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Abstract (159 words) 

Incorporating realistic sets of patient-associated covariates, i.e., virtual populations, in 

pharmacometric simulation workflows is essential to obtain realistic model predictions. 

Current covariate simulation strategies often omit or simplify dependency structures 

between covariates. Copula models are multivariate distribution functions suitable to 

capture dependency structures between covariates with improved performance 

compared to standard approaches. We aimed to develop and evaluate a copula model 

for generation of adult virtual populations for 12 patient-associated covariates 

commonly used in pharmacometric simulations, using the publicly available NHANES 

database, including sex, race-ethnicity, body weight, albumin, and several biochemical 

variables related to organ function. A multivariate (vine) copula was constructed from 

bivariate relationships in a stepwise fashion. Covariate distributions were well captured 

for the overall and subgroup populations. Based on the developed copula model, a web 

application was developed. The developed copula model and associated web application 

can be used to generate realistic adult virtual populations, ultimately to support model-

based clinical trial design or dose optimization strategies. 
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1. Introduction 

In pharmacometric modeling, patients’ covariates are usually identified as a source of 

variability between individuals that impacts pharmacokinetics and pharmacodynamics 

[1]. Generation of virtual populations (VPs), i.e., realistic sets of patient characteristics 

or covariates, is essential to ensure that realistic responses are produced in 

pharmacometric simulations, eventually providing valuable information to support in 

silico clinical trials and optimization of dosing strategies. 

Realistic VPs should reflect both the marginal distribution and dependency structure 

observed between covariate variables of interest. In statistics, a marginal distribution 

describes the probability distribution of one separate variable, and a dependence 

structure reveals the relationships or dependent patterns between variables in a dataset. 

For instance, within a real-world dataset focusing on the elderly population, age, as a 

covariate, may exhibit a t-distributed margin, with a certain mean and standard 

deviation; meanwhile, it could be negatively correlated with renal function biomarkers. 

Misspecification of the margins or dependency structures, i.e., in comparison with those 

actually observed, may impact the quality of subsequent patient responses obtained in 

pharmacometric simulations. 

VPs can be generated using several approaches, which are either data-driven or 

distribution-driven. Data-driven methodologies such as the bootstrap or conditional 

distribution modeling [4, 5] utilize an actual dataset of patient characteristics to sample 

from. Requesting such data, however, is sometimes not possible due to patient privacy 

regulations. Distribution-based approaches characterize the distribution of the 

marginals of covariates of interest but may not always capture their dependency 

structure. For example, series of univariate distributions can be used to describe the 

marginals yet ignore interdependencies between covariates. Multivariate normal 

distributions [3] do consider the dependency but assume that variables are normally 

distributed, which may not always hold. Finally, machine learning algorithms [4–6] 

have been proposed, but these models are usually based on complex frameworks and 

often lack interpretability of underlying dependencies. 

Copula models are statistical models which capture the dependence structure between 

random variables independently from the description of the marginals [7]. A rich variety 

of copula models is available to be selected to estimate diverse dependent patterns in 

data [8]. Using a transformation of any marginal distribution to a uniform distribution, 

the dependence structure can be separated from the marginal structure. An extension of 

the copula, the vine copula, addresses the difficulty of calculating multivariate joint 

distributions by using conditional dependence and bivariate building blocks [9]. We 

have previously proposed the copula as a relevant key strategy for VP generation, 

demonstrating favorable performance in simulating realistic VPs compared to standard 

approaches, while their distribution-based nature facilitates sharing of covariate data 

within the community [10]. 
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Here, we present a copula model for simulation of adult virtual populations. We first 

developed a copula model for 12 covariates of relevance for pharmacometric models 

using data from adult individuals present in the NHANES database [11]. Then we 

evaluated the performance of the copula in simulating the overall and subgroup 

populations. Finally, a web application was designed for the copula model developed 

to facilitate generation of adult VPs. 

