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Abstract 

Background 

Deep learning architectures have advanced genotype‒phenotype mappings with precision but often obscure 

the roles of specific genes and their interactions. Our research introduces a model-agnostic computational 

methodology, capitalizing on the analytical strengths of deep learning models to serve as biological proxies, 

enabling interpretation of key gene interactions and their impact on phenotypic outcomes. The objective of 

this research is to refine the understanding of genetic networks in complex traits by leveraging the nuanced 

decision-making of advanced models. 

Results 

Testing was conducted across several computational models representing varying levels of complexity 

trained on gene expression datasets for the prediction of the Ki-67 biomarker, which is known for its 

prognostic value in breast cancer. The methodology is capable of using models as proxies to identify 

biologically significant genes and to infer relevant gene networks from an entirely data-driven analysis. 

Notably, the model-derived biomarkers (p-values of 0.013 and 0.003) outperformed the conventional Ki-

67 biomarker (0.021) in terms of prognostic efficacy. Moreover, our analysis revealed high congruence 

between model precision and the biological relevance of the genes and gene relationships identified. 

Furthermore, we demonstrated that the complexity of the identified gene relationships was consistent with 

the decision-making intricacy of the model, with complex models capturing greater proportions of complex 
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gene–gene interactions (61.2% and 31.1%) than simpler models (4.6%), reinforcing that the approach 

effectively captures biologically relevant in-model decision-making processes. 

Conclusions 

This methodology offers researchers a powerful tool to examine the decision-making processes within their 

genotype–phenotype mapping models. It accurately identifies critical genes and their interactions, revealing 

the biological rationale behind model decisions. It also enables comparisons of decision-making between 

different models. Furthermore, by discovering in-model critical gene networks, our approach helps bridge 

the gap between research and clinical applications. It facilitates the translation of complex, model-driven 

genetic discoveries into actionable clinical insights. This capability is pivotal for advancing personalized 

medicine, as it leverages the precision of deep learning models to uncover biologically relevant genes and 

gene networks and opens pathways for discovering new gene biomarker combinations and previously 

unknown gene interactions. 

Keywords 

deep learning; genotype–phenotype mapping; biomarker discovery; gene networks; bioinformatics 

 

Background 

In the field of computational genomics, the increasing utilization of deep learning models has 

significantly advanced precision in linking genotypes to phenotypes [1–5]. The increasing complexity and 

precision of these models have ostensibly led to higher fidelity in capturing the underlying biological 

relationships that connect genetic inputs to observable traits [5]. This enhancement in model capability is 

why evaluating these models' decision-making processes can serve as a proxy for understanding underlying 

biological relationships among the input features. However, these advanced deep learning models, often 

labeled ‘black box’ models, tend to obscure the underlying mechanisms through which their decision-

making ties genetic inputs to phenotypic results. This lack of clarity impedes a thorough understanding of 

the intricate genotype‒phenotype relationships, which is crucial for translating these findings from research 

to clinical applications [6]. 
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Our approach is designed to bridge the gap between a model’s computational predictions and the 

biological relevance they aim to capture, offering insights into the underlying genetic mechanics driving 

phenotypic variations. To achieve this goal, two fundamental steps are essential: first, identifying genes 

that play a crucial role in phenotypic in-model determination and, second, elucidating the complex 

interactions among these genes resulting in phenotypic variation. 

In terms of understanding deep learning decision-making, two fundamentally different 

methodologies exist. The first is the post hoc approach, which encompasses various methods for 

interpreting a model after it has been built. This approach is more versatile and can be applied to a broader 

range of models [7]. The second methodology is the built-in approach, which involves integrating 

explainable components directly into the model's architecture during its construction [7]. While this built-

in method can provide tailored insights specific to a model architecture, it tends to be less flexible and 

limited in its generalizability, as it is custom designed for specific model structures [1]. Given that our 

approach is designed to be model-agnostic, adopting a post hoc approach is essential to ensure its broad 

applicability and versatility. 

Previous attempts to achieve the first fundamental step of identifying model-specific 

phenotypically important genes have primarily utilized post hoc methodologies. Within the scope of feature 

importance analysis in predictive models, numerous post hoc methodologies have been developed and 

employed. These include SHAP (SHapley Additive exPlanations) [8], LIME (Local Interpretable Model-

agnostic Explanations) [9], surrogate models [10], ALE (Accumulated Local Effects) [11, 12], and 

permutation-based techniques [13]. These methods have significantly enhanced our capacity to interpret 

model predictions by identifying key features. However, a common limitation among them is their general 

inability to elucidate the interactive effects of these features – specifically, how these features combine and 

interact to influence the model’s output. 

