
Dissecting the genetic overlap between three complex phenotypes with 
trivariate MiXeR 
 

Alexey A. Shadrin1,2,*, Guy Hindley1,3, Espen Hagen1, Nadine Parker1, Markos Tesfaye1,4, Piotr 
Jaholkowski1, Zillur Rahman1, Gleda Kutrolli1, Vera Fominykh1, Srdjan Djurovic5,6, Olav B. Smeland1, Kevin 
S. O’Connell1, Dennis van der Meer1,7, Oleksandr Frei1,8, Ole A. Andreassen1,2*,†, Anders M. 
Dale9,10,11,12,*,† 

1Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, and 
Institute of Clinical Medicine, University of Oslo, Oslo, Norway 

2KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, 
Oslo, Norway 

3Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, 
London, SE5 8AB, UK 

4Department of Clinical Science, University of Bergen, Bergen, Norway 

5Department of Medical Genetics, Oslo University Hospital, Oslo, Norway 

6Department of Clinical Science, University of Bergen, Bergen, Norway 

7School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht 
University, Maastricht, the Netherlands 

8Center for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway 

9Department of Radiology, University of California, San Diego, La Jolla, CA 92093, United States of 
America 

10Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, United States of 
America 

11Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA 

12Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of 
America 

*Corresponding authors 

† Contributed equally 

Correspondence:  Alexey A. Shadrin a.a.shadrin@medisin.uio.no 

Anders M. Dale andersmdale@gmail.com 

Ole A. Andreassen ole.andreassen@medisin.uio.no  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 27, 2024. ; https://doi.org/10.1101/2024.02.23.24303236doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.23.24303236
http://creativecommons.org/licenses/by/4.0/


Abstract 
Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping 
genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal 
mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global 
genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is 
important to better characterize multimorbidities, has previously not been possible to quantify. Here, we 
present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between 
three phenotypes using summary statistics from genome-wide association studies (GWAS). Our 
simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. 
We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between 
three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap 
between diverse human traits and diseases that could not be deduced from bivariate analyses. This 
contributes to a better understanding of the etiology of complex phenotypes and the nature of their 
relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings. 

Availability and implementation. 
The trivariate MiXeR tool and auxiliary scripts, including source code, documentation and examples of 
use are available at https://github.com/precimed/mix3r  
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Introduction 
Many human traits and disorders are highly polygenic, with thousands of associated loci discovered to 
date [1]. Most functional genetic loci affect multiple phenotypes spawning intricate patterns of genetic 
overlap among them [2]. Characterization of patterns of overlapping genetic architecture across multiple 
phenotypes has generated key discoveries in human genetics in recent years. This characterization has 
helped reveal the shared genetic underpinnings of a wide range of common human diseases [3]. 
Ultimately, a more complete understanding of the complex genetic relationships between various traits 
and disorders can help to elucidate mechanisms underlying multimorbidity [4], which is an increasing 
global health challenge [5]. It can also lead to improvements in disease classification and diagnostics. 

Previous causal mixture model (MiXeR) tools have been implemented to model genetic architecture and 
characterize genetic overlap. Univariate MiXeR [1] was developed to quantify characteristics of genetic 
architecture for complex phenotypes, including polygenicity, which reflects the number of genetic 
variants influencing a phenotype. This approach was extended to bivariate MiXeR [6] to quantify the 
overlapping polygenic components between two phenotypes regardless of the effect directions. While 
genetic correlation is often used to assess genetic overlap between complex phenotypes, its ability to 
detect overlap is limited to pairs of phenotypes where the bulk of variants have either concordant or 
discordant directions of effects. A pair of phenotypes sharing variants with a balanced mixture of 
concordant and discordant effects will provide a genetic correlation close to zero, similar to a pair of 
genetically disjoint phenotypes, making these two scenarios indistinguishable [7]. Bivariate MiXeR has 
helped to better characterize the relationship between various pairs of phenotypes beyond genetic 
correlation, effectively capturing shared genetics with mixed directions of effects [3, 8-10]. However, 
neither genetic correlation nor bivariate MiXeR can directly estimate genetic overlap across three 
phenotypes. Apart from trivial cases of non-overlapping or completely overlappling phenotypes, trivariate 
overlap cannot be reconstructed from a series of three bivariate analyses (analyzing each pair of 
phenotypes within a triad). Indirect reconstruction of trivariate overlap from three bivariate analyses 
under a naïve assumption of a maximum entropy probability distribution of overlapping parts may lead 
to erroneous estimates. For a given combination of three bivariate overlaps, with no additional prior 
knowledge, the maximum entropy distribution of the trivariate overlap can be conceptualized as the 
center of all possible trivariate overlap distributions. Investigating genetic overlap among triads of 
phenotypes can help reveal important aspects of genetic overlap associated with different scenarios of 
overlap between phenotypes, tissue types or biological mechanisms. 

