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Abstract 

Cannabis use disorder (CUD) and cannabis use (CU) are prevalent conditions cooccurring 

with ADHD, but not much is known about the underlying shared genetics. Here we perform 

cross-disorder GWAS meta-analyses of ADHD and CUD or CU to identify pleiotropic risk 

loci and evaluate differences in the genetics of ADHD-CUD and ADHD-CU, and 

subsequently we dissect the polygenic architecture of CUD comorbidity in ADHD in the 

iPSYCH cohort. 

There was a higher genetic overlap of ADHD and CUD than observed for ADHD and CU 

and we found a significant direct effect of ADHD genetic risk on CUD with only a minor part 

(12%) mediated by the genetics of CU. We identified 36 genome-wide significant loci for 

ADHD-CUD and 10 loci for ADHD-CU, with concordant direction of effect on the 

phenotypes. Three different approaches identified DRD2, which encodes the dopamine 2 

receptor, as a risk gene for ADHD-CUD and, overall, ADHD-CUD risk genes were 

associated with high expression across several brain tissues and brain developmental stages, 

which was not observed for ADHD-CU genes. ADHD-CUD and ADHD-CU demonstrated 

similar genetic correlations with substance use phenotypes, while they differed significantly 

with respect to substance use disorder (SUD) phenotypes. ADHD-CUD individuals had 

significantly increased polygenic score (PGS) for psychiatric disorders compared to ADHD 

without CUD and increased burden of rare deleterious variants. Stratifying individuals with 

ADHD by their CUD-PGS revealed an absolute risk of 22% for comorbid CUD among the 

20% of cases with the highest CUD-PGS, which was strikingly higher than the absolute risk 

of 1.6% observed among the 20% of controls with the highest CUD-PGS. Sex-specific 

analyses identified substantial differences in the absolute risk of comorbid CUD between 

males and females with ADHD, with a ∼10% higher CUD risk among males than females in 

the high-risk CUD-PGS group (24% risk for males and 14% risk for females). 
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Introduction 

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental 

psychiatric disorder with onset in childhood. It affects around 5% of children and often 

persist into adulthood where around 2.5% are affected1. The disorder is characterized by 

externalizing behaviours, such as age-inappropriate levels of impulsivity, hyperactivity, and 

inattention1. The genetic risk component is high with a heritability estimate of 0.742, and we 

have previously demonstrated that a substantial amount of risk for ADHD can be explained 

by common genetic variation (14 - 22 %)3,4.  

Individuals with ADHD have a 10-time increased risk of developing substance use disorders 

(SUD) compared to individuals without a prior diagnosis5, and the prevalence of SUD is 

around 23% among individuals with ADHD6. A comorbid SUD diagnosis has a strong 

negative impact on life-quality and is associated with a six- to sevenfold increased mortality 

rate in individuals with ADHD compared to the general population7, stressing that comorbid 

SUD is a severe, detrimental condition. One of the SUD conditions most commonly 

cooccurring with ADHD is cannabis use disorder (CUD)8, and it is particularly common 

among young people with ADHD; e.g., among people under 18 years of age seeking SUD 

treatment in the Danish health care system, 90% reported cannabis as their main drug in 

20229.  

Externalizing and impulsive behaviors associated with ADHD might increase risk for 

initiating cannabis use10,11 and subsequent CUD. The risk could be promoted by a strong 

impact of the drug on individuals with ADHD, e.g. by affecting dopamine levels in the 

brain12, a neurotransmitter assumed to be dysregulated in individuals with ADHD13.  Several 

lines of evidence suggest that genetic risk factors are shared across ADHD and CUD; in a 

large genome-wide association study (GWAS) meta-analysis of CUD we identified a 

significant genetic correlation (rg) of ADHD with both CUD (rg=0.62) and cannabis use (CU, 

rg=0.28)14, polygenic score (PGS) analyses have suggested genetics to be a contributor to 

ADHD-CUD comorbidity15, and structural equation modelling has found ADHD to group on 

a latent genetic factor representing shared genetic variance across several psychiatric 

disorders including CUD16.  

Recent GWAS have found that the polygenic architecture of diagnosed SUD only partly 

overlap the polygenic architecture of substance use i.e., genetic correlation analyses of 

alcohol use disorder with alcohol use was 0.5217 and the genetic correlation of CUD with CU 

was 0.5014. ADHD has a genetic overlap with both CUD and CU (as described above), but it 
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is not known to what extent the part of the genetic architecture of CUD and CU that overlaps 

with ADHD differ from one another. This study aims to characterize the shared genetics of 

ADHD with CUD and CU respectively and unravel their potential similarities and 

differences. This study also aims to characterize the polygenic risk component associated 

with ADHD comorbid with CUD and evaluate the ability of PGSs for predicting comorbid 

CUD in ADHD. 

Here we perform cross-disorder GWAS of ADHD and CUD (referred to as ADHD-CUD) 

and ADHD and CU (referred to as ADHD-CU) to identify shared genetic risk loci and 

evaluate the extent to which the shared genetics of ADHD-CUD differ from the shared 

genetics of ADHD-CU. We use Gaussian mixture modelling to estimate the total number of 

common variants influencing ADHD and CUD and ADHD and CU. We investigate 

differences in the polygenic architecture of ADHD-CUD and ADHD-CU through genetic 

correlation analyses and intersecting with functional genomics data and assess ADHD-CUD 

and ADHD-CU risk gene expression across brain developmental stages. Subsequently, we 

focus specifically on ADHD-CUD comorbidity and use the large Danish iPSYCH18,19 case-

cohort to: (I) explore the role of rare deleterious variants in ADHD-CUD, (II) dissect the 

polygenic architecture of ADHD-CUD in PGS analyses, and (III) to predict the absolute risk 

for comorbid CUD among individuals with ADHD stratified by their PGS. 

 

RESULTS 

Genetic overlap of ADHD with CUD and CU and mediation analyses 

To estimate the extent to which common genetic variants are shared between ADHD, CUD 

and CU we used several approaches. First we performed genetic correlation analyses using 

GWAS summary statistics from meta-analysis of ADHD (38,691 ADHD; 186,843 controls)3, 

CUD (42,281 CUD; 843,744 controls)20 and CU (162,082 individuals)21, showing results 

consistent with previous reports (ADHD vs CUD; rg= 0.57, standard error [s.e.] = 0.04; 

ADHD vs CU; rg= 0.20, s.e. = 0.04;  CUD vs CU; rg= 0.44, s.e. = 0.05; Supplementary Table 

1). Then, we evaluated the extent to which the three phenotypes load on a shared genetic 

latent factor by modelling their genetic covariance structure in a common factor model using 

Genomic SEM22. All three phenotypes were significantly associated with the underlying 

shared genetic latent factor, with CUD having the highest loading (∼1, s.e. = 0.1), while 

similar loadings were observed for ADHD (0.57, s.e. = 0.05) and CU (0.42 s.e. = 0.04) 

(Supplementary Figure 1; Supplementary Table 2). We also used Genomic SEM to perform 
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genetic mediation analyses and identified a significant direct effect of ADHD genetics on 

CUD (effect = 0.52, P=1.58x10-26) while only a minor part of the total effect of ADHD on 

CUD was mediated by CU genetics (12%) (Supplementary Table 2.b; Supplementary Figure 

2).  

To quantify the total number of shared common variants we used univariate Gaussian 

mixture modelling implemented in MiXeR23 to calculate (i) the number of variants 

influencing each phenotype (explaining 90% of the single nucleotide polymorphism (SNP) 

heritability (h2
SNP)) and (ii) the number of shared variants. ADHD was influenced by ∼7,300 

common variants as reported previously3, CUD by ∼8,300 variants and CU by ~7,700 

(Supplementary Table 3). A higher number of shared variants was observed for ADHD and 

CUD (∼7,000 variants) than for ADHD and CU (∼5,100 variants) and a larger proportion of 

the shared variants showed concordant directional effects with CUD (75%) than with CU 

(60%) (Supplementary Table 3).   

Additionally, Mendelian randomization analyses identified a bidirectional significant causal 

relationship between ADHD and CUD (ADHD -> CUD Inverse Variance Weighted (IVW) 

beta = 0.31, s.e. = 0.06, P = 5.22×10−7; CUD -> ADHD IVW beta = 0.52, s.e. = 0.07, P = 

2.90×10−5; Supplementary Table 4 and 5), which were supported by sensitivity analyses, 

especially GSMR with Heidi-outlier removal of pleiotropic variants, indicating that CUD has 

a larger causal effect on ADHD than the reverse. 

 

Cross-disorder GWAS meta-analyses of ADHD, CUD and CU 

We performed two cross-disorder GWAS meta-analyses of (I) ADHD and CUD (referred to 

as ADHD-CUD) and (II) ADHD and CU (referred to as ADHD-CU) to identify shared risk 

variants across the two pairs of phenotypes, using the to-date largest GWAS meta-analyses of 

ADHD3, CUD20 and CU21 described above. We used ‘Association analysis based on 

SubSETs’ (ASSET)24, to identify variants with concordant and discordant allelic direction of 

effects on the phenotypes. We identified 36 genome-wide significant ADHD-CUD risk loci 

with concordant direction of effect (Supplementary Table 6, Supplementary Figure 3.a), and 

two loci with discordant direction of effect (Supplementary Table 7, Supplementary Figure 

4.a). Two concordant loci on chromosomes 3 and 11 had independent secondary lead variants 

(r2 < 0.1 between the index variant and the secondary lead variant within a region of 0.5 Mb) 

that remained significant after conditional analysis (two secondary lead variants on 

chromosome 11 and one secondary independent lead variant on chromosome 3, 
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Supplementary Table 8). All concordant index variants and independent secondary lead 

variants demonstrated a high posterior probability (m-value) for both phenotypes contributing 

to the observed signal (m > 0.85; Supplementary Table 6). The locus most strongly 

associated in ADHD-CUD was located on chromosome 11 (downstream METTL15, 

rs10835372; OR=1.06; P= 1.45x10-18) and is also genome-wide significantly associated with 

ADHD3 and CUD20 (Supplementary Table 6). The second most strongly associated locus was 

located on chromosome 7 (in FOXP2; rs1989903, OR=1.05, P = 6.67x10-16) which is also 

associated with both disorders separately3,14. We identified 17 shared loci that have not been 

reported for either disorder. Evaluating the concordant ADHD-CUD index variants in a 

Phenome-wide association study (PheWAS) revealed that the variants are especially 

associated with phenotypes within domains related to smoking, weight and cardiometabolic 

diseases (Supplementary Table 11), which are domains that are also linked to the single 

disorders separately3,14. 