Most approaches in computational genomics for uncovering interactions among genetic features 

typically involve built-in methods integrated within model architectures. These approaches include Gene‒

Gene Interaction Neural Networks (GGINNs) [14], the GenNet framework [4], Gene Network Inference 
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(GNE) [15], Deep GONet [1], and multimodal deep learning models such as MDLCN [16]. Additionally, 

many of these approaches rely on preexisting gene interaction data to construct their networks, limiting 

their capacity to discover new phenotype-specific gene interactions or networks, namely, GenNet, GNE, 

MDLCN, and Deep GONet [1, 4, 15, 16]. Collectively, these methods, while insightful, are limited by their 

specific models or topologies, which limits their broad applicability. 

This underscores the absence of a unifying post hoc methodology in computational genomics for 

concurrently deriving gene importance and inferring gene interactions from a model's decision-making 

process with respect to a phenotype. The objective of our research was to address this gap by introducing a 

versatile and completely data-driven model-agnostic method applicable to any expression data, using any 

model, and for any binary phenotype. This method utilizes the decision-making processes of models to 

uncover underlying biological relationships by manipulating inputs and observing the resultant changes in 

outputs. This data-driven approach is compatible with any predictive model, providing a comprehensive 

solution to this long-standing challenge in the field. 

 

Materials and methods 

This study draws upon two datasets from the NCBI GEO database, GSE96058 (n = 2,976) [17] and 

GSE81538 (n = 405) [17], encompassing gene expression data for 16,889 genes. The GSE96058 dataset 

was filtered to remove genes with minimal variability (standard deviation < 0.05) and those expressed at 

low levels (mean expression < 0.05, resulting in n = 15,132), with a focus on patients with available Ki-67 

status (n = 1,363). The selected genes were subsequently identified in the GSE81538 dataset [18]. A critical 

aspect of both datasets is the inclusion of Ki-67 status, a marker for cell proliferation determined by 

immunohistochemical staining of the Ki-67 protein [17]. The Ki-67 status, which reflects the activity of the 

MKI67 gene, serves as an indirect indicator of the influence of gene expression on cell cycle dynamics [17, 

19–21]. 

All code, models, and data used in our study are made publicly available on GitHub, providing 

transparency and reproducibility for our research. This repository can serve as a resource for other 
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researchers and practitioners in the field, allowing them to access our methodologies, replicate our results, 

or even extend our work in their research endeavors. This open-source approach aligns with our 

commitment to collaborative and transparent scientific research, contributing to the broader scientific 

community's efforts in advancing our understanding of genetic networks in cancer and other complex 

diseases. This research introduces a model-agnostic, data-driven methodology, structured into two phases, 

to bridge the gap in understanding deep learning model decision-making processes in computational 

genomics. 

The first phase focuses on identifying genes crucial for phenotype determination using permutation 

testing within the context of specific models. The second phase involves constructing gene influence 

networks, deciphering the complex interactions among these identified genes (Figure 1). To allow for 

rigorous assessment of our approach, three computational models exhibiting varying levels of complexity 

were developed (Additional file 1, Figure S1). The aim was to delineate not only the singular impact of 

specific genes but also the collective influence of their interactions within a network. 

Model training 

Three distinct models with varying degrees of complexity were trained on an identical 80% subset 

of the GSE96058 dataset. To manage high-dimensional data and reduce overfitting, we confined our input 

features to the top 100 principal components (PCs) derived from kernel principal component analysis. This 

dimensionality reduction was predicated on the understanding that the full complement of 15,132 genes 

would likely result in suboptimal classification performance for Ki-67 status within the sample size 

provided. 