Here, we present trivariate MiXeR, which disentangles the pattern of polygenic overlap among three 
complex phenotypes using summary statistics from genome-wide association studies (GWAS). We first 
conduct a series of simulations covering diverse scenarios of genetic overlap among three phenotypes 
and demonstrate that the tool can reliably reconstruct different patterns of trivariate genetic overlap. We 
then apply trivariate MiXeR to GWAS summary statistics for eight complex phenotypes representing a 
range of human traits and disorders for which epidemiological studies suggest shared causal pathways. 
Our analyses demonstrate non-trivial patterns of trivariate genetic overlap that are substantially different 
from naïvely expected patterns derived from three bivariate analyses following the principle of maximum 
entropy. 
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Methods 
Trivariate MiXeR model 

The method extends the bivariate MiXeR model [6] for the case of three phenotypes, leaving the basic 
assumptions of the model unchanged. Briefly, an additive model of genetic effects is considered. In the 
univariate analysis, the direct (not induced by linkage disequilibrium) effect 𝛽 of the jth variant on a 
phenotype is modeled as a mixture of null and phenotype-influencing components characterized by two 
parameters: the proportion of variants influencing the phenotype (polygenicity, 𝜋 ∈ [0,1]) and the 
variance of their effect sizes (discoverability, 𝜎ଶ): 

𝛽 = ൜
0, 1 − 𝜋

𝑁(0, 𝜎ଶ),     𝜋
  

where 𝑁(0, 𝜎ଶ) is a normal distribution with zero mean and 𝜎ଶ variance. 

In a joint analysis of three phenotypes (𝑖 = 1, 2, 3), a fraction of variants may affect all three phenotypes 
(𝜋ଵଶଷ), other variants may affect a pair of phenotypes but not the third phenotype (𝜋ଵଶ, 𝜋ଵଷ, 𝜋ଶଷ), some 
variants might be phenotype-specific (𝜋ଵ, 𝜋ଶ, 𝜋ଷ) while most variants are expected to have no effect on 
any phenotype (𝜋 = 1 − 𝜋ଵ − 𝜋ଶ − 𝜋ଷ − 𝜋ଵଶ − 𝜋ଵଷ − 𝜋ଶଷ − 𝜋ଵଶଷ). We assume all variants for a given 
phenotype follow the same distribution of effect sizes (with corresponding discoverabilities 𝜎ଵ

ଶ, 𝜎ଶ
ଶ, 𝜎ଷ

ଶ), 
regardless of their effects on the other two phenotypes. Genetic correlations are modeled by introducing 
correlations of effect sizes within each of three pairwise overlaps (𝜌ଵଶ, 𝜌ଵଷ, 𝜌ଶଷ). With these assumptions, 
the trivariate distribution of direct effects of the jth variant is modeled as a mixture of eight components: 

ቌ

𝛽ଵ

𝛽ଶ

𝛽ଷ

ቍ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0ത, 𝜋

𝑁(0ത, 𝚺ଵ), 𝜋ଵ

𝑁(0ത, 𝚺ଶ), 𝜋ଶ

𝑁(0ത, 𝚺ଷ), 𝜋ଷ

𝑁(0ത, 𝚺ଵଶ), 𝜋ଵଶ

𝑁(0ത, 𝚺ଵଷ), 𝜋ଵଷ

𝑁(0ത, 𝚺ଶଷ), 𝜋ଶଷ

𝑁(0ത, 𝚺ଵଶଷ), 𝜋ଵଶଷ

  

where 0ത = ൭
0
0
0

൱ and 𝚺ଵ = ൭
𝜎ଵ

ଶ 0 0
0 0 0
0 0 0

൱,  𝚺ଶ = ൭
0 0 0
0 𝜎ଶ

ଶ 0
0 0 0

൱,  𝚺ଷ = ൭
0 0 0
0 0 0
0 0 𝜎ଷ

ଶ
൱, 

𝚺ଵଶ = ቌ
𝜎ଵ

ଶ 𝜌ଵଶ𝜎ଵ𝜎ଶ 0

𝜌ଵଶ𝜎ଵ𝜎ଶ 𝜎ଶ
ଶ 0

0 0 0

ቍ, 𝚺ଵଷ = ቌ
𝜎ଵ

ଶ 0 𝜌ଵଷ𝜎ଵ𝜎ଷ

0 0 0
𝜌ଵଷ𝜎ଵ𝜎ଷ 0 𝜎ଷ

ଶ
ቍ, 𝚺ଶଷ = ቌ

0 0 0
0 𝜎ଶ

ଶ 𝜌ଶଷ𝜎ଶ𝜎ଷ

0 𝜌ଶଷ𝜎ଶ𝜎ଷ 𝜎ଷ
ଶ

ቍ, 

𝚺ଵଶଷ = ቌ

𝜎ଵ
ଶ 𝜌ଵଶ𝜎ଵ𝜎ଶ 𝜌ଵଷ𝜎ଵ𝜎ଷ

𝜌ଵଶ𝜎ଵ𝜎ଶ 𝜎ଶ
ଶ 𝜌ଶଷ𝜎ଶ𝜎ଷ

𝜌ଵଷ𝜎ଵ𝜎ଷ 𝜌ଶଷ𝜎ଶ𝜎ଷ 𝜎ଷ
ଶ

ቍ are covariance matrices of multivariate normal distributions 

corresponding to the different phenotype-influencing components. 