We identified 13 genome-wide significant loci associated with ADHD-CU (Supplementary 

Table 9; Supplementary Figure 3.b.) with concordant direction of effect, 11 of which 

demonstrated a high contribution from both phenotypes (m-value > 0.85; Supplementary 

Table 9). Ten loci were genome-wide significantly associated with discordant direction of 

effects (Supplementary Table 10; Supplementary Figure 4.b).  

Five loci were identified in both ADHD-CUD and ADHD-CU GWASs with concordant 

direction of effects.  

Regional association plots for concordant loci can be found in Extended Data 1 and forest 

plots and m-value plots in Extended Data 2. 

 

Tissue specific expression of ADHD-CUD and ADHD-CU associated genes  

We evaluated the expression of ADHD-CUD and ADHD-CU risk genes across a range of 

tissues to identify affected tissues. First gene-based associations across the entire genome 

were calculated using MAGMA25 (including only concordant variants), second, we tested for 

a relationship between the gene-based associations and tissue-specific gene expressions in 54 

tissues from GTEx26. This showed a significant association of ADHD-CUD genes with high 

expression in four brain tissues including the cortex (Supplementary Figure 5.a), but no 

increased expression of ADHD-CU genes in brain tissues were observed (Supplementary 

Figure 5.b). 
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Expression of ADHD-CUD and ADHD-CU risk genes across brain developmental 

stages 

To further explore the differences in expression of ADHD-CUD and ADHD-CU genes, we 

identified candidate risk genes and linked those to gene expression across brain 

developmental stages. First concordant ADHD-CUD and ADHD-CU genome-wide 

significant risk loci with high posterior probability of contributions from both phenotypes, 

were fine-mapped to identify sets of Bayesian credible variants27, with each set most likely 

(probability > 95%) including a causal variant (Supplementary Tables 12 and 13). 

Subsequently, credible variants were linked to genes using the online platform FUMA28 and 

data on genomic position, information about expression quantitative trait loci (eQTLs) and 

chromatin interaction mapping in human brain tissue (datasets selected are listed in the 

Supplementary Note). We identified 195 potential risk genes for ADHD-CUD 

(Supplementary Table 14) and 17 for ADHD-CU (Supplementary Table 15). The expression 

of identified candidate genes was then evaluated across 12 brain developmental stages using 

RNA-sequencing data of neocortex brain developmental stages from BrainSpan. ADHD-

CUD genes (167 genes with high quality data in BrainSpan) demonstrated significant 

increased expression across all neocortex brain developmental stages when compared to 

background genes (Supplementary Table 16). When comparing expression of ADHD-CUD 

risk genes to ADHD-CU risk genes (16 genes with high quality data in BrainSpan; 4 overlap 

the ADHD-CUD gene set), ADHD-CUD genes demonstrated the highest mean expression at 

all brain developmental stages and significant overall mean expression when compared to the 

mean expression of ADHD-CU risk genes (P=2.73x10-123; Figure 1; Supplementary Table 

16). Random down-sampling of ADHD-CUD genes 10,000 times to sets corresponding to the 

size of the ADHD-CU gene set (12 genes), strongly supported the finding of ADHD-CUD 

genes having significantly higher neocortical gene-expression than ADHD-CU genes no 

matter which genes were randomly assembled into the subset. 95% of the 1000 down 

sampled ADHD-CUD gene sets had significantly different expression than the ADHD-CU 

genes and for 91% of the down sampled gene sets it was due to an over-expression of 

ADHD-CUD genes compared to ADHD-CU genes (Supplementary Figure 6.a. and 6.b.). 

 

Transcriptome-wide association studies (TWAS)  

We performed TWAS of the imputed gene-expressions to identify gene expressions 

associated with ADHD-CUD and ADHD-CU. This was done using S-prediXcan prediction 

models trained on GTEx26 (v. 8) data for 13 brain tissues, and summary statistics including 
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both concordant and discordant variants. Subsequently, individual S-prediXcan29 results were 

combined in a meta-analysis using S-MulTiXcan30 to estimate overall association of the 

genetically regulated gene-expression in brain with the phenotypes. The expression of 70 

genes were significantly associated with ADHD-CUD overall in brain tissues (TWAS-

supplementary Tables 1), 36 were also exome-wide significantly associated with ADHD-

CUD in MAGMA gene-based association analysis (Supplementary Table 19), 49 were also 

identified when linking credible variants to functional genomics data in FUMA 

(Supplementary Table 17), and 34 genes were identified by all three methods (TWAS S-

MulTiXcan, MAGMA and FUMA; TWAS Supplementary Table 3). For ADHD-CU, 30 

significant TWAS genes for association of overall brain expression with ADHD-CU were 

identified (TWAS-supplementary Tables 2), only one overlapped MAGMA genes 

(Supplementary Table 18) and genes identified using functional genomics data in FUMA 

(Supplementary Table 15). Thus, there were larger consistency in risk genes identified across 

methods and approaches for ADHD-CUD than for ADHD-CU. 

 

SNP-heritability and genetic correlations with other phenotypes 

Genetic correlation analyses were performed to evaluate the extent to which the genetics of 

ADHD-CUD and ADHD-CU overlap other phenotypes. We calculated the genetic 

correlations (rg) of ADHD-CUD and ADHD-CU with 10 phenotypes  related to (I) 

psychiatric disorders: schizophrenia (SZ)31, autism spectrum disorder (ASD)32, major 

depressive disorder (MDD)33, SUD (alcohol use disorder [AUD]34, opioid use disorder 

[OUD] 35),  (II) cognition: educational attainment36 (III) substance use: smoking initiation37, 

drinks per week37 and (IV) other phenotypes highly correlated with ADHD: insomnia38, age 

at first birth (AFB)39). This was done using Linkage disequilibrium score regression 

(LDSC)40 and summary statistics only containing variants with concordant direction of effect 

in the GWAS of ADHD-CUD and ADHD-CU. For comparison rg of ADHD with the 10 

phenotypes were also calculated (Supplementary Table 19).  

We identified significantly less negative rg of ADHD-CU with educational attainment (rg = -

0.19, s.e. = 0.04) and AFB (rg = -0.45, s.e. = 0.03) compared to ADHD-CUD (rgEA = -0.57, 

s.e. = 0.03, rgAFB = -0.72, s.e. = 0.03) and ADHD (rgEA = -0.53, s.e. = 0.02, rgAFB = -0.66, s.e. 

= 0.02) (Supplementary Table 20, Figure 2). Both ADHD-CUD and ADHD-CU 

demonstrated a significant larger genetic correlation with SZ (rgADHD-CUD = 0.42, s.e. =0.04; 

rgADHD-CU = 0.33, s.e. = 0.04) than observed for ADHD (rg = 0.19, s.e. 0.03). For SUD and 

substance use phenotypes, we identified a significantly higher rg of ADHD-CUD with AUD 
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(rg = 0.72, s.e. = 0.04) and OUD (rg = 0.76, s.e. = 0.04) than observed for both ADHD-CU 

(rgAUD = 0.50, s.e. = 0.05; rgOUD = 0.50, s.e. = 0.07) and ADHD (rgAUD = 0.38, s.e. = 0.04; 

rgOUD = 0.34, s.e. = 0.05), while both ADHD-CUD and ADHD-CU demonstrated 

significantly higher rg with substance use i.e., with drinks per week (rgADHD-CUD = 0.36, s.e. = 

0.04; rgADHD-CU = 0.43, s.e. = 0.04) and smoking initiation (rgADHD-CUD = 0.77, s.e. = 0.02; 

rgADHD-CU = 0.80, s.e. = 0.02) than observed for ADHD (rgDrinks_per_week = 0.15, s.e. = 0.03, 

rgSmoking = 0.60, s.e. = 0.02)(Supplementary Table 20). These results indicate that the shared 

genetic components of ADHD with CUD and CU are similarly related to substance use 

(smoking and drinks per week), while they differ with respect to SUD phenotypes where 

ADHD-CUD concordant variants increase rg and ADHD-CU concordant variants decrease rg 

relative to the rg observed for ADHD (Figure 2).  

 

Load of rare variants in individuals with ADHD and comorbid CUD 

We assessed the load of rare deleterious variants in individuals with ADHD and comorbid 

CUD in exome sequencing data from the Danish iPSYCH cohort. We compared the load of 

rare protein truncating variants (PTVs) and rare severe damaging missense variants 

(SevereDMVs) in ADHD-CUD (N=333) to individuals with ADHD without comorbid CUD 

(N=3,483) and to control individuals (N=8,951). None of the groups – ADHD-CUD, ADHD-

only or controls - included individuals diagnosed with intellectual disability (ID), bipolar 

disorder (BPD), ASD, or SZ. We identified a higher overall load of rare PTVs and rare 

SevereDMVs in ADHD-CUD compared to ADHD-only (P = 0.03; Figure 3; Supplementary 

Table 21). In sub-analyses in sets of genes grouped by their probability of loss-of-function 

intolerance, the load of rare PTVs+SevereDMVs in evolutionary constrained genes (pLI > 

0.941, 2,811 autosomal genes) in ADHD-CUD was similar to what was found for ADHD-only 

(Supplementary Figure 7), however not significantly increased compared to controls, 

probably due to low power. Rare PTVs+SevereDMVs in less constrained genes (0 < pLI < 

0.5; 14,267 autosomal genes) were significantly higher in ADHD-CUD compared to ADHD-

only (P = 0.014; Figure 3; Supplementary Table 21). This suggests that the main rare variant 

component driving the overall higher load of rare PTVs+SevereDMVs in ADHD-CUD 

compared to ADHD without comorbidities are variants in genes with high tolerance to 

deleterious mutations. 

 

Dissecting the genetic architecture of CUD comorbidity in ADHD using PGS 
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Individuals diagnosed with ADHD are at an increased risk of developing CUD, but not much 

is known about the specific genetic architecture of those that develop the comorbid condition 

compared to those that do not. To explore this, we performed PGS analyses using individual 

level genotype data from individuals in the Danish iPSYCH cohort18,19 with ADHD-CUD 

(N= 2,079) and individuals with ADHD without CUD (N = 23,466; other comorbidities are 

not excluded) benchmarked against a control group (N= 37,246). Twelve PGSs were 

analysed within the domains of psychiatric disorders (ADHD, ASD, SZ, MDD, BPD), 

cognition (educational attainment), SUD (CUD, AUD, OUD), substance use (smoking 

initiation, drinks per week, CU) (Supplementary Table 22). Comorbid ADHD-CUD 

individuals demonstrated a higher PGS for all evaluated scores (except ASD) compared to 

ADHD without CUD (or more negative for educational attainment) (Figure 4; Supplementary 

Table 23). When comparing the PGS of females and males with ADHD-CUD no sex 

differences were observed (Supplementary Figure 8, Supplementary Table 24). In summary, 

individuals with both ADHD and CUD were found to have higher polygenic risk load not 

only for SUD but also for a range of other psychiatric disorders and a decreased load of 

variants associated with increased educational performance compared to ADHD individuals 

without CUD, while no differences were observed between males and females with ADHD-

CUD. 

