dementias, other neurological disorders including 79 

Parkinson’s disease or stroke, and cancer diagnosed within the past five years has not been 80 

determined to be in remission by a physician. All participants identified English as their primary 81 

language. All protocols were approved by the Institutional Review Board at the University of 82 

Miami Miller School of Medicine. 83 

Equipment and Materials 84 

Participants were seated in a quiet area with minimal visual and auditory distractions in front of a 85 

24” computer monitor attached to a Windows 10 machine. Participants interacted with the machine 86 

using custom-developed software written in Python and C, as well as a backlit keypad for 87 

indicating intention (finished with response, need help, etc.) and a volume knob. Participants wore 88 

Sony WH1000XM4 noise-cancelling headphones to further reduce auditory distractions. The 89 

software displayed visual and auditory stimuli for all tasks as well as written and audio instructions. 90 

Participants were given the opportunity to indicate whether they did not understand instructions 91 

and needed further explanation, after which an experimenter would assist them.  92 
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Procedure 93 

Speech Tasks 94 

Three speech-focused tasks were administered to participants: narrative recall with delay, picture 95 

description, and a spontaneous free response. Participant audio was recorded using a hyper-96 

cardioid microphone to minimize background noise.  97 

The narrative recall (NR) task uses a custom-developed story (“Maddy the dog”) structured to 98 

be similar to the Craft Story 21 and Weschler Logical Memory narratives, with 25 content units of 99 

varying complexity [33] and developed to be used alongside the Craft Story 21 [13] which is 100 

administered to all participants in a separate visit as part of their longitudinal evaluations. This 101 

story differs from traditional narrative assessment in that it is both verbally read and visually 102 

presented to participants, promoting stronger multimodal encoding than simple auditory 103 

presentation. Additionally, the delayed portion was collected between fifteen and twenty minutes 104 

after initial presentation of the story, in contrast to the traditional 30 minutes, to both streamline 105 

data collection and explore differences between the already collected Craft Story delay. During 106 

this delay, additional speech tasks were administered. Participants were given two minutes for both 107 

the immediate and delayed responses. 108 

Picture descriptions (PD) for a black and white version of the Modern Cookie Theft image [34] 109 

were collected from each participant, chosen as it is a highly validated and commonly-used 110 

stimulus for eliciting descriptive spontaneous speech. The updated image, as opposed to the 111 

original line-drawing version [11], is a more modern depiction of a kitchen scene which avoids 112 

stereotypical gender roles, adds additional content units, and incorporates more robust shading and 113 

coloring as opposed to the flat line drawings of the original which may aid participants in visually 114 
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exploring the scene [35]. This updated version has been shown to elicit more detailed descriptions 115 

even under time constraints [36]. We further transformed this version by desaturating the image 116 

while still maintaining high contrast, as preliminary study revealed that many participants overly 117 

relied on color-based descriptions and less on describing action. Participants are given ninety 118 

seconds to describe each image, with a visual indicator at the 80-second mark. Additionally, if they 119 

choose to end their description before the time limit, they are asked “is there anything else?”. 120 

Spontaneous free responses (FR) to the prompt “Describe your typical morning routine” were 121 

also collected. Participants were given no additional prompting, with their responses recorded until 122 

they indicated completion or until 90 seconds had passed. 123 

Transcripts 124 

Audio recordings from each task were processed using OpenAI Whisper’s Large-v2 model [37], a 125 

speech-to-text model that generates transcripts at higher accuracy than many other free and paid 126 

options and is capable of being run on in-house hardware. Each automatically generated transcript 127 

was then manually corrected as needed by trained research staff. The majority of corrections 128 

included the removal of experimenter instructions, hallucinations including “The end” and 129 

“Thanks for watching”, and obscured words due to high ambient noise, however the rate of 130 

corrections including the word error rate was not tracked. Generated transcripts included start and 131 

stop times in seconds for each word as well as confidence for each predicted word which helped 132 

highlight areas of potentially necessary correction.  133 

Audio Preprocessing 134 

All audio files were preprocessed prior to speech-to-text transcription. Leading and trailing silence 135 

was removed using PyDub [38], and the end of a file was marked using a chime to encourage 136 
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OpenAI Whisper to end sentences appropriately when subjects ran out of time and the audio file 137 

ended abruptly. If a chime is not used, hallucinations where Whisper finished sentences were 138 

common, including erroneously completed sentences with predicted text or an ending message 139 

(e.g., “The end.”) Background noise, including room tone and non-target extraneous speech (e.g., 140 

voices from hallway) were removed using PySoX [39] to further improve speech-to-text accuracy 141 

as well as to facilitate audiometric analysis. 142 

Analysis 143 

Analysis of Speech Transcripts 144 

After speech responses were transcribed and validated, the transcripts were parsed using a Python 145 

script incorporating multiple NLP packages, including SpaCy for tokenization, lemmatization, part 146 

of speech analysis, and general NLP analyses [40], wordfreq for examining lexical frequency using 147 

its own proprietary formula [41], and textdescriptives for generating a wide range of statistics 148 

including entropy, perplexity, sentence count and length, syllable count, and reading ease statistics 149 

such as Flesch Kincaid grade level, Gunning-Fog, and the Coleman Liau Index [42,43]. Custom 150 

scripts were also written that generate SUBTLEX rankings [44] for determining lexical frequency, 151 

mean Yngve depth for examining passage complexity [45], and type token ratios and derivatives 152 