The joint signed association test statistics (z-score) of the jth variant is then given by: 
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൭

𝑧ଵ

𝑧ଶ

𝑧ଷ

൱ = ∑ ඥℎ
ெ
ୀଵ 𝑟 ൮

ඥ𝑁ଵ𝛽ଵ

ඥ𝑁ଶ𝛽ଶ

ඥ𝑁ଷ𝛽ଷ

൲ + 𝜖  

where 𝑁  (𝑖 = 1, 2, 3) is the sample size of the GWAS for the ith phenotype and jth variant, ℎ is the 
heterozygosity of variant k, 𝑀 is the number of variants in linkage disequilibrium (LD) with the variant k, 
𝑟 is the Pearson’s correlation coefficient between the genotypes of the jth and kth variants (quantifying 
LD), and 𝜖~𝑁(0ത, 𝚺) is a normally distributed vector of residuals with covariance matrix  

𝚺 = ቌ

𝜎ଵ
ଶ 𝜌ଵଶ𝜎ଵ𝜎ଶ 𝜌ଵଷ𝜎ଵ𝜎ଷ

𝜌ଵଶ𝜎ଵ𝜎ଶ 𝜎ଶ
ଶ 𝜌ଶଷ𝜎ଶ𝜎ଷ

𝜌ଵଷ𝜎ଵ𝜎ଷ 𝜌ଶଷ𝜎ଶ𝜎ଷ 𝜎ଷ
ଶ

ቍ, 

where 𝜎
ଶ  (𝑖 = 1, 2, 3) is a residual variance of the ith phenotype and 𝜌  (𝑖, 𝑗 = 1, 2, 3) is a correlation 

between residuals of the ith and jth phenotypes. Nineteen parameters of the model 
(𝜋ଵ, 𝜋ଶ, 𝜋ଷ, 𝜋ଵଶ, 𝜋ଵଷ, 𝜋ଶଷ, 𝜋ଵଶଷ, 𝜎ଵ, 𝜎ଶ, 𝜎ଷ, 𝜎ଵ, 𝜎ଶ, 𝜎ଷ, 𝜌ଵଶ, 𝜌ଵଷ, 𝜌ଶଷ, 𝜌ଵଶ, 𝜌ଵଷ, 𝜌ଶଷ) are estimated by 
maximizing the likelihood of the z-scores observed in the GWAS summary statistics using a step-wise 
procedure. First, three univariate analyses are performed to estimate univariate polygenicities 
(𝜋ଵ

௨, 𝜋ଶ
௨, 𝜋ଷ

௨), discoverabilities (𝜎ଵ, 𝜎ଶ, 𝜎ଷ) and residual variances (𝜎ଵ, 𝜎ଶ, 𝜎ଷ) for each of the three 
phenotypes. Then the bivariate analyses are performed to estimate pairwise genetic overlaps 
(𝜋ଵଶ

 , 𝜋ଵଷ
 , 𝜋ଶଷ

 ), correlations of effect sizes within each of the three pairwise overlaps (𝜌ଵଶ, 𝜌ଵଷ, 𝜌ଶଷ) and 
correlations between residuals (𝜌ଵଶ, 𝜌ଵଷ, 𝜌ଶଷ) for each of the three pairs of phenotypes with univariate 
parameters fixed to the values obtained at the univariate step. Finally, the genetic overlap between all 
three phenotypes (𝜋ଵଶଷ) is estimated with both univariate and bivariate parameters fixed to the values 
obtained in the univariate and bivariate steps. Phenotype pair-specific polygenicities can then be 
calculated as: 

𝜋ଵଶ =  𝜋ଵଶ
 − 𝜋ଵଶଷ, 

𝜋ଵଷ =  𝜋ଵଷ
 − 𝜋ଵଶଷ, 

𝜋ଶଷ =  𝜋ଶଷ
 − 𝜋ଵଶଷ, 

and phenotype-specific polygenicities can be calculated as: 

𝜋ଵ = 𝜋ଵ
௨ − 𝜋ଵଶ − 𝜋ଵଷ − 𝜋ଵଶଷ, 

𝜋ଶ = 𝜋ଶ
௨ − 𝜋ଵଶ − 𝜋ଶଷ − 𝜋ଵଶଷ, 

𝜋ଷ = 𝜋ଷ
௨ − 𝜋ଵଷ − 𝜋ଶଷ − 𝜋ଵଶଷ. 

Nomenclature of pattern proportion parameters (𝜋ଵ, 𝜋ଶ, 𝜋ଷ, 𝜋ଵଶ, 𝜋ଵଷ, 𝜋ଶଷ, 𝜋ଵଶଷ) is illustrated in Figure 1 
(row 3, column B). 