 

Risk of comorbid CUD in individuals with ADHD stratified by their PGS 

iPSYCH is a population-based case-cohort including all individuals diagnosed with ADHD in 

Denmark born between 1981 and 2008, with longitudinal information about comorbid 

diagnoses from the Danish registries. This gives the unique possibility of estimating the 

absolute risk that an individual with ADHD will develop CUD before a certain age depending 

on the PGS. To do this we stratified individuals with ADHD in the iPSYCH cohort 

(N=25,545) into quantiles depending on their PGS load of the 12 PGSs described above 

(Supplementary Table 22). Subsequently, cox regression was performed to calculate the 

cumulative absolute risk and hazard rate ratios (HRR) for developing comorbid CUD from 10 

years to 30 years of age within PGS groups. For comparison the same analysis was done in 

population-based controls excluding individuals with ADHD (N=37,246). We found that the 

HRR of comorbid CUD generally increased with increasing PGS, and the highest HRR was 

observed in the 4th CUD-PRS quantile with a HRR4/1 = 1.99 (s.e. = 0.07, P = 1.7x10-21) 

compared to the first decile (Supplementary Figure 9, Supplementary Table 25). The highest 
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absolute risk was observed for the smoking-PRS with the trajectory for the 4th quantile 

reaching an absolute risk of 23.2% at the age of 30 years, which was significantly higher than 

the absolute risk of 12.7% reached in the lowest quantile (Supplementary Table 25). The 

results were similar for the CUD-PGS with an absolute risk of 21.9% in the 4th quantile 

(Figure 5) and for the ADHD-PGS with an absolute risk of 19.9% in the 4th quantile, however 

the ADHD-PGS was less able to stratify individuals into four distinguishable risk groups 

(Supplementary Figure 9). For comparison, the absolute risk for CUD among population-

based controls in the high-risk smoking-PGS and CUD-PGS groups reached 1.8% and 1.6% 

(Figure 5) respectively. 

When estimating the risk for comorbid CUD among individuals with ADHD who have one or 

both parents diagnosed with a psychiatric disorder (N= 6,999) the absolute risk increased 

further to 25% in the 4th quantile for both the CUD-PGS (Figure 5) and the smoking-PGS 

(Supplementary Figure 10, Supplementary Table 26). Sex-specific analyses identified 

substantial differences in the absolute risk of comorbid CUD between males (N = 17,682) 

and females (N = 7,863) with ADHD, with a ∼10% higher CUD risk among males than 

females in both the high-risk CUD-PGS group and smoking-PGS group (PGS-CUD: absolute 

risk for males 24% and 14% among females; Figure 5, Supplementary Figure 11 and 12 and 

Supplementary Table 27).   

 

Discussion 

Here we dissect the shared genetic architecture of ADHD, CUD and CU through large-scale 

GWAS cross-disorder analyses based on the most recent GWAS of the single disorders and 

novel exome sequencing data. First, we evaluated the polygenic overlap between the 

phenotypes, and identified a higher rg between ADHD and CUD (rg = 0.57) than between 

ADHD and CU (rg = 0.20). This was reflected in a larger sharing of concordant influencing 

variants between ADHD and CUD (7,000 variants; 75% shared and concordant directional 

effect) than between ADHD and CU (5,100 variants; 60% shared and concordant), refining 

the previously reported genetic overlap14 appreciably. We also found that most of the effect 

of ADHD genetics on CUD is direct and only a small proportion (12%) is mediated by CU 

genetics, which suggests CU to be less a risk factor for CUD than a genetic predisposition of 

ADHD. MR analyses identified significant causal bidirectional relationships between ADHD 

and CUD with a larger effect of CUD on ADHD than the reverse. MR analyses have 

previously reported a causal effect of ADHD on CU42,43. The large number of shared variants 
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between ADHD and CUD makes it important to address pleiotropy in the MR analyses as 

pleiotropy violates MR assumptions. Even though we performed sensitivity analyses we did 

not apply the exhaustive list of methods to handle, detect or control for pleiotropic 

instrumental variables, and we cannot completely exclude potential biases introduced by 

pleiotropy.  

We identified 36 genome-wide significant loci for ADHD-CUD, with concordant direction of 

effect of these 17 are novel loci i.e., they did not reach genome-wide significance in the 

single disorders. The most strongly associated of these is located on the p-arm of 

chromosome 3 (rs3774800, OR= 1.05, s.e. = 0.006, P = 1.79x10-15), in a broad LD region, 

containing credible variants that were linked to 69 genes through integration with functional 

genomics data.  The second most strongly associated new locus is located on the q-arm of 

chromosome 3, intragenic in CADM2 (rs11915747, OR = 1.05, s.e.= 0.006, P = 6.93x10-14).  

In the cross-disorder GWAS of ADHD-CU, 23 loci were identified, 11 of them with 

concordant direction of effects and strong contributions to the association signal from both 

phenotypes. The most strongly associated concordant locus (rs62263912, OR = 1.06, s.e. = 

0.007, P= 7.82x10-16) was also located intragenic in CADM2. CADM2 encodes the synaptic 

cell adhesion molecule 1, and was previously identified in a GWAS of CU21 and has also 

been linked to sensation seeking44 and impulsive behaviors45.  

The larger number of concordant risk loci for ADHD-CUD goes well in line with the MiXeR 

analyses finding that 75% of shared variants have concordant direction of effect, and the 

observation that a little less than half of the genome-wide significant loci for ADHD-CU 

variants have discordant directions corresponds well with the estimate that around 40% of the 

shared influencing variants have discordant effects on ADHD and CU. 

 

Besides CADM2 four other loci were genome-wide significantly associated with both 

ADHD-CUD and ADHD-CU with concordant directions of effect, including an interesting 

locus on chromosome 11. This locus is also associated with both CUD and CU21, and has 

been linked to tobacco smoking37 and alcohol dependence46. In the present study both index 

variants were located in NCAM1, but for ADHD-CUD, three independent genome-wide 

significant variants (two remained significant after conditional analyses) were observed 

downstream NCAM1 representing a secondary independent locus not associated with ADHD-

CU. One of these variants is located in DRD2, and the other two variants are located 

downstream DRD2 but were linked to DRD2 by functional annotations (rs6589386 is a 

significant eQTL for DRD2 in the cerebellar hemisphere [P=6.5x10-6] and rs2014920 is 
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located in a chromatin region interacting with DRD2; see also Supplementary Table 14). 

DRD2 was also one of the 34 genes identified as a risk gene for ADHD-CUD by three 

different methods (gene-based magma test, by integration with functional genomics data in 

FUMA and by TWAS). Identification of DRD2 as a risk gene for ADHD-CUD is of high 

interest considering the role of dopamine in CUD47 and in ADHD, where ADHD symptoms 

have been linked to dysfunctional dopamine regulation in the brain48. We have previously 

identified a significant association of ADHD risk genes with high expression in dopaminergic 

neurons3, but the present result is the first to directly link a single locus implicating a 

dopamine receptor/transporter to ADHD (subgroups) based on GWAS results. The TWAS 

identified an overall  significantly decreased expression of DRD2 in the meta-analysis of 

expression across brain regions (P= 4.8x10-9, Zmean = -0.19) with the most significantly 

decreased expression found in the cerebellar hemisphere (1.57x10-8, Z = -5.65), a brain 

region that has been found to be involved in reward and cognitive processing49,50.  

ADHD demonstrated a significant genetic correlation with both CUD and CU, but our 

analyses suggest several differences in the shared concordant genetics of ADHD and CUD 

from the shared concordant genetics of ADHD and CU. ADHD-CUD associated genes have a 

significant increased expression in several brain regions (Supplementary Figure 5), and a 

significant increased expression across all brain developmental stages (Figure 1), which is not 

observed for ADHD-CU genes. The higher expression of ADHD-CUD genes across brain 

regions and developmental stages could indicate that these genes are more important for brain 

development and function than ADHD-CU genes. It should be noted that GWAS of ADHD3 

and CUD14 have previously linked the disorders to genes with high expression in early brain 

development, while we observed increased expression of ADHD-CUD risk genes across all 

brain developmental stages. Our approach was different from what was used in the single 

disorder GWAS, so we cannot exclude that other approaches might link ADHD-CUD to 

genes with different patters with regard to prenatal and postnatal expressions.  

When evaluating genetic correlations we found that variants associated with educational 

attainment, age at first birth, and SUD (AUD, OUD) contributed to differences in the 

concordant polygenic architecture of ADHD-CUD from ADHD-CU. ADHD-CUD has a 

significant higher rg with SUD phenotypes (rg_AUD = 0.72; rg_OUD = 0.76) and significant lower 

rg with educational attainment (rg_EA = -0.58) and age at first birth (rg_AFB = -0.73) when 

compared to those for ADHD-CU (rg_AUD = 0.5; rg_OUD = 0.5, rg_EA = -0.19, rg_AFB = -0.45) 

(Figure 2). These results are in line with previous findings suggesting that the genetic 

architecture of drug use is different from that of diagnosed SUD14,17, including opposite 
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genetic correlations of EA with substance use (positive rg
14,17) and SUD (negative rg

14,17).  

Our results suggest that these genetic differences are also reflected in the genetics shared with 

ADHD. It could be speculated that ADHD-CUD risk variants affect pathological mechanisms 

shared across ADHD and SUD, while ADHD-CU associated variants influence less 

detrimental biological aspects of ADHD and substance use related to sensation seeking and 

risky behavior which have positive genetic correlations with educational attainment51,52. 

A limitation of this study is potential heterogeneity and lack of specificity of the CU 

phenotype. The phenotype definition is life-time use, and therefore includes a range of users, 

from those that have used cannabis just once to those that have used it regularly and a 

minority who will progress to CUD. The impact of CUD is assumed to be small as the 

prevalence of CU is 22% in UK Biobank (which compose 78.2% of the samples in the CU 

GWAS), and thus much higher than the prevalence of CUD in UK which is around 1.2%53. 