 

2. Methods 

2.1 Data 

We used the public database from National Health and Nutrition Examination Survey 

(NHANES), an initiative that collects data on non-institutionalized individuals in the 

U.S., including laboratory measurements, physical screening, and surveys; data are 

released to the public every two years[11]. We combined the NHANES data for 

2009~2010, 2011~2012, 2013~2014, 2015~2016, and 2017~2018 releases based on 

their accessibility and consistency in laboratory methods. Differences in laboratory, 

instruments, and methods across releases were considered by implementing the 

adjustment equations provided by NHANES.  

We focused on the adult population aged 18-80 years, with 27,008 subjects in total. 

Common covariates of interest for population pharmacokinetic models were selected: 

sex, race-ethnicity, age, height, body weight, fat mass (Fat), serum creatinine (SCR), 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 

phosphatase (ALP), albumin and total bilirubin (BR) [12–16]. We acknowledge the 

sensitivity regarding the use of race-ethnicity as a medical indicator. Its inclusion in our 

study is focused on subgroup analysis when relevant, and not intended to perpetuate 

stereotypes or contribute to health disparities.  

Table 1 provides the summary statistics of covariates in the model development dataset. 

Of note, over 50% of fat mass data in the observed dataset were missing. Half of the 

missing data were due to not meeting the inclusion criteria of age (< 60 years old) during 

the examination, while another half were due to the examination not being conducted 

in the 2009~2010 release. Since the copula approach allows to impute missing values, 

imputation analysis regarding fat mass data (supplementary material) was performed 

to provide more insights into the reliability of simulated fat mass data for people aged 

≥ 60 years, and the result showed no significant bias in the simulated fat mass for 

people above 60 years old (Figure S4). 
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Table 1. Summary statistics of covariates in dataset combined from National Health 

and Nutrition Examination Surveys 2009~2010, 2011~2012, 2013~2014, 2015~2016 

and 2017~2018. The total number of individuals was n = 27008. 

VARIABLE 

NAME 

VARIABLE 

DESCRIPTION 

PERCENTAGE 

(%) 

ACTUAL N (% 

MISSING) 
MEAN ± SD [RANGE] 

Sex 

Gender - 27008 (0%) - 

Male 48.5 13104 - 

Female 51.5 13904 - 

Race- 

Ethnicity 

Race-Ethnicity - 27008 (0%) - 

Hispanic* 26.6 7176 - 

White 36.9 9978 - 

African American 22.8 6166 - 

Asian 10.6 2859 - 

Other Race 3.1 829  

Age Age (year)  27008 (0%) 46.05±17.21 [18~79] 

Weight Body weight (kg)  26746 (1.0%) 
82.02±22.17 

[32.3~242.6] 

Height Standing height (cm)  26757 (1.0%) 
167.16±10.09 

[123.3~204.5] 

Fat Total body fat (kg)  11826 (56.2%) 27.11±11.93 [4.9~102.3] 

SCR Serum creatinine (mg/dL)  25313 (6.3%) 0.88±0.45 [0.16~17.41] 

ALT 
Alanine Aminotransferase 

(ALT, U/L) 
 25307 (6.3%) 25.57±20.42 [5~1363] 

AST 

Aspartate 

Aminotransferase (AST, 

U/L) 

 25288 (6.4%) 25.93±17.13 [7~882] 

ALP 
Alkaline Phosphatase   

(ALP, U/L) 
 25310 (6.3%) 69.34±24.59 [7~907] 

Albumin Albumin (g/dL)  25315 (6.3%) 4.28±0.35 [2~5.6] 

BR Total bilirubin (mg/dL)  25298 (6.3%) 0.62±0.31 [0~7.3] 

* Mexican American and other Hispanic in NHANES were recorded as Hispanic in our real-world dataset. 

Other race-ethnicity groups remained unchanged. 