Univariate, bivariate and trivariate log-likelihood functions are implemented using numerical integration 
of the characteristic function applying a trapezoidal rule with fixed step size as described previously [11]. 
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Simulation setup 
To validate the method and to test its ability to discriminate different scenarios of genetic overlap, we 
performed a series of analyses with simulated data. GWAS summary statistics for simulations were 
generated based on participants randomly selected from the UK Biobank using 100,000 unrelated 
(defined by 22020 data-field) white British (defined by 22006 data-field) individuals and version 3 of the 
genetic data. UK Biobank data was obtained under accession number 27412. Autosomal variants with 
minor allele frequency above 0.1%, genotype missingness below 10%, imputation info score above 0.8 
and passing Hardy-Weinberg equilibrium test at p=1E-10, totaling 12,926,691 variants were included in 
the analysis. A set of quantitative phenotypes with equal polygenicity (𝜋 = 0.002), equal SNP-heritability 
(ℎ2 = 0.4) and different patterns of genetic overlap were generated using the SIMU tool [12]. For each 
phenotype, a given number of phenotype-influencing variants (𝑛 = 25,853 ≈ 12,926,691 ∗ 0.002) were 
selected at random. The effect sizes for the selected variants were sampled from a standard normal 
distribution and scaled to obtain the predefined SNP-heritability. For each individual analyzed, a 
quantitative synthetic phenotype was then generated as the sum of allelic effects over all phenotype-
influencing variants complemented by a certain proportion of random Gaussian noise (representing 
environmental effects) required to keep the predefined level of heritability. Association analysis was 
performed using PLINK2 [13, 14] with sex, age and the first 10 genetic principal components included as 
covariates. Three simulation scenarios were considered: 

1. “Core”: only triple overlap, i.e., all overlapping variants are shared between all three phenotypes, 
for each phenotype half of phenotype-influencing variants also influence both other phenotypes. 
𝜋ଵ = 𝜋ଶ = 𝜋ଷ = 𝜋ଵଶଷ,  𝜋ଵଶ = 𝜋ଵଷ = 𝜋ଶଷ = 0. Presented in Figure 1, row 1. 

2. “Ring”: no triple overlap, for each phenotype half of phenotype-influencing variants also influence 
one of the remaining two phenotypes and the second half influences another phenotype, 𝜋ଵଶ =

𝜋ଵଷ = 𝜋ଶଷ,  𝜋ଵ = 𝜋ଶ = 𝜋ଷ = 𝜋ଵଶଷ = 0. Presented in Figure 1, row 2. 
3. “Equilibrium”: balanced mixture of all three phenotypes, 𝜋ଵ = 𝜋ଶ = 𝜋ଷ = 𝜋ଵଶ = 𝜋ଵଷ = 𝜋ଶଷ =

𝜋ଵଶଷ. Presented in Figure 1, row 3. 

For each triad of phenotypes, sixteen independent optimization runs were performed to maximize the 
likelihood of the GWAS z-scores observed in different subsets of 500,000 randomly selected variants. We 
then calculated the median across these sixteen runs for each polygenicity parameter (𝜋ௌ

ௗ =

median
௨

𝜋ௌ , 𝑆 ∈ {1, 2, 3, 12, 13, 23, 123}, 𝑟𝑢𝑛 = 1, … ,16) and find the run with the smallest deviation 

from the median overlap pattern. A Euler diagram for this run is then presented both for the simulated 
data and for the real data analysis. Of note, the pattern constituted from the median polygenicities 
(𝜋ௌ

ௗ, 𝑆 ∈ {1, 2, 3, 12, 13, 23, 123}) is not guaranteed to be feasible itself, since proportions in the 
overlap of three phenotypes are constrained, as described in the “Naïve expectation” section below, and 
these constraints are not necessarily fulfilled for the median proportions across multiple patterns which 
are themselves feasible.  

Genome-wide association studies (GWAS) data 
For the analysis of the real data, we used publicly available GWAS summary statistics on eight phenotypes: 
ulcerative colitis [15], psoriasis [16] (FinnGen, release 9, phenotypic code L12_PSORIASIS), multiple 
sclerosis [17], type 2 diabetes [18], estimated glomerular filtration rate [19], high-density lipoprotein [20], 
placental weight (fetal GWAS adjusted for fetal sex and gestational duration) [21], height [22] and 
schizophrenia [23]. All summary statistics were based on individuals of European ancestry. We analyzed 
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patterns of genetic overlap for three triads: (1) type 2 diabetes, estimated glomerular filtration rate and 
high-density lipoprotein (2) ulcerative colitis, multiple sclerosis and psoriasis, (3) placental weight, height 
and schizophrenia. The selection of these triads is guided by epidemiological and clinical evidence and 
intends to illustrate that the method may provide insights into a wide spectrum of traits and disorders. 