Additionally, the different samples varied regarding the age of the participants, the 

prevalence of cannabis use due to different cohort ascertainments, and access to cannabis due 

to differences in policy regarding cannabis use between countries. These factors may have 

introduced some heterogeneity and thus reduced power to detect genetic associations, but 

despite that the study identified eight genome-wide significant loci. Even though the CU 

phenotype is somewhat unspecific, and could be influenced by other traits related to cannabis 

use, like risky behaviour and novelty seeking, the phenotype does capture genetic aspects of 

substance use, since CU demonstrate significant higher rg with substance use and SUD 

phenotypes than what was found for ADHD. 

We have previously found an increased load of rare loss of function variants in individuals 

with ADHD compared to controls54 but very little is known about the role of rare variants in 

CUD. Here we identified a significant increased load of rare PTVs+SevereDMVs in 

individuals with ADHD-CUD compared to ADHD-only when considering all autosomal 

genes, and in particular, in evolutionarily less constrained genes (i.e., genes with 0 < pLI < 

0.5). This suggests that the genetic risk component contributing to CUD, besides what is 

shared with ADHD, involves genes that are expressed in fewer tissues and are less important 

for cell survival, as these features characterize less constrained genes compared to 

evolutionary constrained genes41,55.  Besides increased load of rare PTVs+SevereDMVs, PGS 

analyses in the iPSYCH cohort also identified the load of common risk variants associated 

with other psychiatric disorders (except ASD) and SUD to be increased in comorbid 

individuals (Figure 4). Stratification of iPSYCH individuals with ADHD into PGS quantiles 

found an absolute risk of 22% in the high-risk CUD-PGS group, which was strikingly higher 
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than observed for controls in the high-risk CUD-PGS group, where the absolute risk of CUD 

reached 1.6% (Figure 5). When evaluating the cumulative absolute risk among individuals 

having one or more parents diagnosed with a psychiatric disorder the absolute risk increased 

further to 24% in the high CUD-PRS group.  

In the PGS analyses we did not find significant differences between males and females with 

ADHD-CUD however we identified substantial sex differences in the absolute risk, with 

males having almost twice the risk for comorbid CUD in all CUD-PGS groups compared to 

females, also among controls. This means that given the same genetic risk load a much larger 

proportion of males develop SUD, suggesting that males are more susceptible to some 

environmental factors than females. Overall, our findings provide a statistically significant 

basis for considering the use of PGSs in clinical settings to identify individuals with ADHD 

at high risk for comorbid CUD. These predictions could be further elaborated by 

incorporating other relevant information that modifies the risk, like parental diagnosis with a 

psychiatric disorder or sex. For instance, targeted efforts could be envisaged towards males 

with the highest CUD-PGS. This could include preventive programs and/or monitoring to 

identify potential early stages of CUD for early intervention56 to prevent the manifestation of 

severe CUD. The use of PGS in clinical settings with such potential applications is 

warranted57,58.   

Overall, our results suggest that ADHD shares a larger number of concordant influencing 

variants with CUD than with CU and that ADHD-CUD associated variants affect genes with 

high expression across several brain tissues and developmental stages, including DRD2. 

ADHD with comorbid CUD is associated with increased polygenic risk load of both common 

and rare deleterious variants, and this information could potentially be incorporated into 

prediction tools to identify vulnerable individuals with ADHD at high risk for CUD. 

 

Methods 

An overview of the workflow and methods are illustrated in Supplementary Figures 13-15. 

The study was approved by the local scientific ethics committees and IRBs. The iPSYCH 

study was approved by the Scientific Ethics Committee in the Central Denmark Region (Case 

No 1-10-72-287-12) and the Danish Data Protection Agency. In accordance with Danish 

legislation, the Danish Scientific Ethics Committee has, for this study, waived the need for 

specific informed consent in biomedical research based on existing biobanks. 

 

GWAS summary statistics 
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This study is based on the largest available summary statistics from GWAS of ADHD, CUD 

and CU, of European ancestry. The GWAS meta-analysis of ADHD3 included data on 38,691 

individuals with ADHD and 186,843 controls from iPSYCH, deCODE, and ten ADHD 

cohorts collected by the Psychiatric Genomics Consortium. The CUD GWAS20 meta-analysis 

included data 42,281 individuals with CUD and 843,744 controls from the Department of 

Veterans Affairs, Million Veteran Program (MVP), iPSYCH, deCODE, Yale-Penn 3, 

Partners Healthcare Biobank and 17 cohorts from the Psychiatric Genomics Consortium. The 

CU GWAS meta-analysis21 included data on 162,082 individuals with self-reported lifetime 

cannabis use from 16 cohorts from the International Cannabis Consortium and UK Biobank. 

Most of the individuals with ADHD or CUD in the published GWAS were diagnosed 

according to the ICD or DSM diagnosis criteria. An overview of the cohorts included in the 

GWAS, and a brief overview of the diagnostic criteria can be found in Supplementary Table 

28. Detailed information about cohort ascertainment and phenotype definitions are described 

elsewhere (see references in Supplementary Table 28). In the CU GWAS data were available 

for all individuals on whether an individual reported having ever used cannabis during their 

lifetime: yes versus no. Although phrasing of the question slightly differed between cohorts, 

the answer reflected lifetime cannabis use in all the samples (a short description can be found 

in Supplementary Table 28). Due to differences in recruitment strategies, cultural and 

temporal differences, combined with differences in cannabis availability between countries, 

there was a range in the percentage of lifetime use with a mean of 36,1% across cohorts. 

The published GWAS of ADHD and CUD include analyses that evaluate potential genetic 

heterogeneity across cohorts due to differences in diagnostic criteria, ascertainment strategies 

or other differentiating factors. The studies found significant high genetic correlations 

between cohorts in both the ADHD GWAS (rg = 0.82 – 0.92) and the CUD GWAS (rg = 0.71 

- 0.87) supporting a high consistency in the polygenic architecture underlying the phenotypes 

across samples. Genetic correlations between cohorts included in the CU GWAS are not 

reported in the published study and we can therefore not rule out heterogeneity between 

cohorts. However, the study identified eight genome-wide significant loci, which indicates 

that genetic heterogeneity is not a major issue, since this would most likely lead to decreased 

power. 

 

Genetic overlap between ADHD, CUD and CU 

The number of shared common variants between ADHD and either CUD or CU were 

estimated using bivariate mixture modelling MiXeR23. MiXeR quantifies the polygenic 
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overlap (i.e., total number of variants that explain 90% of the SNP heritability) irrespective of 

the directions of effect on the two phenotypes, using summary statistics from GWAS. First 

summary statistics from GWAS meta-analysis of ADHD3, CU21 and CUD were prepared by 

filtering out variants in the region on chromosome 6: 26000000-34000000 bases, and 

prepared with the munge function from LDSC40 using effective sample sizes calculated as 

Neff=4/(1/Ncas + 1/Ncon). The MiXeR analysis was run in two steps with default settings. First 

univariate Gaussian Mixture Modelling analysis was run to determine the polygenicity 

(proportion of non-zero effect SNPs) and discoverability (effect size variance) separately for 

ADHD, CU, and CUD. In a second step, a bivariate analysis uses estimates from the 

univariate analysis to determine the number of causal variants shared between the two 

phenotypes, the number of variants specific to each of the two phenotypes and variants with 

zero-effects on both phenotypes. These parameters were combined to quantify the polygenic 

overlap and genetic correlations between ADHD and either CU or CUD.  

 

Genomic SEM, mediation and Mendelian randomization analyses 

We used structural equation modelling implemented in Genomic SEM22 to estimate the 

loadings of ADHD, CU and CUD on a shared latent genetic factor. For this we used summary 

statistics of ADHD, CUD and CU and harmonized the files using the munge function in 

LDSC40 as described  above. We applied a common factor model, where the latent factor 

connecting the three phenotypes, represents the shared genetic architecture. This model was 

also constructed with a user-defined model, where the model was constructed to handle a 

Heywood case (i.e., a negative variance) observed for CUD, which was solved by fixing the 

variance to zero. Diagonally Weighted Least Square (DWLS) was chosen as the estimation 

method and the variance of the latent factor was constrained to be 1. Fit indices are not 

reported as this was a fully saturated model (i.e., df = 0). 

We also used Genomic SEM to test whether the common variant liability to ADHD effects 

CUD directly or if the relationship is mediated through common variant liability to cannabis 

use. Multivariable LD-Score regression was run to obtain the genetic covariance matrix (S) 

and the corresponding sampling covariance matrix (V), where the population prevalence was 

set to 0.05 for ADHD1, 0.01 for CUD (the prevalence of CUD in Denmark59) and 0.44 for 

CU (estimated based on information in the paper21). LD scores and weights for the European 

population were obtained from the original LD score package (see URLs).  

In the model CUD (V3) was regressed on both CU (V2) and ADHD (V1), and CU (V2) was 
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also regressed on ADHD (V1). This creates a path from ADHD to CUD directly and a path 

from ADHD via CU to CUD. A user specified mediation model was subsequently fitted 

using Genomic SEM. The mediation models were run with DWLS as the estimation method.  

 

Mendelian randomization 

MR is a method that uses genetic variants as proxy for an exposure to evaluate the extent to 

which the exposure has a causal impact on an outcome. The causal relationship between 

ADHD and CUD was examined using bidirectional MR analyses i.e., we tested for the causal 

impact of ADHD (as exposure) on CUD (the outcome) and the reverse.  

Instrumental variables in the analysis with ADHD as the exposure were genome-wide 

significant index variants identified in the newest ADHD GWAS3. The instrumental variables 

for CUD as the exposure were defined as independent genome-wide significant variants 

located with a distance of more than with kb > 500 kb and with a correlation (r2) < 0.001. 

Before MR was run, a harmonization step was performed to ensure effects were coded 

corresponding to the same reference allele in both the outcome and exposure dataset. After 

harmonization, 12 instrumental variables were identified for ADHD and 20 instrumental 

variables were identified for CUD. Inverse variance weighted MR was performed along with 

four sensitivity analyses: simple mode MR, weighted mode MR, weighted median MR, MR 

Egger regression and Generalized Summary-data-based MR method (GSMR). These 

analyzes were performed to handle potential problems with horizontal pleiotropy. Moreover, 

Q-heterogeneity tests, single variant analyses, leave-one (variant) -out analyses, funnel plots 

and a test of the MR Egger regression intercept were performed to detect potential problems 

with horizontal pleiotropy. The harmonization step, MR analyses and sensitivity analyses 

were done using the R-package TwoSampleMR (see URL) with default settings, except from 

the GSMR60 which was implemented in GCTA61. GSMR was performed with the newest 

version of the HEIDI-outlier filtering method. GSMR was run with a 1000 Genomes phase 3 

European reference file and default settings. 