(MATTR or “moving average type token ratio” [46] and MTLD or “measure of textual diversity” 153 

[47]) for lexical diversity. Distinctions are made for which corpus (wordfreq or SUBTLEX) was 154 

utilized when examining lexical frequency, as each produces slightly different results due to using 155 

different word lists. 156 

Pauses were defined as either filled or unfilled, with unfilled pauses defined as pauses lasting 157 

greater than 250 milliseconds between words, based on literature examining pauses in normal 158 
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conversational speech [22] as well as patients with aphasia [21]. Filled pauses were defined as the 159 

presence of “um”, “uh”, and “er”, chosen based on their frequency in English speech [48]. Both 160 

filled and unfilled pauses were calculated automatically using Python scripts; unfilled pauses were 161 

marked when durations greater than 250ms were detected between the end of the previous word 162 

and the start of the current word, as determined by timestamps generated by OpenAI Whisper, and 163 

filled pauses were determined by tokens containing a filler word. The four words immediately 164 

following the pause were marked as “post-pause” words, and statistics were generated for both the 165 

average of all four words and only the first word following the pause. These pause and post-pause 166 

statistics included total counts and durations of pauses, latencies, syllable counts, SUBTLEX 167 

rankings, wordfreq frequencies, and part of speech frequencies. Pause duration was defined as the 168 

total time in milliseconds between the start of the pause (end of the previous word) and the 169 

beginning of the following word. For filled pauses, latency was defined as the time from the end 170 

of the utterance of the filler word to the beginning of the following word, and for unfilled pauses 171 

latency was only used in the context of calculating the latencies of all pauses in which case pause 172 

duration was used.   173 

Statistical and Predictive Analyses 174 

Transcripts were compared between groups for both individual and combined tasks using the 175 

pingouin v0.5.3 [49] Python package. Analyses of covariance (ANCOVA) with age as a covariate 176 

were performed for all measures where assumptions of normality and homoscedasticity were met, 177 

and Kruskal-Wallis Rank Sum test when assumptions were not met and age was not significantly 178 

different between groups as determined by linear regression. In cases where assumptions were not 179 

met and age was a significant factor, comparisons were not considered. Statistical logistic 180 

regressions were also used to determine the combined effects of multiple variables, especially 181 
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when isolating the effects of post-pause metrics alone. Pearson’s correlations were used to compare 182 

speech metrics identified as significantly different by ANOVAs with cognitive and 183 

neuropsychological assessments including the Montreal Cognitive Assessment (MoCA) [50], the 184 

Cognivue total [51], number span backwards, the Trail Making Test B, Hopkins Verbal Learning 185 

Task immediate and delayed [52], semantic verbal fluency (animals), and the Number Symbol 186 

Coding Task [53]. Verbal IQ assessed by the Test of Premorbid Functioning as well as the 187 

Vulnerability Index [54] and the Resilience Index [55] were also included in correlational analyses 188 

with the identified speech metrics. See Besser et al. [30] for details on the administration and 189 

examination of these assessments. 190 

Predictive analyses, including random forest classifiers, gradient boosted machines, logistic 191 

regressions, and support vector classifiers, were performed to identify the predictive power of post-192 

pause and general speech metrics to determine binary impairment status (impaired vs. not 193 

impaired). All analyses were cross-validated using a repeated stratified K-folds procedure (3-fold, 194 

3-repeat), which resulted in nine combinations of train/test sets for better generalizability of model 195 

results. Outputs were evaluated using sensitivity, specificity, F1 score, and area under the ROC 196 

curve (AUC). The LightGBM v4.2.0 [56] Python package’s implementation was used for gradient 197 

boosted machines, and all other predictive analyses and methods were performed using scikit-learn 198 

v1.3.2 [57]. 199 

Two sets of features were used in our models; one including all statistically significant features, 200 

and another including only statistically significant post-pause metrics (Table 3). Only individual 201 

task metrics were used; when significant results for were found in the mixed ANOVA containing 202 

all tasks, only the task with the highest Bayes index in the post-hoc was used in an effort to 203 

minimize the negative effect of multicollinearity on model results. Additionally, feature selection 204 
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was performed using the BorutaSHAP v1.1 [58] selection algorithm using a random forest 205 

classifier (scikit-learn v1.3.0 [57]) as its base model. One-fourth (25%) of the stratified training 206 

data was held for use in the feature selection process, to avoid leakage and subsequent overfitting 207 

in the model training phase. Optuna v3.5.0 [59] selected optimal hyperparameters for each model, 208 

leveraging its implementation of define-by-run dynamic parameter search spaces and efficient 209 

strategies for pruning, using the same 25% of stratified training data in the feature selection step. 210 

RESULTS 211 

Sample Characteristics 212 

There was a significant difference in age between the two groups (p = .003), resulting in age being 213 

included as a covariate in all following comparisons (Table 1). No differences between groups 214 

were found for gender, years of education, race or ethnicity, vulnerability [54], or resilience [55]. 215 

Significant differences in cognitive tasks were observed between groups, consistent with a 216 

classification of MCI. 217 

Common Findings in All Tasks 218 

When examining all tasks using a Mixed ANOVA, with task as the within-subjects variable and 219 

impairment status as the between-subjects variable, differences were found between the HC and 220 

MCI groups. There were significantly more filled pauses (“um”, “uh”, and “er”) in the MCI group 221 

(4.21 ± 4.42) compared to the HC group (2.47 ± 2.71), p=.006, especially containing “uh” 222 