Naïve expectation 
Given univariate estimates of polygenicity for three phenotypes (𝜋ଵ

௨ , 𝜋ଶ
௨, 𝜋ଷ

௨), three bivariate estimates of 
genetic overlap between these phenotypes (𝜋ଵଶ

 , 𝜋ଵଷ
 , 𝜋ଶଷ

 ) obtained in univariate and bivariate analyses 
for the triad of phenotypes the genetic overlap between these three phenotypes is constrained by bounds 
𝜋ଵଶଷ ∈ ൣ𝜋ଵଶଷ

 , 𝜋ଵଶଷ
௫ ൧, where 𝜋ଵଶଷ

 = 𝑚𝑎𝑥൫0, 𝜋ଵଶ
 + 𝜋ଵଷ

 − 𝜋ଵ
௨ , 𝜋ଵଶ

 + 𝜋ଶଷ
 − 𝜋ଶ

௨ , 𝜋ଵଷ
 + 𝜋ଶଷ

 − 𝜋ଷ
௨൯ and 

𝜋ଵଶଷ
௫ = 𝑚𝑖𝑛൫𝜋ଵଶ

 , 𝜋ଵଷ
 , 𝜋ଶଷ

 ൯. Without any prior knowledge about genetic relationships between analyzed 
phenotypes, a naïve expectation about the value of 𝜋ଵଶଷ follows the principle of maximum entropy: 

𝜋ଵଶଷ
ï௩ = argmax 𝐻(𝜋ଵଶଷ) = argmax

గభమయ∈ൣగభమయ
 ,గభమయ

ೌೣ ൧

 −𝑝 ∗ log (𝑝)

ୀ(గభ,గమ,గయ,గభమ,గభయ,గమయ,గభమయ)

 

In other words for the given univariate (𝜋ଵ
௨, 𝜋ଶ

௨, 𝜋ଷ
௨) and bivariate (𝜋ଵଶ

 , 𝜋ଵଷ
 , 𝜋ଶଷ

 ) polygenicities, the naïve 
trivariate polygenicity (𝜋ଵଶଷ

ï௩ ) is selected so that among all the possible distributions 
(𝜋ଵ, 𝜋ଶ, 𝜋ଷ, 𝜋ଵଶ, 𝜋ଵଷ, 𝜋ଶଷ, 𝜋ଵଶଷ) with the constraint’s 𝜋ଵଶଷ ∈ ൣ𝜋ଵଶଷ

 , 𝜋ଵଶଷ
௫ ൧, the probability distribution 

(𝜋ଵ
ï௩ , 𝜋ଶ

ï௩ , 𝜋ଷ
ï௩ , 𝜋ଵଶ

ï௩ , 𝜋ଵଷ
ï௩ , 𝜋ଶଷ

ï௩ , 𝜋ଵଶଷ
ï௩ ) has maximum entropy, where 

𝜋ଵଶ
ï௩ =  𝜋ଵଶ

 − 𝜋ଵଶଷ
ï௩ , 

𝜋ଵଷ
ï௩ =  𝜋ଵଷ

 − 𝜋ଵଶଷ
ï௩ , 

𝜋ଶଷ
ï௩ =  𝜋ଶଷ

 − 𝜋ଵଶଷ
ï௩ , 

𝜋ଵ
ï௩ = 𝜋ଵ

௨ − 𝜋ଵଶ
ï௩ − 𝜋ଵଷ

ï௩ − 𝜋ଵଶଷ
ï௩ , 

𝜋ଶ
ï௩ = 𝜋ଶ

௨ − 𝜋ଵଶ
ï௩ − 𝜋ଶଷ

ï௩ − 𝜋ଵଶଷ
ï௩ , 

𝜋ଷ
ï௩ = 𝜋ଷ

௨ − 𝜋ଵଷ
ï௩ − 𝜋ଶଷ

ï௩ − 𝜋ଵଶଷ
ï௩   

are the naïvely expected phenotype pair-specific and phenotype-specific polygenicities. Of note, 
polygenicities for the naïve expectation (𝜋ଵ

ï௩ , 𝜋ଶ
ï௩ , 𝜋ଷ

ï௩ , 𝜋ଵଶ
ï௩ , 𝜋ଵଷ

ï௩ , 𝜋ଶଷ
ï௩ , 𝜋ଵଶଷ

ï௩ ) are 
calculated based on univariate (𝜋ଵ

௨, 𝜋ଶ
௨, 𝜋ଷ

௨) and bivariate (𝜋ଵଶ
 , 𝜋ଵଷ

 , 𝜋ଶଷ
 ) polygenicities estimated by the 

trivariate MiXeR model, therefore the univariate polygenicity of each phenotype as well as the shared 
polygenicity of each phenotypic pair are the same for the naïvely expected pattern and the pattern 
estimated by the trivariate MiXeR, i.e., 𝜋ଵଶ

ï௩ +  𝜋ଵଶଷ
ï௩ = 𝜋ଵଶ

ௗ + 𝜋ଵଶଷ
ௗ =  𝜋ଵଶ

   , and similar for 
other bivariate and univariate polygenicities. 

Linkage disequilibrium reference panel 
Both simulations and real data analyses were performed using an LD reference panel constructed based 
on 10,000 randomly selected unrelated white British individuals from the UK Biobank. Quality control 
procedures for variants were identical to those described in the ‘Simulations’ section leaving 12,926,691 
variants in the LD reference panel. PLINK 1.9 [13, 24] was applied to estimate r2 coefficients within each 
autosome using --ld-window 1000000 --ld-window-kb 20000 --ld-window-r2 0.01 parameters. The 
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resulting text files were then processed to produce input files in the format required by MiXeR, using the 
scripts provided in the code repository. 