In all MR analyses, the Q-heterogeneity tests were significant, indicating the MR analyzes 

could be biased by horizontal pleiotropy. The IVW MR and the sensitivity analyzes along 

with the Q heterogeneity test and the test of the MR Egger intercept were therefore rerun 

without variants detected as outliers by HEIDI in the GSMR.    

To ensure no bias from weak instruments we calculated F-statistics for each of the SNPs and 

an overall F-statistic for ADHD and CUD. An F-statistic above 10 is recommended to avoid 

problems with weak instruments. The F-statistics were estimated using the proportion of 
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variance in the exposure explained by instrumental variables, also called the R2. The r2 for 

each instrumental variable was calculated as:  
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Where β is the effect size of the exposure, SE is the standard error, EAF is the effect allele 

frequency and N is the sample size. 

An F-statistic was then calculated for each SNP: 
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An overall F statistic for the risk factor was calculated by summing the individual R2 and 

using the formula: 

F = 
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�
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Where N is sample size and K is the number of instrumental variables. Besides calculating a 

F statistic for the risk factor, a lower limit of a one-sided 95 % confidence interval was 

estimated for the F parameter as seen in (REF)62. 

 

Cross-disorder GWAS meta-analyses 

Two cross-disorder GWAS were performed for (1) ADHD3 (38,691 with ADHD; 186,843 

controls) and CUD20 (42,281 with CUD; 843,744 controls) and (2) ADHD3 and CU21 (N= 

162,082 individuals) using a fixed effect meta-analysis approach implemented in ASSET24. 

Unlike traditional meta-analysis methods, ASSET takes into account the direction of effects a 

variant has on multiple disorders, and outputs subsets of variants with the same directions of 

effect on the analyzed phenotypes or subsets of variants whose effect sizes are in the opposite 

direction on the analyzed phenotypes. 

Before ASSET was run, the ADHD, CUD and CU summary statistics were harmonized and 

aligned to a reference genome to ensure effect alleles and effect sizes were aligned between 

the three summary statistics. The harmonization was performed with the Bioconductor 

package MungeSumstats using the reference genomes 

SNPlocs.Hsapiens.dbSNP144.GRCH37 and BSgenome.Hsapies.1000genomes.hs37d5 also 

from Bioconductor.  

ASSET was run using the h.traits() function and one-sided and two-sided meta-analyses were 

conducted with default settings. The analyses were constrained to variants shared between the 

ADHD summary statistics and either the CU or CUD summary statistics. We corrected for 

sample overlap by including an inter-study phenotypic correlation matrix. This was derived 
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by estimating the intercepts from genetic correlation analysis in LDSC40 which were used as 

rough estimates of sample overlap between ADHD and respectively CUD and CU.  

Two datasets were created for each of the two cross-disorder GWAS. One dataset was 

created based on results from the one-sided subset test, where only variants having the same 

direction of effect for both phenotypes were kept (the concordant variants) and another 

dataset was created from the two-sided subset test, where only variants with opposite 

directions of effect on the two phenotypes were kept (the discordant variants). A P-value = 

5�10-5 was used to declare variants genome-wide significantly associated. 

Independent index variants and secondary lead variants were defined as variants with a P-

value < 5x10-8 and low linkage disequilibrium (LD) between them (r2 < 0.1). LD blocks of 

independent variants with a distance less than 250 kb of each other were merged into one risk 

locus. One genome-wide significant risk locus in the ADHD-CU GWAS and four genome-

wide significant risk loci in the ADHD-CUD GWAS had more than one independent lead 

variant. COJO63 implemented GCTA v1.94.161 was used to examine if the secondary lead 

variants remained genome-wide significant after conditioning on the index variant in the 

locus.  

Potential heterogeneity in effect size estimates between the phenotypes included in the cross-

disorder GWAS was evaluated for all genome wide significant index variants and secondary 

lead variants. Heterogeneity was quantified by estimating the posterior probabilities (the m-

value64) that the effect exists in both studies, using METASOFT65. Loci with m-values below 

0.85 for one of the phenotypes were removed. METASOFT was run with an alpha set to 1.5 

and sigma set to 0.4.  

We performed a PheWAS, using PhennoScanner v266,67 (see ULRs) to evaluate associations 

of ADHD-CUD index variants (and independent secondary variants) across more than 5000 

GWAS studies implemented in the curated database.   

 

 Tissue specific expression of ADHD-CUD and ADHD-CU genes  

MAGMA v1.0825 implemented in FUMA v1.4.2 (Ref.28) was used to perform gene-based 

association analysis using the full summary statistics from the GWAS meta-analyses. 

Genome-wide significance was assessed through Bonferroni correction for the number of 

genes tested (CUD: P = 0.05/15,536 = 3.22×10-6; CU: P = 0.05/16,083 = 3.11×10-6). The 

relationships between tissue specific gene expression profiles and ADHD-gene associations 

was tested using MAGMA gene-property analysis of expression data from GTEx26 (54 tissue 
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types) available in FUMA28 (See Supplementary Information for data sets selected in 

FUMA). Bonferroni correction was applied to correct for the number of tissues tested. 

  

Mapping of risk genes and their expression across brain developmental stages  

In order to identify sets of causal variants we fine-mapped each genome-wide significant 

locus from both cross-disorder GWAS using three fine-mapping tools, FINEMAP v. 

1.3.1(Ref. 68), PAINTOR v.3.0 (Ref.69) and CAVIARBF v.0.2.1 (Ref.70), using CAUSALdb-

finemapping-pip downloaded from https://github.com/mulinlab/CAUSALdb-finemapping-

pip27. 

Genetic variants within 1 million base pairs of the index variants were used as input for the 

pipeline. We used a threshold 95% for the total posterior probability of the variants included 

in the credible sets and only variants claimed to be within the set by all three methods were 

included in the final credible set for each locus. For secondary lead variants the pipeline was 

run by first removing variants with stronger association signal than the secondary 

independent lead variants from the input file to get reliable results.  

Credible variants were linked to genes based on genomic position and functional annotations 

in FUMA28. Protein coding genes were mapped if they were located with a distance of 10Kb 

up- or downstream index variants or if a credible variant was annotated to the gene based on 

eQTL data or chromatin interaction data from human brain (data sets used in the mapping can 

be found in the Supplementary Note). Gene mapping was performed with functional 

annotation filters set with default settings and no additional variant filtering by functional 

annotation was applied in the eQTL and chromatin interaction mapping. 

The expression of mapped ADHD-CUD genes (N=195) and ADHD-CU genes (N=17) across 

neocortex brain developmental stages was evaluated in bulk RNA-sequencing data (v. 10) 

from BrainSpan (see URLs). Following (Ref.71) we only analyzed the following neocortical 

regions: dorsolateral prefrontal cortex, ventrolateral prefrontal cortex , medial prefrontal 

cortex, orbitofrontal cortex, primary motor cortex, primary somatosensory cortex, 

primary association cortex, inferior parietal cortex, superior temporal cortex, inferior 

temporal cortex, and primary visual cortex. The different developmental stages were defined 

as in the BrainSpan documentation (see URLs). Samples with poor quality were removed 

(RNA integrity number (RIN) 
 7). Genes were defined as expressed if the Reads Per 

Kilobase of transcript per Million mapped reads (RPKM) was minimum 1 in at least 80 % of 

the samples for at least one neocortical region in one major temporal epoch. The expression 

data kept after filtering was log-transformed (log2[RPKM+1]). A two-sided paired t-test was 
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used to test for differential expression of ADHD-CUD and ADHD-CU genes against a 

background gene set at each developmental stage and across all developmental stages. Due to 

small sample sizes for the individual developmental stages, the data was tested to see if the 

assumptions for a paired t-test were met. If the assumptions of the paired t-test were not met a 

Wilcoxon signed-rank test was performed instead. The background gene set included 

expressed BrainSpan genes not found in either the ADHD-CUD or ADHD-CU gene set. A 

two-sided paired t-test was also performed to determine differential expression between 

ADHD-CUD genes and ADHD-CU genes across developmental stages. Genes shared 

between the two gene sets were removed before the test (four genes). Bonferroni correction 

was applied correcting for the number of brain developmental stages analyzed (12 stages). 

Due to the large difference in sample size between the ADHD-CUD (167 genes) and the 

ADHD-CU (16 genes) gene sets, the ADHD-CUD gene set was randomly down-sampled 

10,000 times to the same size as the ADHD-CU genes and tested using paired t-test, for 

difference in mean expression from the ADHD-CU genes.  

 

Transcriptome-wide association studies (TWAS) with S-prediXcan and S-MulTiXcan 

TWAS of the genetically regulated gene expression was done using S-prediXcan29. This 

method use GWAS summary statistics as input and imputes the genetically regulated gene 

expression based on prediction models trained on external transcriptome data and test for 

association of the imputed gene expression with a phenotype. We used the and summary 

statistics from GWAS of ADHD-CUD and ADHD-CU including all variants, and gene 

expression predictions models based on mashr trained on GTEx data (v. 8), for 13 brain 

tissues: Amygdala, Anterior cingulate cortex (BA24), Caudate basal ganglia, Cerebellar 

hemisphere, Cerebellum, Cortex, Frontal cortex (BA9), Hippocampus, Hypothalamus, 

Nucleus accumbens basal ganglia, Putamen basal ganglia, Spinal cord cervical (c-1) and 

Substantia nigra. Prior to S-prediXcan analyses, the summary statistics were prepared in a 

harmonization, imputation and post-imputation step. In the harmonization step, the data was 

made compatible with a 1000 Genome Phase 3 European reference panel72 and updated to 

Human Genome hg38 format. Next, in the imputation and post-imputation steps missing 

variants in the summary statistics were imputed using the same 1000 Genomes Phase 3 

reference data. S-prediXcan results for the 13 brain tissues listed above were a meta-analyzed 

using S-MulTiXcan30, to calculate gene expression associations across different brain tissues 

while handling potential correlations. The harmonization step, imputation step, S-prediXcan 

and S-MulTiXcan were run with default settings (see URLs).  
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SNP-heritability and genetic correlations 

SNP-heritabilities (h2
SNP) and genetic correlations (rg) with 10 other phenotypes were 

estimated for ADHD-CUD and ADHD-CU using LDSC40 and summary statistics only 

containing concordant variants. The phenotypes included in the rg analyses were within the 

domains of SUD (OUD, AUD), substance use (drinks per week, smoking initiation), 

psychiatric disorders (ASD, MDD, SZ) or highly genetically correlated with ADHD 

(insomnia, educational attainment, age at first birth) (see references in Supplementary Table 

17). We applied Bonferroni correction and declared genetic correlations significantly 

different from zero if the P-value was lower than P = 0.0017 (0.05/30 tests). For comparison 

rg between the above-mentioned phenotypes were also estimated with ADHD3. Block-

jackknife method73 was used to test for significant differences between estimated genetic 

correlations. The block-jackknife method is a resampling method, where the difference 

between resampling genetic correlations is used to calculate a jackknife standard error. From 

this standard error a Z-statistic is estimated and used in a two-tailed Z-test to determine if the 

difference between two genetic correlations is significant different from zero. Here 200 

resampling estimates were obtained, and Bonferroni correction was applied to correct for 

multiple testing (P < (0.05/30) = 0.002). 