The simplest model developed was a logistic regression (LOG) model, chosen for its 

interpretability and baseline performance metrics. Despite its simplicity, the identification of gene 

importance within this model is also nontrivial due to the indirect representation of the original data by 

kernel-derived PCs used as input features. In contrast, the subsequent models—a multilayer perceptron 

(MLP) and a convolutional neural network (CNN) model—offered increased complexity and the potential 

for capturing more nuanced patterns within the data. Critical to our comparative analysis was the 
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establishment of a performance benchmark to facilitate equitable evaluation across the models. This 

benchmark was set at an approximate 0.8 average for the area under the receiver operating characteristic 

curve (AUROC), with the models achieving average 5-fold cross-validation AUROC scores of 0.85, 0.85, 

and 0.79 for LOG, MLP, and CNN, respectively. Additionally, the models attained average area under the 

precision‒recall curve (AUPRC) values of 0.89, 0.89, and 0.85, respectively (Additional file 2, Figure S2). 

These performance indicators demonstrate the consistent predictive capability of the models and justify 

their use for subsequent methodological analyses. 

The use of kernel PCs in conjunction with deep learning architectures was deliberately chosen to 

augment model performance and obscure feature importance and relationships. Despite the inherent opacity 

associated with such advanced models, our methodology was designed to discern gene significance and 

interconnectedness with respect to a given phenotype. This approach aims not only to validate the use of 

deep learning models as analytical proxies for genotype–phenotype relationships but also to provide a 

robust methodological toolkit for the broader genomic research community. By assessing the 

interpretability of model decisions at varying levels of complexity, we shed light on the inner workings of 

these models, thereby contributing to greater transparency in the field of genetic research. The performance 

and utility of these models, beyond their predictive accuracy, established a foundation for the next phase of 

our study: the comprehensive identification and analysis of biologically relevant genes and the intricate 

network of their interactions through permutation testing, thus setting the stage for a deeper exploration 

into genotype–phenotype relationships. 

Gene importance 

To better understand gene significance in the context of phenotypic expression, we employed an 

adjusted permutation-based methodology, a technique well suited to discovering the salience of features 

within black box models [22]. This approach operates on the premise that the deliberate randomization of 

gene expression values within the dataset and the observation of how these permutations influence the 

model's performance serve as indicators of gene significance. A gene whose permutation results in 

significant performance degradation is considered critical for phenotype prediction. Conversely, a gene 
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whose permutation leaves model performance largely unaltered is assumed to have a minimal role in 

phenotypic determination. The selection of the permutation method has several advantages. Primarily, it 

upholds the data's intrinsic structure, avoiding the confounding alterations that may arise from feature 

omission or nullification techniques [22]. This preservation is pivotal, allowing the approach to test the null 

hypothesis under more biologically realistic scenarios where the absence of gene expression is atypical. 

Additionally, permutation allows for the retention of dataset integrity, a crucial consideration when 

simulating the complex interplay of genetic expression. 

Individual gene permutation testing 

Our permutation testing paradigm applied a dual-metric scoring system to quantify gene 

importance. The accuracy (𝑎𝑐𝑐) and R-squared (𝑅2) were computed as baseline metrics from our models' 

performance on the withheld test set (𝑎𝑐𝑐𝑜𝑟𝑖𝑔 and 𝑅2
𝑜𝑟𝑖𝑔), which comprised 20% of the GSE96058 dataset. 

Subsequent permutations of each gene were conducted one hundred times (𝑁), followed by a recalculation 

of the metrics after each permutation (𝑎𝑐𝑐𝑝𝑒𝑟𝑚, 𝑛  𝑎𝑛𝑑 𝑅2
𝑝𝑒𝑟𝑚, 𝑛 ). The deviations from baseline were 

averaged to obtain two composite scores (∆𝑎𝑐𝑐𝑔  and ∆𝑅2
𝑔 ), which were then ranked (𝑟𝑎𝑛𝑘𝑎𝑐𝑐, 𝑔  and 

𝑟𝑎𝑛𝑘𝑅2, 𝑔) then combined (𝑟𝑎𝑛𝑘𝑡𝑜𝑡𝑎𝑙, 𝑔) and then normalized to derive a final importance score for each 

gene (𝑟𝑎𝑛𝑘𝑔). 