2.2 Vine copula model development 

A vine copula was fitted to the NHANES data. First, to avoid producing covariates of 

negative values in VPs, biochemical measurement data were log-transformed. As 

copulas are joint distribution functions with uniform margins, data were then 

transformed into uniform distributions using the probability integral function [17] based 

on kernel density estimation. Parametric bivariate copulas, such as Gaussian, Clayton 

and Frank, served as building blocks of candidate vine copula models. The vine copula 

model was constructed by first selecting a tree structure, which defines the pairs of 

covariates and copulas to be estimated. The tree structure was determined using the 

maximum spanning tree algorithm, which selects a tree structure that maximizes the 

sum of correlations [18]. Next, a bivariate copula model was selected and estimated for 
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each copula pair in the tree. To incorporate the covariate ‘race-ethnicity’ in the copula 

and optimize the model, we treated race-ethnicity as an ordered categorical variable and 

tested copulas with all order combinations. The model was selected by minimizing the 

Akaike information criterion (AIC).  

2.3 Model Evaluation 

Model evaluation was conducted through a simulation-based strategy: performing 100 

simulations of the original dataset and comparing the metrics between the real-world 

population and VPs that were back transformed to their original scales. To assess the 

model performance on the marginal distributions, we evaluated observed and simulated 

populations by comparing the frequency of each category for categorical covariates, 

and for continuous covariates, comparing the marginal metrics, mean, standard 

deviation (SD), and percentiles (5th, 50th and 95th), denoted by M, between observed and 

simulated data in terms of relative error (RE) (Eq.1).  

 𝑅𝐸 =
𝑀𝑠𝑖𝑚 −𝑀𝑜𝑏𝑠

𝑀𝑜𝑏𝑠

 Eq.1 

 

where 𝑀𝑠𝑖𝑚  and 𝑀𝑜𝑏𝑠  represent the metrics for simulated population and observed 

population, respectively. 

To assess the performance of the model on capturing the dependency structure, pairwise 

correlation coefficients were compared between observed and simulated datasets. Since 

data sharing the same correlation could display various shapes of the dependence, a 

two-dimensional metric was developed to quantify the overlap of the density contours 

in observed and simulated data. For each pair combination of covariates, 95th percentile 

density contours were calculated for observed and simulated populations. The overlap 

metric was computed as the Jaccard index: the ratio between the intersection area and 

union area (Figure S1). Higher overlap indicated a better description of dependence 

relations. We systematically evaluated the performance of the model from the following 

aspects:  

(1) Overall performance: the NHANES copula (full copula) was developed based on 

the whole set of participants of NHANES that represents a general population. 

Simulated populations and the real-world population were then compared.  

(2) Subgroup performance: populations of interest in clinical trials and cohort studies 

typically comprises individuals with certain race-ethnicity or sex. To be able to create 

realistic VP of interest, it is important to determine whether the full copula could capture 

the characteristics of subgroup populations.  Predictive performance of the full copula 

for subsets of VPs was assessed with a particular interest in the race-ethnicity and sex 

subgroups. For comparison, two series of subgroup copulas were also constructed using 

data specific of each subgroup population :1) Hispanic copula, White copula, African 

American copula, Asian copula, Other race copula, 2) male copula, female copula. 
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Virtual subgroup populations were obtained in two ways: by simulating from the full 

copula model and filtering out the irrelevant individuals, and by directly simulating 

from the subgroup copula. The performance of full copula was compared with that of 

subgroup copula to provide an understanding of whether the full copula was sufficient 

for generating subsets of VPs. 

2.4 Shiny Application Development 

To provide a convenient and user-friendly tool, an interactive web application that could 

output VPs was developed using the NHANES copula. Adult virtual populations can be 

generated from the application. 

2.5 Software 

The analysis was performed in R 4.1.2. Processing of NHANES data was conducted 

with survey package. Kernel density estimation of marginal distributions was performed 

with kde1d package. Development of NHANES copula was implemented with 

rvinecopulib package. The overlap metric was calculated using ks and sf packages. R 

shiny application was developed using shiny package. Visualizations of this study were 

generated with ggplot2 package.  All scripts are available on 

https://github.com/vanhasseltlab/NHANES_copula. 