Trivariate MiXeR model implementation 
Building on the same assumptions as the bivariate MiXeR model, we have extended the framework to 
include three phenotypes modeling the trivariate distribution of genetic effects as a mixture of eight 
components. Compared to the bivariate MiXeR tool, the code for log-likelihood estimation was re-
implemented using numerical integration of the characteristic function. This facilitated more stable 
convergence of the optimization algorithm and reduced fluctuations in the estimates caused by the 
random sampling approach applied in the bivariate MiXeR v1.3 implementation [25], at the cost of 
substantially increased computational burden. To cope with the increased computational demand, 
performance-critical parts have been accelerated using GPUs. Trivariate MiXeR code can only be deployed 
on machines with GPUs supporting NVIDIA CUDA, which are now commonly available on high-
performance computing (HPC) facilities or cloud computing facilities. 

The trivariate MiXeR tool is implemented in Python mainly using numpy [26], scipy [27] and pandas [28] 
packages, while the ´numba´ just-in-time (JIT) compiler [29] is used to translate the Python and numpy-
based routines into machine code. Performance-critical steps rely on the availability of a graphics 
processing unit (GPU, NVIDIA CUDA). Overlapping patterns are visualized using the ́ eulerr´ R package [30]. 
The execution environment with all dependencies can be created using Conda [31] mamba or 
micromamba [32]. 

Input parameters for the analysis can be tuned and provided in the configuration file in JSON format. An 
example configuration file showing parameters is available in the code repository 
(https://github.com/precimed/mix3r/blob/main/config_t2d_hdl_egfr_oct30_1.paper.json). Important 
parameters used in all presented analyses are: maf_thresh = 0.05 – z-scores of the variants with minor 
allele frequency (MAF) below 5% were not used for optimization (MAF is estimated from the same 
genotypes which are used to construct the LD reference panel); info_thresh =  0.8 – z-scores of the variants 
with imputation INFO score below 0.8 are not used for optimization, if input sumstats do not contain INFO 
column the filter is ignored; z_thresh = 32 – z-scores with absolute value larger than 32 were not used for 
optimization; exclude_regions = 6:25000000-34000000 – variants from the major histocompatibility 
complex (chr6:25000000-34000000, hg19 genomic guild) were not used for optimization; do_pruning = 
true, r2_prune_thresh = 0.8 – prior to optimization, variants were randomly pruned with allelic correlation 
threshold r2 < 0.8; n_random = 500000 – a subset of 500K variants was randomly selected for optimization 
from all variants surviving random pruning; rand_prune_seed = 1 – a seed for the generator of the pseudo-
random numbers (controls both random pruning and random sub-setting of variants), changing this 
parameter while keeping all other parameters unchanged allows the user to repeat the analysis with a 
different subset of variants. In this study rand_prune_seed = 1, ..., 16 were used to produce 16 
independent runs for each triad of phenotypes. 

Results 
Application to simulated data 
Our simulations demonstrated that MiXeR was able capture the true patterns of genetic overlap for 
various simulated scenarios (Figure 1). For “core” (Figure 1, row 1) and “ring” (Figure 1, row 2) scenarios, 
the trivariate MiXeR model accurately captured the disproportional pattern of overlap in the simulated 
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datasets (column A), while the result expected for the estimated bivariate overlaps under the naïve 
assumption of the maximum entropy probability distribution (column C) revealed substantial deviation 
from the true simulated pattern (column B). For the balanced “equilibrium” scenario (Figure 1, row 3) the 
true pattern (column B) followed the maximum entropy principle thus the naïve expectation (column C) 
should be no worse than the pattern reconstructed by the trivariate MiXeR (column A). As can be seen in 
this case the naïve pattern and the pattern reconstructed by the trivariate MiXeR model were very similar, 
illustrating adequate model fit. Estimates of all model parameters for 16 independent MiXeR runs for 
“core”, “ring” and “equilibrium” scenarios are shown in Tables S1, S2 and S3 respectively.  
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Figure 1. Simulated data. Three different scenarios of genetic overlap in simulated data (rows) estimated by trivariate MiXeR 
(column A, solid black outline), compared to the theoretical true pattern of the simulated overlap (column B, solid white 
outline) and the overlap pattern expected for the estimated bivariate overlaps under naïve assumption of maximum entropy 
(column C, dashed black outline). 
Row 1 (blue colors): “Core” scenario; Row 2 (red colors): “Ring” scenario; Row 3 (green colors): “Equilibrium” scenario (see 
`Methods` for further details). 
For each simulation scenario (within each row), for every area of each diagram, its percentage with respect to the combined 
total area of all three phenotypes in the estimated diagram (Column A) is shown (rounded to the closest integer), i.e., 
percentages within each diagram in the column A add up to 100 and percentages within each row are directly comparable 
with those shown in column A. Since percentages in column C are also given with respect to the combined total area of the 
corresponding diagram in column A, the sum of percentages in column C is not necessarily equal to 100. 
For each scenario phenotypes were simulated independently, therefore “Trait 1”, “Trait 2” and “Trait 3” in row 1 are not the 
same as “Trait 1”, “Trait 2” and “Trait 3” in row 2 or in row 3 of the figure respectively. 
The middle diagram in the bottom row (row 3, column B) shows the nomenclature for proportions of areas within the pattern 
(𝜋ଵ, 𝜋ଶ, 𝜋ଷ, 𝜋ଵଶ , 𝜋ଵଷ, 𝜋ଶଷ , 𝜋ଵଶଷ) used throughout the text. 