All analyzes were constrained to SNPs from the 1000 Genomes Phase 3 European reference 

panel72 with a MAF above 0.05, and LD scores which we calculated based on the European 

Haplotype reference consortium using LDSC with a 1 centiMorgan window.  

 

Load of rare variants in individuals with ADHD and comorbid CUD 

We analyzed whole-exome sequencing data from iPSYCH to evaluate the role of rare-

deleterious variants in ADHD comorbid with CUD. The sequencing data were obtained for a 

subset (n=34,544) of iPSYCH cohort, which was described in details in our previous study of 

the role of rare variants in childhood, persistent and late diagnosed ADHD74 including 

description of data quality control (QC), functional annotation, and rare variant burden 

analysis. In brief, the sequencing was executed across multiple phases — Pilot1, Wave 1, 

Wave 2, and Wave 3 — using an Illumina HiSeq platform at the Broad Institute's Genomics 

Platform. After stringent QC excluding individuals with low quality sequencing, related 

individuals (one of each related pair with an piHAT value > 0.2 was excluded), and genetic 

outliers were removed based on PCA of a set of pruned high-quality variants with maf > 

0.05. After QC 28,448 individuals remained for further analysis. By cross-referencing with 
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diagnoses recorded in the Danish Psychiatric Central Research Registry75 and the Danish 

Patient Registry76 up to the year 2016, we categorized 333 individuals with comorbid ADHD 

and CUD (ADHD-CUD; ICD-10 codes: F90.0, F90.1, F98.8 for ADHD and F12.1-9 for 

CUD), 3,483 individuals with ADHD without CUD (ADHD-only), and 8,951 controls. None 

of these groups included individuals diagnosed with intellectual disability (ICD10: F70, F71, 

F72, F73, F78, F79), ASD (ICD10: F84.0, F84.1, F84.5, F84.8, F84.9), bipolar disorder 

(ICD10: F30-F31) or schizophrenia (ICD10: F20).  

We defined rare variants as those with an allele count no greater than five across our iPSYCH 

dataset and the non-Finnish Europeans from non-psychiatric exome subset of the gnomAD 

(N = 44,77955). PTVs were defined by being annotated as frame-shift, splice-site or stop-

gained and predicted with LOF flag by SnpEff77. Severe damaging missense variants 

(SevereDMVs) were classified based on an MPC score ≥ 378.  

We employed logistic regression to assess the impact of rare deleterious variants (rare PTVs+ 

SevereDMVs) in ADHD-CUD compared to ADHD-only in all autosomal genes. Then we 

proceeded to perform sub-analyses evaluating the load of rare deleterious variants (rare 

PTVs+ SevereDMVs) in ADHD-CUD, compared to ADHD-only in bins of genes stratified 

by their pLI score: (I) in genes with high tolerance to loss of function mutations (0 < pLI < 

0.5), (II) in less constrained genes (0.5 < pLI < 0.9), and in (III) evolutionarily constrained 

genes (pLI > 0.9). In the sub-analyses we corrected for multiple testing using Bonferroni 

correction and considered a P-value of 0.0167 as significant (0.05 / 3 (number of pLI bin) = 

0.0167).   

For comparison we also tested for the load of rare PTVs+SevereDMVs in ADHD-CUD 

compared to controls and in ADHD-only compared to controls. Load of rare synonymous 

variants in constrained genes (pLI > 0.9) was also tested as a sensitivity analysis as we would 

expect no difference between groups for this category of variants. 

Covariates included in the regression were birth year, sex, the first ten PCs from PCA 

(performed after excluding non-European samples), total number of variants, number of rare 

synonymous variants, percentage of exome target covered at a read depth of at least 20, mean 

read depth at sites within the exome target passing VQSR and sequencing wave (one-hot 

encoded). 

 

Polygenic score analyses 
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A PGS is a score that summarizes an individual’s polygenic load of common variants 

associated with a phenotype, based on individual level genotypes. PGS analyses were 

performed using individual level genotype data from individuals in the iPSYCH cohort18,19.  

Individuals with ADHD (ICD10 diagnosis codes: F90.0, F90.1, F98.8) and CUD (ICD10 

diagnosis codes: F12.1-9) were identified in the Danish registries75,76, controls were randomly 

selected population-based controls without CUD and ADHD. 

Quality control and imputation of genotypes have been described in detail elsewhere (REF3). 

Related individuals were removed using PLINK79 identity by states analyses and genetic 

outliers were identified using Eigensoft80  implemented in the Ricopili pipeline81. Genetic 

outliers were identified in principal component analysis (PCA) using best-guess genotypes. 

The principal component (PC) 1 and PC2 values from the first round of PCA were used to 

define an ellipsoid with a center based on the mean values of PC1 and PC2 of a subsample. 

Individuals with PC1 or PC2 values greater than six standard deviations from the center of the 

ellipsoid were removed as genetic outliers. The sub-sample used to define the ellipsoid 

consisted of individuals who themselves and their parents had Denmark registered as their 

birthplace. Two additional PCAs were run to further filter and inspect data for genetic 

outliers. After non-Europeans and related individuals were removed, the iPSYCH dataset 

contained 37,246 controls, 25,545 ADHD cases, and 5,490 CUD cases.    

PGSs were estimated using summary statistics from large GWAS of phenotypes related to 

SUD, substance use, psychiatric disorders, and educational attainment (see Supplementary 

Table 22) using LDpred2-auto82 (automatic model). For studies including iPSYCH data in the 

original GWAS we used results with iPSYCH excluded (MDD, SZ, CUD), or generated the 

PGS as described below (for ADHD and ASD). The method automatically estimates the 

sparsity p and the h2
SNP, and thus validation data are not required to tune hyper-parameters. 

We ran 30 Gibbs chains with the h2
SNP estimate from LDSC as the initial value for h2

SNP
 and a 

sequence of equally spaced and log scaled P-values between 1x10-4 and 0.5. A Gibbs chain 

was kept if the absolute difference between the standard deviation of the predictors and the 

median standard deviation were within three median absolute deviations. The average effect 

size of retained models was used to calculate PGSs in the iPSYCH sample. Only variants with 

minor allele frequency MAF > 0.01 and INFO score > 0.8 (if this information was available) 

in the summary statistics were used, and analyses were constrained to HapMap3+ variants as 

recommended in (REF82). All generated PGSs were standardized using means and standard 

deviations estimated based on individuals from the iPSYCH control sub cohort with European 

ancestry. 
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Due to lack of an external large ADHD GWAS and ASD GWAS, the ADHD-PGS and ASD-

PGS were partly internally derived following the approach previously described4,74. In short 

50 GWAS were run, where 1/50 of the individuals on turn were excluded from the training 

GWAS. LDpred2 was run 50 times with these training GWASs where PGSs in each run were 

estimated for the 1/50 of individuals not included in that specific GWAS. The PGSs were first 

standardized in each fold by using the mean and standard deviation of the PGSs in that fold. 

Next the 50 PGS-folds were combined into one sample and standardized using the mean and 

the standard deviation estimated for sub cohort individuals with European ancestry. 

Logistic regression models were run for each of the standardized PGSs to estimate how much 

variance in the phenotype each PGS explains (ADHD vs controls and ADHD-CUD vs 

controls) estimated by Nagelkerke R2 and McFadden R2. The first 10 principal components 

and a batch variable (iPSYCH1 or iPSYCH2) were included in the models. Multivariate 

multivariable regression was done to evaluate the load of all PGSs in ADHD and ADHD-

CUD benchmarked against a control group without ADHD or CUD in one analysis. We 

applied the multivariate multivariable regression framework, described in detail in (REF32). 

In short the method simultaneously run one linear regression model per PGS on the 

phenotypes, while handling potential correlations between PGSs by fitting the variance-

covariance matrixes jointly. The first 10 principal components and a batch indicator for 

iPSYCH1 and iPSYCH2 were included as covariates in the model. We applied Bonferroni 

correction correcting for 36 pair-wise comparisons of PGS load in the groups. 

Cox regression was performed to estimate the relative HRR and the absolute risk of 

developing CUD among individuals with ADHD stratified by their PGS, using an in-house 

pipeline incorporating the two R-packages survival and survminer (see ULRs).       Besides 

the PGS, the 10 first PCs and a batch variable (iPSYCH1/iPSYCH2) were included in the cox 

models. Three models were run (1) including all individuals diagnosed with ADHD 

(stratified into PGS-quantiles), where the model examined the risk of developing CUD from 

the age of 10 years to 30 years of age. Four PGSs (ADHD, CUD, smoking and EA) were 

evaluated in the last models (2) the same model but run separately for females and males 

(stratified into PGS-tertiles) (3) a model constrained to individuals (stratified into PGS-

tertiles) having at least one parent diagnosed with a psychiatric disorder (ADHD, SZ, BP, 

MDD)  or any substance use disorder (i.e., alcohol, opioids, cannabinoids, sedatives or 

hypnotics, cocaine, stimulants, hallucinogens, tobacco, volatile solvents, or multiple drug use 

and use of other psychoactive substances corresponding to ICD10 diagnoses F10-F19). Cases 

of acute intoxication were excluded from the analysis (ICD10 diagnoses F1X.0). For each of 
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the three models the risk of CUD among ADHD cases within each PGS group was calculated 

relative to the low PGS-group and for model 1 HRRs with a P-value less than P = 0.001 

(Bonferroni correction correcting for 36 pair-wise comparisons) were considered 

significantly different from 1. For model 2 and 3 HRRs with a P-value less than P = 0.004 

(Bonferroni correction correcting for 12 pair-wise comparisons) were considered 

significantly different from 1.  

For comparison we estimated the relative and absolute risk of developing CUD in the general 

Danish population with European ancestry by estimating the risk of CUD in the iPSYCH sub 

cohort excluding individuals with ADHD. Cox regression was done as explained above with 

individuals stratified into tertiles. All graphs generated for cox regression was smoothed in R 

with the geom_smooth() method “loess” in order to obfuscate individual data points. 