(2.75±3.53 MCI vs 1.11±1.78 HC; χ2(1)=13.31, p<.001), with latencies between all pauses and the 223 

following word increasing in the MCI group (1.22±0.35 MCI vs 1.11±0.33 HC; χ2(1)=9.31, 224 

p=.002), Figure 1.  225 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2024. ; https://doi.org/10.1101/2024.02.25.24303329doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.25.24303329
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Correlational analyses with cognitive and neuropsychological assessments revealed that total word 226 

count was often mildly or moderately negatively correlated with decreased cognitive functioning, 227 

including the MoCA (r=.190, p=.002), Cognivue (r=.168, p=.009), trailmaking test B (r=-.214, 228 

p<.001), semantic verbal fluency (r=.198, p=.002), and the Number Symbol Coding Task (r=.194, 229 

p=.002), as well as verbal IQ as assessed by the Test of Premorbid Functioning (r=.269, p<.001) 230 

and the Resilience Index (r=.250, p<.001). Despite “um” pause counts alone not being significantly 231 

different between groups, moderate negative correlations were found with the MoCA (r=-.261, 232 

p<.001), Cognivue (r=-.308, p<.001), Number Symbol Coding (r=-.232, p<.001), and semantic 233 

verbal fluency (r=-.196, p=.003) tests, in addition to the Resilience Index (r=-.251, p<.001); a mild 234 

positive correlation was also found with the Vulnerability Index (r=.179, p=.005). 235 

For post-pause metrics, the Kruskal-Wallis non-parametric ANOVA test was required due to many 236 

participants not producing pauses at all in some tasks, resulting in unequal variances between 237 

groups. Lexical frequency was significantly higher following a filled pause in MCI participants, 238 

supporting our hypotheses; wordfreq rankings following “uh” fillers (.0087±.013 MCI vs 239 

.0058±.012 HC; χ2(1)=7.31, p=.007) were significantly different. Latencies following “um” fillers 240 

were also significantly higher in MCI participants (1.83 sec ± 0.73 MCI vs 1.33 sec ± 0.56 HC; 241 

χ2(1)=17.36, p<.001). Mean latency following pause filled with “um” was negatively correlated 242 

with the Cognivue (r=-.335, p<.001), Hopkins Verbal Learning immediate (r=-.244, p=.005) and 243 

delayed (r=-.259, p=.003), semantic verbal fluency (r=-.285, p=.002), and the Number Symbol 244 

Coding task (r=-.323, p<.001), in addition to a positive correlation with Trailmaking B (r=.312, 245 

p<.001). 246 

Task Comparisons 247 
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All differences between tasks described below exhibited a significant ANOVA or pairwise t-test 248 

within-subjects score, with an alpha set at .015.  249 

Picture description 250 

In the PD task, the mean Yngve depth was shallower in MCI participants (3.36±0.67 levels) than 251 

for HC participants (3.98±0.86 levels), p=.012, however no significant correlations with cognitive 252 

assessments were identified. The Coleman-Liau Index, a measure of readability, also decreased in 253 

MCI participants (3.65±1.45 MCI vs 4.74±0.88 HC; p=.008) (Table 2.c), findings supported by a 254 

moderate correlation with the MoCA total (r=.395, p=.001). Total pause count was moderately 255 

negatively correlated with the Cognivue (r=-.405, p=.001) in this task, and the mean wordfreq 256 

lexical frequency was also negatively correlated with the MoCA total (-.338, p=.007). Other 257 

significant correlations are found in Figure 2. 258 

Narrative recall 259 

In both narrative recall tasks, filled pauses significantly increased in MCI participants (3.23±3.97 260 

pauses MCI vs 1.58±2.28 HC; χ2(1)=7.37, p=.007), however this significance did not appear in 261 

pairwise comparisons (Table 2.a, 2.b). Latencies following “um” fillers increased in MCI 262 

participants in both NR tasks (1.82±0.72 sec MCI vs 1.25±0.49 sec HC; χ2(1)=8.43, p=.004) and 263 

were significantly correlated with measures of cognition (Figure 2), however post-hoc analyses 264 

revealed that only the delayed NR task showed significance between groups (Table 2.b). 265 

Mean total word counts decreased in both immediate and delayed NR tasks (74.75±30.21 words 266 

in MCI vs 92.88±31.95 words in HC; p=.002), with lexical diversity measured by MTLD found to 267 

decrease in only the immediate NR task (38.79±16.53 MCI vs 50.42±15.64 HC; p=.013). Also in 268 

the immediate NR task, the Coleman Liau Index decreased from 6.74±1.67 in HC to 5.27±2.31 in 269 
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MCI, p=.007. Mean word lengths (3.94±0.26 characters MCI vs 4.16±0.24 characters HC; p=.003) 270 

in the immediate NR task also decreased in MCI participants, while median word length decreased 271 

in the delayed NR task (3.50±0.48 MCI vs 3.90±0.47 HC; p=.002). The number of syllables per 272 

word in the immediate NR task was also found to decrease for MCI participants (1.12±0.06 273 

syllables MCI vs 1.16±0.05 syllables HC; p=.006). Fewer nouns were used by MCI participants 274 

in the immediate NR task (9.82±3.23 nouns MCI vs 12.73±3.77 nouns HC; p=.007). Further, 275 

proper nouns such as names were significantly less common for MCI participants in both the 276 

immediate NR (2.71±2.39 words MCI vs 5.24±2.54 words HC; p=.001) and delayed NR tasks 277 