 

Application to real data 
We applied trivariate MiXeR to GWAS summary statistics on three triads of phenotypes and compared 
the pattern of genetic overlap estimated by trivariate MiXeR (Figure 2, column A) with the pattern 
expected for the given bivariate overlaps under a naïve expectation of maximum entropy probability 
distribution (Figure 2, column B).  

The first analysis (Figure 2, row 1) included phenotypes with similar polygenicities: type 2 diabetes 
(univariate polygenicity, 𝜋௨ = 5.2E-4), estimated glomerular filtration rate (𝜋௨ = 4.3E-4) and high-density 
lipoprotein (𝜋௨ = 3.8E-4). The estimated overlap between all three phenotypes substantially exceed the 
expected overlap constituting 15% of the combined total area (the naïve expectation 11%). Similarly, 
estimated phenotype-specific areas were larger than expected, comprising 24% (the naïve expectation 
20%), 26% (22%) and 9% (5%) of the combined total area for type 2 diabetes, estimated glomerular 
filtration rate and high-density lipoprotein, respectively. The increase of triple overlap and phenotype-
specific areas in MiXeR-derived patterns is compensated by the reduction of the phenotype pair-specific 
areas constituting 5% (9%) for type 2 diabetes and estimated glomerular filtration rate, 4% (8%) for 
estimated glomerular filtration rate and high-density lipoprotein, and 17% (21%) for type 2 diabetes and 
high-density lipoprotein pairs respectively. All model parameters are presented in Table S4. 

In the second use case (Figure 2, row 2), the trivariate MiXeR analysis of ulcerative colitis (𝜋௨ = 1.2E-4), 
multiple sclerosis (𝜋௨ = 2.0E-4) and psoriasis (𝜋௨ = 1.2E-4) compared to the naïve expectation showed 
larger components shared between all three phenotypes (23 vs. 17%) and phenotype-specific 
components (ulcerative colitis: 16 vs 10%; multiple sclerosis: 35 vs. 29%, psoriasis: 10 vs. 4%), while 
phenotype pair-specific fractions were smaller (ulcerative colitis and multiple sclerosis: 6 vs. 12%, 
ulcerative colitis  and psoriasis: 0 vs. 6%; multiple sclerosis  and psoriasis: 11 vs. 17%). All model 
parameters are presented in Table S5. 

The third analysis (Figure 2, row 3) included three phenotypes with different polygenicities: schizophrenia 
(𝜋௨ = 2.9E-3, constituting 72% of the combined total area), height (𝜋௨ = 1.3E-3, 32% of the combined total 
area) and placental weight (𝜋௨ = 3.9E-4, 10% of the combined total area), where the pattern derived from 
trivariate MiXeR (Figure 2, row 3, column A) is similar to the naïve expectation (Figure 2, row 3, column 
B). All model parameters are presented in Table S6. 
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The three examples illustrate the range of observed discrepancies between naïve expectations based on 
bivariate MiXeR and patterns estimated by trivariate MiXeR, which demonstrate the importance of 
applying trivariate analysis when studying the genetic architecture of multimorbidities. 

 
Figure 2. Real data. Genetic overlap between selected human traits and disorders estimated by trivariate MiXeR (column A) 
compared to naïve expectation following the principle of maximum entropy (column B). The pattern of genetic overlap 
between type 2 diabetes (T2D), estimated glomerular filtration rate (eGFR) and high-density lipoprotein (HDL) (Row 1), 
ulcerative colitis (UC), psoriasis (PS), and multiple sclerosis (MS) (Row 2), and placental weight (PW), height, and schizophrenia 
(SCZ) (Row 3) demonstrate the range of differences between trivariate MiXeR estimates and naïve expectation from bivariate 
MiXeR. For each triad of phenotypes (within each row), for every area of each diagram, its percentage with respect to the 
combined total area of all three phenotypes in the estimated diagram (column A) is shown (rounded to the closest integer), 
i.e., percentages within each diagram in column A add up to 100 and percentages within each row are directly comparable. 
Since percentages in column B are also given with respect to the combined total area of the corresponding diagram in column 
A, the sum of percentages in column B is not necessarily equal to 100. 