 

3. Results 

3.1 Vine copula of NHANES data 

Logarithmic and uniform transformed data were fitted to estimate the underlying 

dependency structure with a vine copula. Instead of displaying the whole tree 

structure, we only showed the first tree since the first layer dependence captured the 

strongest correlations while trees of higher levels describe the conditional dependence, 

and are less influential on the overall fit than the first tree[19]. Sex was located at the 

center of the first tree structure, as it showed relatively strong dependence 

relationships with height, logBR, logALT, logAlbumin, and logSCR (Figure 1A). The 

density contours of covariate pairs in the real-world population displayed various 

patterns, and the VP were found to overlap the real-world population in selected 

covariate pairs well (Figure 1B).  
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Figure 1. Graphical representation of dependence structure estimated by NHANES copula 

and bivariate densities of observed and simulated covariates. A. The first tree structure of 

NHANES copula with 12 nodes, and 11 edges. Each node represents one covariate variable, 

and each edge is associated with a specific bivariate copula model. 12 covariates were 

shown: sex, race-ethnicity, age, height, body weight, fat mass (Fat), serum creatinine (SCR), 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase 

(ALP), albumin and total bilirubin (BR). Log indicated that the covariate was log-

transformed in estimation. B. Set of selected covariate pairs with the density contours of the 

observed population (orange dashed line) and the simulated population from the NHAENS 

copula (gray solid lines). Marginal densities were displayed on the top and right sides of 

each plot. 

3.2 Overall performance  

The overall simulation performance of the developed copula model was evaluated for 

the entire population, without specifying any subgroups. For categorical covariates, (i.e., 

race-ethnicity and sex), the frequency of each category in the virtual population aligned 

with that of the real-world population (Figure 2A). For continuous covariates, density 

curves of each individual covariate in the simulation dataset well tracked observed ones 

(Figure 2B); mean, standard deviation and percentiles of VP agreed with those of the 

observed population, with relative errors within ±0.10 (Figure 2C). For percentiles and 

mean metrics, coefficient of variation across simulations were all within 0.007, and 

those of standard deviation were within 0.09.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.22.24303086doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.22.24303086
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

8 
 

 

Figure 2. Marginal characteristics of the covariates in observed population and virtual 

populations simulated from NHANES copula. A. Frequency of each category in discrete 

covariates, race-ethnicity and sex, in the real-world population (orange columns) and virtual 

populations (grey columns). B. Density curves of each continuous covariate variable in the 

real-world population (orange line) and virtual populations (gray lines). C. Relative error of 

marginal metrics (percentiles, mean, and standard deviation) of continuous covariates as 

compared to the statistics of the real-world population. Virtual population was simulated 100 

times.  Error bars indicated the standard deviation of 100 simulations. Gray dashed lines 

indicate ±20% relative error. 

The simulated correlations from the copula model were very similar to observed 

correlations for most pair combinations of covariates, with 0.023 median error (Figure 

3A). Covariate pairs associated with the largest error of correlation were height-SCR 

(0.105) and SCR-albumin (0.102). The median overlap was 92.0% across all covariate 

pairs and simulations, and the model achieved over 85% overlap in 96% (43/45) 
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covariate pairs, indicating a good capture of dependency structure (Figure 3B). The 

only two covariate pairs that did not reach 85% were ALT-BR and weight-fat, with 81.4% 

and 70.5% overlap percentages. 

The full copula model reproduced the marginal properties as well as the dependence 

relations of covariates of input population data. Variability across simulations tended to 

be small for all metrics except for standard deviation, showing the robustness of the 

copula model. 

 

Figure 3. Dependency metrics of covariate pairs in observed population and virtual 

populations simulated from NHANES copula. A. Correlations of each covariate pair in real-

world population (orange diamond) and virtual populations (black box). Gray dashed line 

represents no correlation between covariate pairs. B. Overlap metric of 95th density contours 

of virtual population relative to observed population. Virtual population was simulated 100 

times. Error bars indicated the standard deviation of 100 simulations. Gray dashed lines 

indicate 100% and 85% overlap percentages. 