 

URLs 

Mendelian Randomization: https://mrcieu.github.io/TwoSampleMR/ 
M-value calculation: METASOFT/updated software MEGASOFT: https://github.com/DGU-
CBLAB/MEGASOFT 
BrianSpan: http://www.brainspan.org/static/download 
BrainSpan documentation: https://www.brainspan.org/static/download.html 
TWAS: https://github.com/hakyimlab/MetaXcan/wiki/Tutorial:-GTEx-v8-MASH-models-integration-
with-a-Coronary-Artery-Disease-GWAS  
1000 Genome Phase 3: https://data.broadinstitute.org/alkesgroup/LDSCORE/1000G_Phase3_frq.tgz 
Survival R-package: https://CRAN.R-project.org/package=survival 
Survminer R-package: https://CRAN.R-project.org/package=survminer  
CAUSALdb finemapping pipeline: https://github.com/mulinlab/CAUSALdb-finemapping-pip 
FUMA v.1.3.7: https://fuma.ctglab.nl/. 
S-PrediXcan: https://github.com/hakyimlab/MetaXcan. 
LDpred2: https://privefl.github.io/bigsnpr/articles/LDpred2.html. 
MiXeR v.1.3: https://github.com/precimed/mixer. 
 
 
Author contributions 
T.T.N., J.D., were responsible for analysis. Sample and/or data provider and processing was carried 
out by D.F.L., G.B.W., E.C. J., T.T., M.V.P., T.W., P.B.M., H.S., K.S., D.M.H., A.A., J.G., J.G., A.D, 
D.D. Writing was the responsibility of D.D. Study design and direction was the responsibility of DD. 
All authors contributed to critical revision of the paper. 
 
Acknowledgements 
D.D. is supported by the Novo Nordisk Foundation (NNF20OC0065561 and NNFC for Genomic 
Mechanisms of Disease - NNF21SA0072102), the Lundbeck Foundation (R344-2020-1060) the 
European Union’s Horizon 2020 research and innovation programme under grant agreement No. 
965381(TIMESPAN). D.F.L. is supported by a Career Development Award CDA-2 from the 
Veterans Affairs Office of Research and Development (1IK2BX005058-01A2). We acknowledge 
support from VA Merit Award CX001849-01 (Jo.G.). E.C.J. was supported by 
NIDA (K01DA051759). The iPSYCH team was supported by grants from the Lundbeck Foundation 
(R102-A9118, R155-2014-1724, and R248-2017-2003), NIH/NIMH (1U01MH109514-01 and 
1R01MH124851-01 to A.D.B.) and the Universities and University Hospitals of Aarhus and 
Copenhagen. The Danish National Biobank resource was supported by the Novo Nordisk Foundation. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

High-performance computer capacity for handling and statistical analysis of iPSYCH data on the 
GenomeDK HPC facility was provided by the Center for Genomics and Personalized Medicine and 
the Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark (grant to A.D.B.). A.D.B. 
was also supported by the EU’s HORIZON-HLTH-2021-STAYHLTH-01programme, project number 
101057385: Risk and Resilience in Developmental Diversity and Mental Health (R2D2-MH). 
23andMe data was included in the MDD summary statistics used in this study, we would like to thank 
the research participants and employees of 23andMe, inc. for making this work possible. This 
publication does not represent the views of the Department of Veteran Affairs or the United States Government. 
 
Competing interests 
DD has received speaker fee from Medice Nordic. JoG is paid for editorial work for the 
journal Complex Psychiatry. The remaining authors declare to have no competing interests. 
 
Data availability 
The summary statics of ADHD-CUD and ADHD-CU are available for public download from 
https://ipsych.dk/en/research/downloads. All relevant iPSYCH data are available from the 
authors after approval by the iPSYCH Data Access Committee and can only be accessed on 
the secured Danish server (GenomeDK, https://genome.au.dk) as the data are protected by 
Danish legislation. For data access please contact D.D. or A.D.B. 
 
Code availability  
No previously unreported custom computer codes or algorithms were used to generate 
results. The remaining authors declare no competing interests. 
 
 

 

References 

1 Faraone et al. Attention-deficit/hyperactivity disorder. Nature Reviews Disease 

Primers 15020 2015 

2 Faraone et al. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry 

2018 

3 Demontis et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the 

genetic architecture and implicate several cognitive domains. Nat Genet 2023 

4 Demontis et al. Discovery of the first genome-wide significant risk loci for attention 

deficit/hyperactivity disorder. Nat Genet 51 63-75 2019 

5 Plana-Ripoll et al. Exploring Comorbidity Within Mental Disorders Among a Danish 

National Population. JAMA Psychiatry 76 259-70 2019 

6 van Emmerik-van Oortmerssen et al. Prevalence of attention-deficit hyperactivity 

disorder in substance use disorder patients: a meta-analysis and meta-regression 

analysis. Drug Alcohol Depend 122 11-9 2012 

7 Dalsgaard et al. Mortality in children, adolescents, and adults with attention deficit 

hyperactivity disorder: a nationwide cohort study. Lancet 385 2190-6 2015 

8 Lee et al. Prospective association of childhood attention-deficit/hyperactivity 

disorder (ADHD) and substance use and abuse/dependence: a meta-analytic review. 

Clin Psychol Rev 31 328-41 2011 

9 Sundhedsstyrelsen. Stofmisbrugsbehandling - efterspørgsel og tilgængelighed. 

Narkotikasituationen i Danmark - delrapport 3.  2022 

10 Argyriou et al. Age and impulsive behavior in drug addiction: A review of past 

research and future directions. Pharmacol Biochem Behav 164 106-17 2018 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

11 Kozak et al. The neurobiology of impulsivity and substance use disorders: 

implications for treatment. Ann N Y Acad Sci 1451 71-91 2019 

12 Calakos et al. Assessment of transient dopamine responses to smoked cannabis. 

Drug Alcohol Depend 227 108920 2021 

13 Faraone. The pharmacology of amphetamine and methylphenidate: Relevance to the 

neurobiology of attention-deficit/hyperactivity disorder and other psychiatric 

comorbidities. Neurosci Biobehav Rev 87 255-70 2018 

14 Johnson et al. A large-scale genome-wide association study meta-analysis of 

cannabis use disorder. Lancet Psychiatry 2020 

15 Demontis et al. Genome-wide association study implicates CHRNA2 in cannabis use 

disorder. Nat Neurosci 22 1066-74 2019 

16 Abdellaoui et al. Genomic relationships across psychiatric disorders including 

substance use disorders. Drug Alcohol Depend 220 108535 2021 

17 Kranzler et al. Genome-wide association study of alcohol consumption and use 

disorder in 274,424 individuals from multiple populations. Nat Commun 10 1499 

2019 

18 Pedersen et al. The iPSYCH2012 case-cohort sample: new directions for unravelling 

genetic and environmental architectures of severe mental disorders. Mol Psychiatry 

2017 

19 Bybjerg-Grauholm et al. The iPSYCH2015 Case-Cohort sample: updated directions for 

unravelling genetic and environmental architectures of severe mental disorders. 

medRxiv 2020 

20 Levey et al. Multi-ancestry genome-wide association study of cannabis use disorder 

yields insight into disease biology and public health implications. Nat Genet 55 2094-

103 2023 

21 Pasman et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap 

with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci 21 

1161-70 2018 

22 Grotzinger et al. Genomic structural equation modelling provides insights into the 

multivariate genetic architecture of complex traits. Nat Hum Behav 2019 

23 Frei et al. Bivariate causal mixture model quantifies polygenic overlap between 

complex traits beyond genetic correlation. Nat Commun 10 2417 2019 

24 Bhattacharjee et al. A subset-based approach improves power and interpretation for 

the combined analysis of genetic association studies of heterogeneous traits. Am J 

Hum Genet 90 821-35 2012 

25 de Leeuw et al. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput 

Biol 11 e1004219 2015 

26 GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot 

analysis: multitissue gene regulation in humans. Science 348 648-60 2015 

27 Wang et al. CAUSALdb: a database for disease/trait causal variants identified using 

summary statistics of genome-wide association studies. Nucleic Acids Res 48 D807-

D16 2020 

28 Watanabe et al. Functional mapping and annotation of genetic associations with 

FUMA. Nat Commun 8 1826 2017 

29 Barbeira et al. Exploring the phenotypic consequences of tissue specific gene 

expression variation inferred from GWAS summary statistics. Nat Commun 9 1825 

2018 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

30 Barbeira et al. Integrating predicted transcriptome from multiple tissues improves 

association detection. PLoS Genet 15 e1007889 2019 

31 Trubetskoy et al. Mapping genomic loci implicates genes and synaptic biology in 

schizophrenia. Nature 604 502-8 2022 

32 Grove et al. Identification of common genetic risk variants for autism spectrum 

disorder. Nat Genet 51 431-44 2019 

33 Als et al. Identification of 64 new risk loci for major depression, refinement of the 

genetic architecture and risk prediction of recurrence and comorbidities. medRxiv 

2022 

34 Zhou et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 

individuals yields insights into biology and relationships with other traits. Nat 

Neurosci 2020 

35 Kember et al. Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci 

with predominant effects in brain regions associated with addiction. Nat Neurosci 25 

1279-87 2022 

36 Okbay et al. Polygenic prediction of educational attainment within and between 

families from genome-wide association analyses in 3 million individuals. Nat Genet 

54 437-49 2022 

37 Liu et al. Association studies of up to 1.2 million individuals yield new insights into 

the genetic etiology of tobacco and alcohol use. Nat Genet 2019 

38 Jansen et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies 

new risk loci and functional pathways. Nat Genet 51 394-403 2019 

39 Mills et al. Identification of 371 genetic variants for age at first sex and birth linked to 

externalising behaviour. Nat Hum Behav 5 1717-30 2021 

40 Bulik-Sullivan et al. LD Score regression distinguishes confounding from polygenicity 

in genome-wide association studies. Nat Genet 47 291-5 2015 

41 Lek et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536 

285-91 2016 

42 Treur et al. Investigating causality between liability to ADHD and substance use, and 

liability to substance use and ADHD risk, using Mendelian randomization. Addict Biol 

26 e12849 2021 

43 Soler Artigas et al. Attention-deficit/hyperactivity disorder and lifetime cannabis use: 

genetic overlap and causality. Mol Psychiatry 2019 

44 Arends et al. Associations between the CADM2 gene, substance use, risky sexual 

behavior, and self-control: A phenome-wide association study. Addict Biol 26 e13015 

2021 

45 Sanchez-Roige et al. CADM2 is implicated in impulsive personality and numerous 

other traits by genome- and phenome-wide association studies in humans and mice. 