∆𝑎𝑐𝑐𝑔 =  
1

𝑁
∑ (𝑎𝑐𝑐𝑜𝑟𝑖𝑔  −  𝑎𝑐𝑐𝑝𝑒𝑟𝑚, 𝑛)

𝑁

𝑛=1
 

∆𝑅2
𝑔 =  

1

𝑁
∑ (𝑅2

𝑜𝑟𝑖𝑔  −  𝑅2
𝑝𝑒𝑟𝑚, 𝑛)

𝑁

𝑛=1
 

𝑟𝑎𝑛𝑘𝑡𝑜𝑡𝑎𝑙, 𝑔 = 𝑟𝑎𝑛𝑘𝑎𝑐𝑐, 𝑔 + 𝑟𝑎𝑛𝑘𝑅2, 𝑔 

𝑟𝑎𝑛𝑘𝑔 = 1 −  
𝑟𝑎𝑛𝑘𝑡𝑜𝑡𝑎𝑙, 𝑔 − min (𝑟𝑎𝑛𝑘𝑡𝑜𝑡𝑎𝑙)

max(𝑟𝑎𝑛𝑘𝑡𝑜𝑡𝑎𝑙) − min (𝑟𝑎𝑛𝑘𝑡𝑜𝑡𝑎𝑙)
 

 

 This dual-metric approach leverages the directness of accuracy and the sensitivity of R-squared to 

offer a comprehensive evaluation of gene importance. Although accuracy provides an immediate gauge of 

predictive success, it is susceptible to distortions arising from factors such as class imbalances and small 
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individual feature effects. Conversely, R-squared provides a refined measure of the model's predictive 

confidence and the subtleties of gene influence, albeit potentially overfitting to the noise within high-

dimensional datasets. The concurrent application of these metrics yields a multifaceted understanding of 

gene importance, thus facilitating a deeper exploration into the molecular underpinnings of phenotypic 

manifestations. 

Gene importance cutoff modeling 

To delineate a cutoff for gene importance informed by model architecture complexity, we 

reconstituted the architectures of the three previously developed models, this time incorporating only the 

most significant genes as indicated by the individual permutation testing. Notably, the input for the 

convolutional neural network (CNN) model was adjusted to accommodate its structural requirements 

through appropriate padding for nonsquare inputs. To circumvent the nondeterministic nature of deep 

learning models, each model underwent a series of 50 training and evaluation cycles on the training set, 

with successive inclusion of additional genes up to the first 100, ranked by importance. The performance 

of each model was quantified using the average of the area under the receiver operating characteristic curve 

(AUROC) and the area under the precision-recall curve (AUPRC) upon prediction on the test set (20% of 

GSE96058). 

The rationale behind utilizing identical model architectures, sans PCA, was to permit the 

complexity inherent in these models to influence the determination of this gene importance threshold. This 

approach represents a departure from traditional methodologies that typically employ simpler models and 

overlook the effect of model architecture on the significance cutoff. By analyzing the progression of 

AUROC scores corresponding to the incremental addition of genes, we identified the cutoff as the point 

where further inclusion of genes did not appreciably enhance the model’s performance, operationalized as 

the first instance when the AUROC reached within 0.025 of the highest value observed across the set of 

100 top genes used. This process enabled us to pinpoint the optimal number of genes that strike a balance 

between contributing to phenotype prediction and the complexity introduced by the model architecture. By 
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adopting this strategy, we intended to provide a cutoff that is not only reflective of gene significance but 

also cognizant of the computational framework within which the analysis is conducted. 

Assessment of critical gene selection 

Then, to evaluate the efficacy of gene selection, a dual approach was used. First, we compared the 

modeling performance of the top critical genes identified through various feature selection methodologies, 

including surrogate modeling, SHAP built on a surrogate model, SHAP with inverse mapping from PC 

space to the original feature space, LIME, and ALE-based feature selection (Additional file 6, Table S1). 

These feature selection methodologies were run on the LOG, MLP, and CNN models, and their top critical 

gene selections were tested over 100 simulations. Their AUROC scores were compared to the AUROC 

generated by 100 simulations of the top critical genes selected by our individual gene permutation approach. 

This evaluation focused on both the average predictive performance and the stability of these scores across 

simulations, which are key factors for robust model deployment and feature selection methodology. 