3.3 Subgroup performance 

To gain further insights into the usefulness of the full copula for simulating subgroups 

of the total population, we conducted two separate investigations on the performance of 

full copula for VP simulation in race-ethnicity and sex subgroups.  

3.3.1 Race-ethnicity subgroup analysis 

The full copula was able to approximate the marginal characteristics of the observed 

population in Hispanic, White, and African American subgroups, with median relative 
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errors of marginal metrics across covariates within [-0.19, 0.28] (Figure S2). For Asian 

and Other race VP populations, median relative errors were in the ranges [-0.21, 0.41] 

and [-0.68, 0.20], respectively. For comparison, subgroup copulas for Hispanic, White, 

African American and Asian populations showed good performances in terms of the 

marginal metrics, with the median relative errors of all covariates in [-0.15, 0.38]. 

However, the relative errors were larger for Other race subgroup copula, with a range 

of [-0.14, 0.75]. Full copula and subgroup copulas showed comparable performance in 

capturing the marginal attributes of Hispanic, White, African American and Other race 

subgroups, however, subgroup copula showed superior performance in Asian 

population. 

The full copula model achieved 84.6%, 88.6%, 87.8%, 74.0% and 80.1% median 

overlap percentages for Hispanic, White, African American, Asian and Other race 

populations, while subgroup copulas reached 89.3%, 89.4%, 88.1%, 87.8% and 85.0% 

(Figure 4A), respectively. Subgroup copulas outperformed the full copula in simulating 

the dependence structure of covariates in Asian and Other race subgroups, but showed 

similar performance in the rest of race-ethnicity subgroups. 

3.3.2 Sex subgroup analysis 

In general, compared with subgroup copulas, the full copula model could well capture 

the margins and dependency structures in male and female populations.  For marginal 

metrics, median relative errors of full copula were within the range [-0.19, 0.09] and [-

0.28, 0.07] for male and female populations (Figure S3). For comparison, subgroup 

copulas for male and female yielded median relative errors of [-0.11, 0.11] and [-0.03, 

0.08]. The median overlap metric of full copula was calculated to be 88.5% and 88.8% 

for male and female populations (Figure 4B), while subgroup copulas achieved 

91.1% and 90.8% overlap percentages for the two populations. 
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Figure 4. Overlap metric of each subgroup virtual population relative to corresponding real-

world population. A. Overlap metrics calculated for each race-ethnicity subgroup 

population. B. Overlap metrics calculated for each sex subgroup population. The full copula 

was created utilizing the whole set of data, while subgroup copulas were developed based on 

each subgroup of data. Subgroup virtual populations were simulated 100 times using full 

copula (pink boxes) and subgroup copulas (blue boxes) for each. Error bars indicated the 

standard deviation of 100 simulations. Gray dashed lines indicate 100% overlap percentage. 

3.4 R shiny application 

The copula covariate simulator (CoCoSim) web application was developed based on 

the NHANES copula and made available online (https://cocosim.lacdr.leidenuniv.nl/, 

Figure 5). Using this application, VPs can be generated online following these steps: 

(1) define the population of interest by selecting race-ethnicity, sex, age, and body 

mass index (BMI); (2) select the covariates of interest. Secondary covariates, 
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including BMI, lean body weight, and estimated glomerular filtration rate, can be 

calculated based on the covariates in NHANES dataset; (3) select the number of 

individuals for simulation; (4) generate the VP and download the data.  

Figure 5. Interface of the R shiny application CoCoSim 

(https://cocosim.lacdr.leidenuniv.nl/). Virtual population can be generated according to user-

defined characteristics based on NHANES copula (full copula). 

With the app, users can generate virtual population with desired characteristics, 

including race-ethnicity, sex, age and BMI ranges. Generated virtual populations can 

then be used as covariate distributions for pharmacometric model-based simulations, 

such as for example as part of clinical trial simulations or dosing strategy optimization 

simulations. 

 

4. Discussion 

We developed a copula model for an adult population which adequately captured the 

covariate distributions as present in the NHANES database. 