(1.94±1.69 words MCI vs 4.89±2.92 words HC; p<.001), findings supported by significant 278 

correlations for  both nouns and proper nouns with most cognitive and neuropsychological 279 

assessments in these tasks (Figure 2). 280 

Free response 281 

Word frequencies as calculated by wordfreq were significantly more common in MCI participants 282 

after "uh" fillers in this task (.0086±.0078 MCI vs .0025±.0027 HC; p=.005) (Table 2.d), but not 283 

in other tasks (Figure 3). Supporting this, strong correlations were found between the Number 284 

Symbol Coding Task (r=-.496, p=.002) and the Vulnerability Index (r=.483, p=.003). Additionally, 285 

adverb usage significantly decreased following unfilled pauses in MCI participants (1.8% ± 3.9% 286 

adverbs post-pause) compared to HCs (16.4% ± 20.8% adverbs post-pause), χ2(1)=8.89, p=.003. 287 

Controlling for individual cognitive resources  288 

To rule out the effects of varying cognitive resources within groups, the Trailmaking B time 289 

(measure of attention), Number-Symbol Coding Task (measure of executive function), Hopkins 290 

verbal learning task delayed (measure of episodic memory), Animal Naming (measure of 291 
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categorical verbal fluency), and the Test of Premorbid Functioning (measure of verbal IQ) were 292 

used as covariates for all significant findings above. No results were rendered non-significant after 293 

controlling for these measures. 294 

Predictive Analysis 295 

When starting with all significant features, feature selection narrowed the field to 16 of the best-296 

performing features: total pause count (immediate NR), total filled pause count (immediate NR), 297 

total “uh” count (immediate and delayed NR), mean wordfreq frequency post-“uh” (FR), mean 298 

latency post-“um” (delayed NR), word count (immediate NR), MTLD (immediate NR), mean 299 

wordfreq frequency (immediate NR), median word length (delayed NR) Coleman-Liau Index (PD 300 

& immediate NR), mean Yngve depth (PD), proper noun ratio (immediate NR), and noun count 301 

(delayed NR). Using this set of features and after performing hyperparameter optimization, the 302 

best performing model was the random forest classifier with a diagnostics odds ratio (DOR) of 303 

13.52 (Table 3) and an AUC of 0.828 (Figure 4). 304 

When using only the two most significant post-pause metrics (wordfreq lexical frequency 305 

following “uh” in the FR task, and latencies following “um” in the delayed NR task), the best 306 

performing model was again the random forest classifier with a DOR of 10.3 (Table 3) and an 307 

AUC of 0.791 (Figure 4). 308 

DISCUSSION 309 

In this study, we examined whether post-pause speech is affected due to cognitive impairment, and 310 

if task demands elicit differences in speech behavior between HC and MCI participants. We found 311 

significant differences between groups in wordfreq lexical frequency following filled pauses in the 312 

FR task, as well as increased latencies following “um” pauses in the NR tasks.  313 
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Task-dependent pause production 314 

MCI participants tended to use more common (high frequency) language following filled “uh” 315 

pauses, but only in the FR task. Our initial hypothesis that lexical frequency would decrease in 316 

MCI individuals due to increased word searching behavior may have underestimated the 317 

intervening effect of task demands. Just as different forms of filled pauses differ in their usage [24] 318 

it is possible that each form may be produced for different reasons as task conditions vary. Indeed, 319 

previous studies show that task difficulty and the associated increased cognitive load have been 320 

shown to affect speech production, including altering lexical diversity and syntactic complexity 321 

[60] as well as disfluency and pause usage [61]. The question in the FR task asked about the 322 

participant’s typical routine, which is a topic that is typically static, repetitive, and familiar, 323 

requiring few cognitive resources to recall effectively. Pauses produced in this context thus likely 324 

resemble typical conversational speech, and would match the documented usage of “uh” fillers as 325 

indicators of word-searching behavior [24,62,63]. As a result, cognitive impairment may play a 326 

larger role in disrupting this search, leading to greater differences between the HC and MCI groups. 327 

This is contrasted with the three other tasks, where required cognitive demands are greater to 328 

varying degrees. In these tasks, filled “uh” pauses may still be produced as indicators of searching 329 

behavior, but instead of lexical search being the driving force behind pause production as in the 330 

spontaneous speech task this searching behavior may be instead more directed towards searching 331 

for the correct answer (in NR tasks) or searching for a new object to describe (in the PD task). 332 

Thus, while post-filled pause lexical frequency may still be affected by cognitive impairment, the 333 

HC group may also use more common words as a result of the increased cognitive load [60], 334 

resulting in a less noticeable and thus non-significant difference between groups. 335 
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In a similar vein, the delayed NR task was arguably the most difficult task administered in this 336 

study, requiring participants to recall information presented after being distracted in the interim 337 

with other speech tasks while also being under a time limit [64]. Delayed recall activates broader 338 

neurological pathways, including activation of the left parahippocampal gyrus, the entorhinal and 339 

perirhinal cortices, and both the anterior and posterior hippocampal regions, contrasting with 340 

immediate recall which is handled primarily with short-term memory processes in the posterior 341 

hippocampus and dorsolateral prefrontal cortex [65,66]. This may explain why post-“um” latencies 342 

were significantly different between groups only in this task. “Um” fillers have been shown to 343 

signal longer delays than other pauses [24,63], and the delays decrease with skill [23] and increase 344 

with cognitive load [67]. Delayed narrative recall performance is known to be significantly 345 

affected due to cognitive impairment [68], and so MCI participants likely needed to utilize more 346 

cognitive resources to perform the task, leading to increased delays compared to the HC group. 347 