 

Discussion 
We have developed and validated the trivariate MiXeR tool to disentangle the pattern of genetic overlap 
among three complex phenotypes using genome-wide data. The simulations showed that the tool can 
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reliably reconstruct different patterns of genetic overlap. Furthermore, we have demonstrated how 
trivariate MiXeR can estimate the proportions of polygenic overlap among diverse human traits and 
diseases, highlighting patterns of genetic overlap that could not be deduced from bivariate MiXeR. 

Pairwise genetic overlaps between multiple phenotypes have been extensively studied and have provided 
valuable insights into the shared and phenotype-specific genetic architectures of different traits and 
disorders [3, 33, 34]. However, estimating pairwise genetic overlaps among three phenotypes does not 
provide a complete picture of the genetic overlap among those three phenotypes. We show that the 
trivariate MiXeR model can dissect the pattern of genetic overlap among three complex phenotypes, using 
GWAS summary statistics, and reveal patterns of overlap that are distinct from naïve expectations based 
on bivariate MiXeR. We provide three examples with real phenotypes demonstrating that trivariate MiXeR 
can elucidate situations where a triad of phenotypes can overlap disproportionately, providing novel 
insights into the variability in overlapping genetic underpinnings among those phenotypes. 

In clinical and epidemiological studies, type 2 diabetes has been associated with structural changes and 
abnormal function of high-density lipoprotein [35], which may impact renal function and increase the risk 
of kidney disease [36, 37]. Our trivariate MiXeR analysis of type 2 diabetes, high-density lipoprotein and a 
renal function measure (estimated glomerular filtration rate) demonstrates substantial polygenic overlap 
between these three phenotypes that were different from the overlap pattern expected from bivariate 
MiXeR results. These results nevertheless show a mixture of trivariate and bivariate overlapping polygenic 
components characterizing the shared genetic architecture of these phenotypes and suggesting a complex 
genetic relationship. 

Our analysis of genetic overlap between ulcerative colitis, psoriasis and multiple sclerosis revealed a large 
number of disease-specific variants while the shared component was predominantly within the triple 
overlap. These findings are consistent with the hypothesis that there is a common genetic basis for 
immune-linked diseases [38] with a core combination of genetic mutations [39]. Disturbance of these 
hypothetical core immune processes might activate the breakdown in immune tolerance [38] necessary 
to trigger any of these diseases. The subsequent developmental trajectory of a given autoimmune disease 
may then be driven, in part, by disease-specific genetic factors. Determining and disentangling core and 
specific genetic factors for immune diseases might provide valuable insights into key immune pathways 
and cell types involved in disease mechanisms, with the potential for drug target development. 

There is a growing interest in the role of the placenta in neurodevelopment and the onset of later 
psychiatric disorders [40, 41] but evidence for a genetic link remains elusive [21]. Our analysis of genetic 
overlap between placental weight, adult height and schizophrenia shows that placental weight shares a 
considerable fraction of its genetic underpinnings with height, while its genetic overlap with schizophrenia 
is modest and is also common with height. Sporadic genetic overlap is expected for polygenic phenotypes 
and might represent overlapping core regulatory and house-keeping genes involved in critical processes 
within multiple cell types. The observed pattern of genetic overlap may therefore indicate a 
predominance of non-specific genetic overlap between placental weight and schizophrenia.  

The development of advanced methods to obtain deeper insight into the genetic overlap among multiple 
traits and disorders may contribute to improvements in disease nosology. Applying trivariate MiXeR to 
existing diagnostic categories, sub-phenotypic or symptom-level measures may inform the revision of 
current classification systems and provide novel insights into the nosological relationship between 
complex human disorders [42, 43]. Further, the triangulation of overlapping genetic patterns between 
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disorders, biological markers and instrumental variables may inform theories regarding the potential 
biological mechanisms underlying multimorbidity patterns. 

Trivariate MiXeR has the same limitations as the univariate and bivariate MiXeR models [1, 6]. The 
underlying model is sensitive to LD structure estimation and the reliability of parameter estimates 
depends on the statistical power of the input GWAS summary statistics. The model makes several 
simplifying assumptions, including uniform distribution of phenotype-influencing variants across the 
genome and the effect size’s independence from allele frequency, LD, and location in the genome. These 
assumptions may be violated to different degrees for different phenotypes, making the model less 
suitable for some phenotypes than for others. Analysis of phenotypes combining a handful of extremely 
strong genetic effects with a weak polygenic background (for example Alzheimer’s disease [1]) may be 
sensitive to the selection of variants used for parameter fitting. To assess the stability of optimization 
convergence and robustness of obtained results we perform multiple independent runs using different 
subsets of variants and carefully assess the variation of parameter estimates across runs to evaluate the 
model’s suitability for each set of phenotypes. 

In conclusion, we have developed and validated the trivariate MiXeR model and demonstrated its utility 
in disentangling the pattern of genetic overlap between three phenotypes using GWAS summary 
statistics. We provide the tool implementing the model along with documentation and examples of how 
to use it. The trivariate MiXeR can help to provide a better understanding of the genetic relationship 
between complex polygenic phenotypes with particular relevance to multimorbidities.  
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