The tree structure of the NHANES copula revealed associations between commonly 

used covariates in population pharmacokinetics studies, which may help in the process 

of covariate model development. Identified associations were in line with the literature 

in which sex was found to influence height, weight, serum creatinine, and liver 

function biomarkers (total bilirubin and ALT) [20]. The correlation between 

covariates may explain the situations where sex may not be relevant as a covariate 

when the other covariates are included, since different PK or PD outcomes depend on 

underlying covariates (such as weight and serum creatinine) [21, 22].  
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To evaluate the performance of the developed copula model, we assessed whether the 

simulated population is realistic by comparing the marginal and dependency metrics 

between VPs and real-world population. Interestingly, we observed that the pair 

combinations of covariates that showed the largest errors of correlation differed from 

those showing the lowest overlap percentages. Pearson correlation quantifies linear 

association, while data sharing the same linear correlation could exhibit different 

dependency structures, and the overlap metric takes the shape or pattern of the 

dependency into account. The novelty of overlap metric lies in its first application of 

Jaccard index, a similarity measure between two data samples [23], to two-

dimensional densities. Pearson correlation and overlap metric collectively depicted the 

joint behavior at a pairwise level and addressed different perspectives, and as such 

should be evaluated together when assessing copulas or investigating the similarity 

between two population.  

In this study, we incorporated not only continuous but also categorical variables in the 

estimation of the NHANES copula. Currently, copula models for unordered 

categorical variables are not fully identifiable [17]. To include race-ethnicity (an 

unordered categorical variable) in copula, we estimated vine copulas by iterating 

through all possible orders of race-ethnicity and selected the model with the lowest 

AIC value. Since there were five categories in race-ethnicity, we considered 120 

unique order possibilities of race-ethnicity categories, which was time-consuming and 

computationally expensive. Since this type of variable is common in clinical studies, 

such as disease classification, an algorithm that could efficiently deal with unordered 

categorical covariates is yet to be developed. 

Copula models can be useful to support model-based dosing optimization or clinical 

trial simulation. For such applications, a focus on subjects with specific covariate 

characteristics usually exists [24, 25]. To this end, it is important to confirm whether a 

copula model correctly reflects covariate distributions for relevant population 

subgroups of interests. In our analysis, compared with subgroup copulas, the full 

copula model showed comparable performance across different race-ethnicity and sex 

subgroups except for Asian and Other race subgroups, likely due to the relatively 

small number of individuals within the entire dataset. The ability to adequately 

simulate subgroups from a large copula is of great importance since creating copulas 

for each subpopulation of interest, including e.g. different age and BMI ranges creates 

a nearly infinite amount of possible subgroups. 

The NHANES population represents the non-institutionalized population of America 

and cannot be classified as healthy subjects or patients, indicating that the virtual 

population simulated from full copula should be interpreted with care. In this dataset, 

a significant portion of fat mass data was missing due to the age-eligible criterion (< 

60 years old) of examination. However, copulas allowed for interpolation and 

extrapolation of VPs, as it supports the imputation of missing data via conditional 

density functions [26]. Of note, we removed the extrapolated fat mass data during the 
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evaluation of copula performance. Although no significant bias was revealed in 

imputation analysis, simulated fat mass for people above 60 years old should be used 

with caution.  

To make the full copula more accessible to the community, a web application was 

developed to facilitate the simulation of VPs with user-defined properties. This work 

served as a basis for building a copula library for sharing the copulas of various 

patient populations, such as obese, pregnant, or renally impaired patients, supporting 

simulation studies. Collaborative efforts could be initiated to gather large-scale data to 

build copulas for various target populations. 

 

5. Conclusion 

In this study, we demonstrated the development and evaluation of a copula model 

using NHANES database to simulate commonly used covariates in pharmacometric 

modeling, which can be used as part of clinical trial design and dose strategies 

optimization. A user-friendly web application was developed to facilitate the use of 

the developed copula model for covariate simulation.  
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