While previous studies have shown significant differences between MCI and HC in numbers of 348 

pauses, both filled and unfilled [27,28] and especially using the “uh” utterance [69], our results 349 

did not show significant differences between the two groups in total count of pauses when 350 

examining the post-hoc pairwise tests for task comparison that were not also significantly different 351 

due to age effects. While our sample size is relatively limited, the observation of significant age 352 

effects may suggest that previous identification of increased numbers of pauses in these studies 353 

may be due to the MCI group being older than the HC group. Future examination into total pause 354 

counts should take age into account as a possible covariate. 355 

Other lexical differences between tasks 356 

More significant differences between groups were found in the immediate NR task than any others, 357 

and when multiple tasks exhibited the same differences in a single measure the Boruta feature 358 
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selection algorithm identified the immediate NR task as the most predictive. The MTLD measure 359 

of lexical diversity as well as the Coleman-Liau index both identify a tendency of MCI participants 360 

to use simpler language in this task, as does the finding of reduced mean word length and syllables 361 

per word. The high usefulness of the immediate NR task has been previously shown in prior work 362 

developing parsimonious assessment composites for detecting MCI [68], where it was determined 363 

to be one of the most useful metrics for identifying MCI among the neuropsychological tasks 364 

administered by ADNI. This may be due to this task requiring coordination of working memory 365 

and attention, two areas known to be degraded in MCI but not entirely disrupted.  366 

Proper noun usage decreased in both the immediate and delayed NR tasks, indicating that while 367 

healthy participants are able to recall names and places, those with MCI are less likely to recall 368 

this information. As both were impaired, it is difficult to determine whether the deficit was due to 369 

encoding or retrieval. Previous study by Mueller et al. [70] showing that proper noun recall in 370 

delayed but not immediate NR is associated with preclinical AD suggests that retrieval is the main 371 

factor affected in proper noun recall, however it is important to note that our sample did have 372 

biomarker-confirmed AD pathology and may have included other etiologies including vascular 373 

dementia. 374 

Mean Yngve depth, a measure of syntactic complexity based on hierarchical relationships between 375 

clauses in produced speech, was found to be significantly shallower in picture descriptions of the 376 

Cookie Theft image produced by MCI participants. Picture description tasks elicit hierarchical 377 

language as participants describe the relationships between objects in a picture or photograph. The 378 

Cookie Theft picture in particular contains many relationships between objects, with for example 379 

the boy engaging with both the cookie jar and the stool and the man both washing the dishes and 380 

not attending to them resulting in them overflowing. The reduction of mean Yngve depth in MCI 381 
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may be a result of a reduced focus on how objects in a scene relate to each other, instead resulting 382 

in simpler descriptions of these objects. Previous studies have shown that cognitive impairment 383 

affects mean Yngve depth in NR tasks [19,71], but PD tasks have not been previously shown to 384 

elicit decreased syntactic complexity. In our sample, mean Yngve depth did not appear to differ 385 

between groups for either NR task but did differ in the PD task. It is possible that the updated 386 

Cookie Theft image utilized in our study [34] encouraged either increased interrelated descriptions 387 

in healthy controls or a decrease in MCI participants. Additionally, the significant differences were 388 

only observed in ANOVAs and depth did not significantly correlate with any individual cognitive 389 

assessment (Figure 2). While this could be explained due to other mediating effects including age, 390 

it is also possible that Yngve depth captures differences not identified in any of the assessments 391 

used in our correlations. The PD task also prompted decreased word lengths, Coleman-Liau 392 

indices, and noun counts in MCI participants, indicating less precise and simpler language in this 393 

task, with this finding supported by previous studies [14,72]. 394 

Use of speech behavior to predict impairment status 395 

After performing feature selection on the entire group of available features, a random forest 396 

utilizing the 16 selected features produced a model with an AUC of 0.828 and a DOR of 13.52. 397 

While specificity was excellent (94.59%), sensitivity for detecting impairment was only 43.59%. 398 

Nonetheless, if the task is to screen for impairment, the use of speech-based markers alone perform 399 

well at reducing numbers of non-impaired individuals. When only the top two post-pause features 400 

are used, only marginal decreases in sensitivity and specificity are observed. With high specificity 401 

and AUC, the results of this model suggest that post-pause metrics of latency and lexical frequency 402 

would be an excellent addition to any machine learning model that utilizes speech behavior and 403 
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seeks to categorize healthy individuals in some capacity, but the low sensitivity precludes their use 404 

as a diagnostic tool. 405 

Limitations 406 

The main limitations of this study were the limited sample size, unequal sample size between 407 

impaired and non-impaired groups, the racial and ethnic makeup of the sample being primarily 408 

non-Hispanic White, and the lack of biomarker data available in this early sample. As MCI is a 409 

heterogeneous disorder, it is possible that separation of MCI subtypes (e.g., MCI due to AD, MCI 410 

due to Lewy body or vascular etiologies) will lead to more detailed characterization using 411 

neurobehavioral markers such as speech. Additional recruitment and biomarker examination of 412 

existing and new participants is ongoing, with increased recruitment efforts targeting impaired as 413 