Transl Psychiatry 13 167 2023 

46 Yang et al. Association of haplotypic variants in DRD2, ANKK1, TTC12 and NCAM1 to 

alcohol dependence in independent case control and family samples. Hum Mol 

Genet 16 2844-53 2007 

47 Bloomfield et al. The effects of Delta9-tetrahydrocannabinol on the dopamine 

system. Nature 539 369-77 2016 

48 Klein et al. Dopamine: Functions, Signaling, and Association with Neurological 

Diseases. Cell Mol Neurobiol 39 31-59 2019 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

49 Carta et al. Cerebellar modulation of the reward circuitry and social behavior. 

Science 363 2019 

50 Wagner et al. Cerebellar granule cells encode the expectation of reward. Nature 544 

96-100 2017 

51 Sanchez-Roige et al. Genome-Wide Association Studies of Impulsive Personality 

Traits (BIS-11 and UPPS-P) and Drug Experimentation in up to 22,861 Adult Research 

Participants Identify Loci in the CACNA1I and CADM2 genes. J Neurosci 39 2562-72 

2019 

52 Karlsson Linner et al. Genome-wide association analyses of risk tolerance and risky 

behaviors in over 1 million individuals identify hundreds of loci and shared genetic 

influences. Nat Genet 51 245-57 2019 

53 Manthey et al. Public health monitoring of cannabis use in Europe: prevalence of 

use, cannabis potency, and treatment rates. Lancet Reg Health Eur 10 100227 2021 

54 Satterstrom et al. Autism spectrum disorder and attention deficit hyperactivity 

disorder have a similar burden of rare protein-truncating variants. Nat Neurosci 22 

1961-5 2019 

55 Karczewski et al. The mutational constraint spectrum quantified from variation in 

141,456 humans. Nature 581 434-43 2020 

56 Carney et al. Effectiveness of early interventions for substance-using adolescents: 

findings from a systematic review and meta-analysis. Subst Abuse Treat Prev Policy 7 

25 2012 

57 Polygenic Risk Score Task Force of the International Common Disease. Responsible 

use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat Med 

27 1876-84 2021 

58 Murray et al. Could Polygenic Risk Scores Be Useful in Psychiatry?: A Review. JAMA 

Psychiatry 78 210-9 2021 

59 Hjorthoj et al. Association between cannabis use disorder and schizophrenia 

stronger in young males than in females. Psychol Med 1-7 2023 

60 Zhu et al. Causal associations between risk factors and common diseases inferred 

from GWAS summary data. Nat Commun 9 224 2018 

61 Yang et al. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88 

76-82 2011 

62 Burgess et al. Bias due to participant overlap in two-sample Mendelian 

randomization. Genet Epidemiol 40 597-608 2016 

63 Yang et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 

identifies additional variants influencing complex traits. Nat Genet 44 369-75, S1-3 

2012 

64 Han et al. Interpreting meta-analyses of genome-wide association studies. PLoS 

Genet 8 e1002555 2012 

65 Han et al. Random-effects model aimed at discovering associations in meta-analysis 

of genome-wide association studies. Am J Hum Genet 88 586-98 2011 

66 Staley et al. PhenoScanner: a database of human genotype-phenotype associations. 

Bioinformatics 32 3207-9 2016 

67 Kamat et al. PhenoScanner V2: an expanded tool for searching human genotype-

phenotype associations. Bioinformatics 35 4851-3 2019 

68 Benner et al. FINEMAP: efficient variable selection using summary data from 

genome-wide association studies. Bioinformatics 32 1493-501 2016 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

69 Greenbaum et al. A Statistical Approach to Fine Mapping for the Identification of 

Potential Causal Variants Related to Bone Mineral Density. J Bone Miner Res 32 

1651-8 2017 

70 Chen et al. Fine Mapping Causal Variants with an Approximate Bayesian Method 

Using Marginal Test Statistics. Genetics 200 719-36 2015 

71 Satterstrom et al. Large-Scale Exome Sequencing Study Implicates Both 

Developmental and Functional Changes in the Neurobiology of Autism. Cell 180 568-

84 e23 2020 

72 Sudmant et al. An integrated map of structural variation in 2,504 human genomes. 

Nature 526 75-81 2015 

73 Bulik-Sullivan et al. An atlas of genetic correlations across human diseases and traits. 

Nat Genet 47 1236-41 2015 

74 Rajagopal et al. Differences in the genetic architecture of common and rare variants 

in childhood, persistent and late-diagnosed attention-deficit hyperactivity disorder. 

Nat Genet 54 1117-24 2022 

75 Mors et al. The Danish Psychiatric Central Research Register. Scand J Public Health 39 

54-7 2011 

76 Lynge et al. The Danish National Patient Register. Scand J Public Health 39 30-3 2011 

77 Cingolani et al. A program for annotating and predicting the effects of single 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 

strain w1118; iso-2; iso-3. Fly (Austin) 6 80-92 2012 

78 Samocha et al. Regional missense constraint improves variant deleteriousness 

prediction. bioRxiv 2017 

79 Purcell et al. PLINK: a tool set for whole-genome association and population-based 

linkage analyses. Am J Hum Genet 81 559-75 2007 

80 Wu et al. A comparison of association methods correcting for population 

stratification in case-control studies. Ann Hum Genet 75 418-27 2012 

81 Lam et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 2019 

82 Prive et al. LDpred2: better, faster, stronger. Bioinformatics 2020 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. ADHD-CUD and ADHD-CU risk gene expression across brain developmental 
stages 
 

 
 
Mean expression (measured as Reads Per Kilobase of transcript per Million mapped reads 
(RPKM)) on the y-axis of ADHD-CUD candidate risk genes (167 genes with high quality 
data in BrainSpan) in green, and ADHD-CU genes (16 genes with high quality data in 
BrainSpan) in red, across neocortex brain developmental stages in BrainSpan, on the x-axis. 
Vertical lines represent standard errors and the dotted vertical line in the middle indicate pre- 
or postnatal stages. *Indicate significant different expression compared to background genes 
(P-values less than P = 0.05). Expression of background genes, in blue, include expressed 
BrainSpan genes not in either the ADHD-CUD and/or in the ADHD-CU gene-sets. See also 
Supplementary Figure 6 for results evaluating expression differences when down-sampling 
the ADHD-CUD risk gene set to the same size as the ADHD-CU risk gene set.  
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Figure 2. Genetic correlation of ADHD-CUD, ADHD-CU and ADHD with other 
phenotypes 
 

 
 

 
 
Genetic correlation (rg) of ADHD-CUD (marked by a triangle; N=1,150,250), ADHD-CU 
(marked by a filled circle; N=387,616) and ADHD (marked by a circle with no fill; N = 
225,534) with 10 other phenotypes: age at first birth (AFB), autism spectrum disorder (ASD), 
alcohol use disorder (AUD), drinks per week (Drink), educational attainment (EA), insomnia, 
major depressive disorder (MDD), opioid use disorder (OUD), schizophrenia (SCZ), smoking 
initiation. P-values in parentheses indicate significant difference in rg of the phenotype with 
ADHD-CUD compared to the rg of the phenotype with ADHD-CU. The symbols indicate rg 
and the horizontal lines the standard error of rg. All pair-wise differences in rg can be found in 
Supplementary Table 20. 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2024. ; https://doi.org/10.1101/2024.02.22.24303124doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303124
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

 
 
 
Figure 3. Rare variant load in ADHD-CUD compared to ADHD without CUD 
 

 
 
Odds ratio (and corresponding 95% confidence intervals represented by vertical lines) on the 
y-axis from logistic regression testing for the load of rare (rPTVs and rare severe damaging 
missense variants (rare SevereDMVs) in ADHD-CUD (N=333) compared to ADHD without 
CUD (ADHD-only; N=3,483) in all genes (marked in black). Values next to the vertical lines 
are P-values. Sub-analyses (marked in blue) of the load of rare PTVs+SevereDMVs in 
ADHD-CUD vs ADHD-only in genes stratified by their pLI score: (I) genes with high 
tolerance to loss of function mutations (0 < pLI < 0.5), (II) less constrained genes (0.5 < pLI 
< 0.9), (III) evolutionarily constrained genes (pLI > 0.9). For the three sub-analyses P < 
0.0167 is considered significant.  
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Figure 4. Multivariate PGS analyses in ADHD-CUD and ADHD without CUD 
 

 

 

PGS analyses of ADHD-CUD (N = 2,079) vs ADHD without CUD (ADHD; N = 23,466), on 
the x-axis bench marked against controls (N = 37,246). The slope (beta) of the linear 
regression (95% confidence interval [CI]) is shown on the y-axis. Significant difference (P-
value) between beta for ADHD-CUD and ADHD without CUD is indicated with a horizontal 
line with P-value above, i.e., the Wald test of equal group effect (see also Supplementary 
Table 23). 
NS indicate no significant difference. PGSs analysed are ADHD, autism spectrum disorder 
(ASD), alcohol use disorder (AUD), bipolar disorder (BPD), CU, CUD, drinks per week 
(DrkWk), educational attainment (EA), major depressive disorder (MDD), opioid use 
disorder (OUD), schizophrenia (SCZ), smoking initiation (SmokIni). 
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Figure 5. Absolute risk of comorbid CUD among individuals with ADHD stratified by 
their CUD-PGS 
 

a.  b.     

c.   d.              

 

Absolute risk (95% CI) (on the y-axis) over time (on the x-axis) of CUD among individuals 
stratified into quartiles (1q-4q) or tertials (1q-3q) based on their CUD-PGS in the iPSYCH 
cohort. The colored values at the right on the figures indicate absolute risk of CUD at age 30 
and the P-values in the parentheses indicate difference in relative risk of comorbid CUD in 
each PGS group relative to quartile/tertial one (yellow line (ref)) (a) all individuals with 
ADHD (N=25545) (b) among individuals with ADHD having at least one parent diagnosed 
with a psychiatric disorder (N=6,999) (c) among males with ADHD (N=17,682) (d) among 
females with ADHD (N = 7,863). Absolute risk (95% CI) of CUD among individuals in the 
population-based sub-cohort (without ADHD) stratified into tertials based on their CUD-PGS 
(N = 37,246), is shown in light blue (the blue values indicate absolute risk of CUD at age 30 
and corresponding P-values indicate difference in relative risk of CUD in a tertial relative to 
tertial one (ref)). In the sex-specific analyses the controls are restricted to either males (N = 
18,960) or females (N = 18,607).  
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