well as racially and ethnically diverse populations. 414 

We also observed age differences between groups. Instead of reducing our healthy control sample 415 

to minimize age effects through age-matching, we chose to instead include age as a covariate 416 

within our analyses due to the small size of the impaired group. Our future research will 417 

incorporate age-matching, as we aim to recruit a sufficient number of biomarker-confirmed 418 

impaired participants to support an evenly sized control group. Additionally, some significant 419 

measures exhibited standard deviations that exceeded their means, indicating a high degree of 420 

variability or skewed distributions for these measures; however, these typically occurred only 421 

when all tasks were considered. Thus, this phenomenon is not entirely unexpected as each task 422 

was shown to perform differently with respect to each measure and between groups. The only 423 

significant task-specific measure with this property was the increased post-pause adverb usage in 424 

the free response task. 425 
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In this study, only a handful of fillers were examined (“uh”, “um”, and “er”). While many other 426 

fillers exist including “you know”, “like”, “okay”, and “right”, particularly among younger 427 

individuals, we opted to not include these filler words in our analyses as these were both relatively 428 

uncommon in our sample as well as difficult to code in automatic processing; each of these 429 

additional filler words can also appear as normal non-filler words, thus requiring manual 430 

classification for each of these instances. However, it is possible that the inclusion of these more 431 

uncommon filler words would have revealed additional differences between groups. In addition, 432 

while the filler “er” was examined in all analyses, no significant differences were found between 433 

groups for the usage of this filler nor for words following it. As a result, it is not referenced 434 

elsewhere in this paper. Further, this study only examined English-speaking participants: these 435 

findings may not generalize to other languages, particularly in the type of frequency of filler words. 436 

Nonetheless, this study identified compelling patterns in post-pause speech behavior between MCI 437 

and HC in English-speaking populations, and future studies will examine non-native English 438 

speakers as well as Spanish speakers to determine whether this behavior translates to other 439 

languages and contexts. 440 

CONCLUSIONS 441 

The increase of post-pause lexical frequency in the absence of task demands and post-filler latency 442 

in tasks with high difficulty were observed in MCI participants, with both able to accurately predict 443 

impairment status with an AUC of 79.1%. Future research will examine likely causes of pause 444 

production, comparing lexical or word-finding pauses with those driven by task demands or 445 

cognitive load, as well as neural correlates of speech degradation. 446 
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Table 1. Subject characteristics 
 

Healthy Controls Mild Cognitive Impairment p-val 
Age 68.28 (7.21) 76.64 (8.90) 0.000 
% Female 0.72 (0.45) 0.64 (0.50) 0.478 
Years of Education 16.43 (2.65) 17.00 (3.22) 0.920 
% Non-White 0.11 (0.31) 0.21 (0.43) 0.159 
% Hispanic 0.12 (0.33) 0.21 (0.43) 0.130 
MoCA Total 27.05 (2.26) 23.29 (2.73) 0.000 
FAQ Total 0.14 (0.45) 0.18 (0.60) 0.750 
Numbers Backwards 5.37 (1.33) 3.86 (0.86) 0.000 
Trailmaking B 68.11 (24.34) 188.08 (241.85) 0.000 
Categorical Fluency  21.21 (5.19) 16.50 (4.03) 0.027 
HVLT Immediate 25.32 (3.80) 20.07 (5.05) 0.004 
HVLT Delayed 9.52 (1.84) 6.21 (3.89) 0.001 
Craft Story Immediate 21.20 (5.68) 18.93 (6.20) 0.198 
Craft Story Delayed 19.17 (5.56) 14.50 (8.30) 0.020 
Verbal IQ 116.33 (9.44) 111.50 (12.06) 0.008 
Vulnerability Index 6.55 (2.02) 8.64 (2.73) 0.078 
Resilience Index 183.33 (33.06) 172.54 (32.30) 0.326 
Number Symbol Coding Test 45.89 (9.16) 31.36 (6.49) 0.000 

All comparisons performed using ANCOVA with age as a covariate, except age which used ANOVA. 
MoCA = Montreal Cognitive Assessment; FAQ = Functional Activities Questionnaire; HVLT = Hopkins Verbal Learning Test 
Bold = significant 
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Table 2.a. Speech measures for the Immediate Narrative Recall task 

Speech measure HC MCI Stat (df = 60) p-val Test 
Total Pause Count 7.325 (3.422) 9.133 (4.809) 2.138 0.144 KW 
Unfilled Pause Count 5.975 (2.824) 6.533 (2.588) 1.179 0.278 KW 
“Uh” Pause Count 0.707 (1.470) 1.333 (1.633) 3.167 0.075 KW 
“Um” Pause Count 0.610 (1.321) 2.200 (3.570) 2.509 0.113 KW 
Post-“uh” WF Lexical frequency 0.008 (0.016) 0.004 (0.008) 0.029 0.866 KW 
Post-“um” Mean Latency 1.395 (0.471) 1.762 (0.721) 1.970 0.160 KW 
Total Word Count 84.378 (26.173) 70.059 (24.517) 3.818 0.055 ANOVA 
MTLD 50.422 (15.642) 38.791 (16.528) 6.616 0.013 ANOVA 
Mean WF Lexical frequency 0.006 (0.001) 0.007 (0.002) 0.557 0.458 ANOVA 
Mean Word Length 4.158 (0.239) 3.944 (0.258) 9.449 0.003 ANOVA 
Median Word Length 3.967 (0.165) 3.735 (0.437) 7.772 0.005X KW 
Mean Syllables per Word 1.156 (0.046) 1.117 (0.055) 7.980 0.006 ANOVA 
Coleman-Liau Index 6.737 (1.670) 5.271 (2.306) 7.660 0.007 ANOVA 
Mean Yngve Depth 4.785 (1.450) 4.739 (1.733) 0.011 0.917 ANOVA 
Noun Count 12.733 (3.774) 9.824 (3.226) 7.902 0.007 ANOVA 
Proper Noun Count 5.244 (2.542) 2.706 (2.392) 12.694 0.001 ANOVA 

KW = Kruskal-Wallis; ANOVA = Analysis of Variance; HC = Healthy Control; MCI = Mild cognitive impairment; MTLD = 
measure of textual lexical diversity; X = Significant age effects; WF = wordfreq lexical frequency 
Bold = significant 
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Table 2.b. Speech measures for the Delayed Narrative Recall task 

Speech measure HC MCI F (df = 60) p-val Test 
Total Pause Count 9.375 (5.138) 9.000 (7.774) 2.168 0.141 KW 
Unfilled Pause Count 7.500 (5.208) 6.333 (5.080) 2.34 0.126 KW 
“Uh” Pause Count 1.140 (1.656) 1.062 (1.611) 0.123 0.726 KW 
“Um” Pause Count 0.698 (1.264) 2.062 (2.720) 4.682 0.030 KW 
Post-“uh” WF Lexical frequency 0.003 (0.003) 0.005 (0.004) 1.231 0.267 KW 
Post-“um” Mean Latency 1.174 (0.500) 1.886 (0.766) 5.740 0.015 KW 
Total Word Count 96.065 (35.668) 79.750 (35.422) 2.492 0.120 ANOVA 
MTLD 50.375 (23.418) 45.202 (14.668) 0.683 0.412 ANOVA 
Mean WF Lexical frequency 0.007 (0.002) 0.007 (0.001) 0.146 0.704 ANOVA 
Mean Word Length 4.109 (0.334) 3.889 (0.226) 5.954 0.018 ANOVA 
Median Word Length 3.902 (0.467) 3.500 (0.483) 9.827 0.002 KW 
Mean Syllables per Word 1.168 (0.054) 1.137 (0.060) 3.747 0.058 ANOVA 
Coleman-Liau Index 5.905 (2.242) 5.128 (2.519) 1.339 0.252 ANOVA 
Mean Yngve Depth 4.639 (1.404) 5.156 (1.741) 1.420 0.238 ANOVA 
Noun Count 15.848 (5.692) 12.688 (6.488) 3.405 0.070 ANOVA 
Proper Noun Count 4.891 (2.915) 1.938 (1.692) 13.026 0.000 ANOVA 

KW = Kruskal-Wallis; ANOVA = Analysis of Variance; HC = Healthy Control; MCI = Mild cognitive impairment; MTLD = 
measure of textual lexical diversity; X = Significant age effects; WF = wordfreq lexical frequency 
Bold = significant 
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Table 2.c. Speech measures for the Picture Description task 

Speech measure HC MCI F (df = 60) p-val Test 
Total Pause Count 11.561 (5.473) 14.125 (6.195) 0.397 0.531 ANCOVA 
Unfilled Pause Count 8.854 (4.709) 10.500 (5.304) 0.018 0.893 ANCOVA 
“Uh” Pause Count 1.178 (1.482) 1.471 (1.068) 0.553 0.460 ANOVA 
“Um” Pause Count 1.400 (1.959) 2.588 (2.476) 3.916 0.052 ANOVA 
Post-“uh” WF Lexical frequency 0.010 (0.016) 0.014 (0.019) 1.720 0.190 KW 
Post-“um” Mean Latency 1.498 (0.720) 1.912 (0.752) 2.658 0.103 KW 
Total Word Count 134.356 (55.009) 114.176 (43.805) 1.840 0.180 ANOVA 
MTLD 38.641 (11.760) 33.141 (12.431) 2.617 0.111 ANOVA 
Mean WF Lexical frequency 0.010 (0.002) 0.010 (0.002) 0.934 0.338 ANOVA 
Mean Word Length 3.981 (0.143) 3.843 (0.179) 4.638 0.035X ANCOVA 
Median Word Length 3.356 (0.472) 3.000 (0.000) 8.613 0.003 KW 
Mean Syllables per Word 1.217 (0.040) 1.191 (0.053) 0.337 0.564X ANCOVA 
Coleman-Liau Index 4.740 (0.884) 3.651 (1.448) 7.069 0.008 KW 
Mean Yngve Depth 3.983 (0.863) 3.356 (0.668) 4.913 0.012 ANOVA 
Noun Count 32.933 (13.048) 25.941 (9.959) 3.987 0.05 ANOVA 
Proper Noun Count 0.002 (0.006) 0.001 (0.003) 0.268 0.606 ANOVA 

KW = Kruskal-Wallis; ANOVA = Analysis of Variance; HC = Healthy Control; MCI = Mild cognitive impairment; MTLD = 
measure of textual lexical diversity; X = Significant age effects; WF = wordfreq lexical frequency 
Bold = significant 
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Table 2.d. Speech measures for the Free Response task 

Speech measure HC MCI F (df = 60) p-val Test 
Total Pause Count 12.049 (7.218) 11.867 (7.170) 0.007 0.934 ANOVA 
Unfilled Pause Count 8.488 (5.437) 8.000 (4.342) 0.098 0.756 ANOVA 
“Uh” Pause Count 1.932 (2.366) 1.933 (1.981) 0.105 0.746 KW 
“Um” Pause Count 1.682 (2.197) 4.200 (4.945) 3.281 0.070X KW 
Post-“uh” WF Lexical frequency 0.003 (0.003) 0.009 (0.008) 8.027 0.005 KW 
Post-“um” Mean Latency 1.252 (0.391) 1.731 (0.716) 5.250 0.022 KW 
Total Word Count 126.000 (71.155) 119.938 (84.409) 0.078 0.781 ANOVA 
MTLD 42.294 (24.467) 41.056 (21.867) 0.032 0.859 ANOVA 
Mean WF Lexical frequency 0.007 (0.001) 0.007 (0.002) 1.177 0.282 ANOVA 
Mean Word Length 3.597 (0.260) 3.572 (0.212) 0.121 0.729 ANOVA 
Median Word Length 3.130 (0.341) 3.031 (0.125) 0.000 0.992X ANCOVA 
Mean Syllables per Word 1.152 (0.057) 1.145 (0.043) 0.207 0.650 ANOVA 
Coleman-Liau Index 3.446 (1.797) 3.530 (1.239) 0.030 0.864 ANOVA 
Mean Yngve Depth 4.867 (1.909) 4.731 (1.369) 0.068 0.795 ANOVA 
Noun Count 24.130 (13.016) 19.375 (11.949) 1.649 0.204 ANOVA 
Proper Noun Count 0.009 (0.016) 0.012 (0.032) 0.122 0.728 ANOVA 

KW = Kruskal-Wallis; ANOVA = Analysis of Variance; HC = Healthy Control; MCI = Mild cognitive impairment; MTLD = 
measure of textual lexical diversity; X = Significant age effects; WF = wordfreq lexical frequency 
Bold = significant 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2024. ; https://doi.org/10.1101/2024.02.25.24303329doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.25.24303329
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

Table 3. Measures of predictive ability for models utilizing speech behavior 

 Sensitivity Specificity PPV NPV DOR AUC 
All Significant Features 38.46% 94.59% 71.43% 81.40% 10.94 0.825 
Post-Pause Features 41.03% 93.70% 69.57% 81.89% 10.33 0.791 
 
All Significant Features: Total filled pauses (INR), Total “uh” pauses (INR & DNR), Mean wordfreq frequency post- “uh” 
(FR), mean latency post-“um” (DNR), word count (INR), MTLD (INR), mean wordfreq frequency (INR), median word length 
(DNR) Coleman-Liau Index (PD & INR), mean Yngve depth (PD), proper noun ratio (INR), noun count (DNR) 
Post-pause Features: Mean wordfreq frequency post- “uh” (FR), mean latency post-“um” (DNR) 
 
FR=”Free-response task”; INR=”Immediate Narrative Recall task”; DNR=”Delayed Narrative Recall task”; PD=”Picture 
Description task”; PPV=”Positive Predictive Value”; NPV=”Negative Predictive Value”; DOR=”Diagnostic Odds Ratio”; 
AUC=”Area under the ROC curve” 
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Figure 1. Count and duration of pause types separated by impairment status. (A) Total number of pauses 
separated by type of pause (all pauses, filled, unfilled, filled with “um”, filled with “uh”) and by 
impairment status (HC in orange vs MCI in green). All tasks were included in these comparisons. 
Significant differences between impairment status can be observed when examining All pauses, Filled 
pauses, and “Uh” pauses, all of which increased in the MCI group, with no differences found for unfilled 
and “um” pauses when all tasks were included. (B) Total duration in seconds separated by type of pause 
and impairment status. Unfilled pauses and All pauses were found to significantly increase in the MCI 
group. Significance is indicated using asterisks, with  
*** = p < .001, ** = p < .01, * = p < .05. 
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Figure 2. Correlation matrix using Pearson’s correlations to compare significant speech metrics 
with cognitive and neuropsychological assessments for each of the four tasks. Spaces without 
color are non-significant determined by a p-value above 0.015.  
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Figure 3. Task comparisons of post-“uh” pause lexical frequency rankings. This measure was used for 
comparison to highlight differences in pause and post-pause behavior between tasks. In both narrative 
recall tasks, all groups tended to be searching for comparatively uncommon words following “uh” pauses, 
while in the picture description task all groups searched for more common words. Only in the free 
response task were there differences between impairment status, with healthy controls (HC) searching 
only for more uncommon words and participants with mild cognitive impairment (MCI) producing words 
of more variable frequency following “uh” pauses. 
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Figure 4. Areas under ROC curves for predictive models. (A) After performing feature selection on all 
available lexical features, 16 features were identified to best identify impairment status (HC vs MCI). 
Incorporating these into a repeated stratified 3-fold 3-repeat cross-validation procedure using LightGBM 
gradient boosted machines as the models generated a mean AUC of 0.828. AUCs for individual folds are 
depicted in multiple colors. (B) The best identified post-pause features (post-“uh” lexical frequency in 
free response and post-“um” latency in delayed narrative recall) were selected and used as sole features in 
a LightGBM gradient boosted machine, examined using repeated stratified 3-fold 3-repeat cross-
validation. This parsimonious model performed similarly to the larger model with an AUC of 0.791. 
AUCs for individual folds are depicted in multiple colors. 
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