The second aspect of our evaluation focused on the biological relevance of the critical genes 

selected by our approach. Initially, we conducted a thorough literature review of each critical gene identified 

by modeling approaches (LOG, MLP, and CNN) to determine their association with breast cancer (BC), 

their known or proposed role as prognostic biomarkers (BM) for breast cancer, and their use as therapeutic 

targets (TT) for breast cancer. This literature review was conducted with a focus on breast cancer, as the 

Ki-67 status is used as a biomarker to determine prognosis and treatment, and both datasets included breast 

cancer patients [17]. In addition to the literature review, we generated a custom biomarker to further assess 

the biological significance of these genes. The biomarker was calculated based on the significant differential 

expression of genes in the context of Ki-67 status. For each gene, if its expression was significantly different 

between two groups (Ki-67 positive and negative), it was either added to or subtracted from the biomarker 

value, depending on whether it was overexpressed or underexpressed in the group with high Ki-67 status. 

This method allowed us to create a biomarker reflecting the aggregate influence of multiple significant 

genes. 
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This custom biomarker was used to perform a survival analysis on the full GSE96058 dataset. The 

effectiveness of our biomarkers, generated from critical values for each model architecture, was measured 

by their ability to distinguish between two survival groups using the log-rank test p-value for comparison. 

This performance was benchmarked against that of the widely recognized Ki-67 status biomarker [17], 

which our models aimed to predict. This comprehensive methodology, combining predictive modeling 

performance with biological relevance analysis, provided a robust evaluation of the critical gene selection 

in our study with respect to both other feature selection methodologies and ensured the biological relevance 

of our approach. 

Influence networks 

We propose that influence networks are crucial for delineating the intricate connections between 

genes and their collective influence on phenotypic traits. These networks are constructed by analyzing gene 

permutations within a model-specific testing framework, focusing on the effects of individual gene 

expression changes on model predictions. This involves adjusting the expression of a single gene and 

observing the resulting shifts in the predictive model across different patient samples. The aim is to uncover 

genes with similar or opposing impacts on predictions, hinting at potential biological ties to the studied 

phenotype. This method delves deeper than just assessing individual gene importance; it explores the 

underlying genetic interdependencies that drive complex phenotypic expressions. 

Our influence networks, generated by a completely data-driven and model-centric approach, avoid 

preexisting biological hypotheses, allowing for novel gene network discovery relevant to the specific 

phenotype of interest. This flexibility enables the discovery of both established and new gene interactions 

directly from model behavior and patient data, a significant advantage when investigating less understood 

genetic interactions. To construct these influence networks, two fundamental steps are necessary: first, 

generating influence matrices to illustrate the pairwise relationships of effects of gene permutations on 

model predictions, and second, forming clusters of genes based on their influence, indicating that genes 

influencing predictions in similar or opposite ways may be related to similar biological processes. 

Permutation-based prediction effect similarity (influence matrix) 
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To discern gene similarity in terms of their impact on model predictions, we conducted a systematic 

analysis to gauge the average change in prediction probability for each of the top 100 genes. This extensive 

approach, focusing on a wider gene spectrum instead of solely the previously identified critical genes, was 

aimed at capturing a more comprehensive perspective of potential genetic interactions. The rationale for 

examining the top 100 genes, beyond the critical gene set, stemmed from multiple considerations. Primarily, 

critical gene selection, though invaluable, originated from models excluding the kernel PC step, differing 

from the original trained models that embody the full complexity of phenotype prediction. Moreover, 

examining a uniform number of genes across models facilitates the comparability of influence networks 

derived from diverse modeling methodologies. 

Leveraging the original, trained models, we implemented permutation testing on the test set. Each 

of the top 100 genes, ranked by importance, was individually permuted in 100 iterations. Following kernel 

PC transformation, the test set was subjected to phenotype prediction using the model, which enabled us to 

capture the average deviation in each patient's predicted phenotype due to gene permutation. This process 

involved two sequential steps: 

1. Computation of average prediction change: For each gene 𝑔 within the data frame of all genes 

𝑋 that are also in the top 100 important genes, we permute its normal expression profile while keeping all 

other genes the same (𝑋𝑝𝑒𝑟𝑚,   𝑔) and observe the resultant variation in phenotypic predictions (∆𝑃𝑔) for all 

patients using model 𝑀 and the kernel PC reduction (𝑃𝐶𝐴). This process was repeated over 100 simulations 

𝑆 to ensure robustness in the assessment of the influence of each gene. The rationale for using the original 

PCA-transformed data was to maintain fidelity to the model interpretive framework, thereby ensuring that 

the influence matrix accurately reflected the learned associations of the model. 

𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑃𝐶𝐴(𝑋) 

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑀(𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑) 

𝑋𝑝𝑒𝑟𝑚,   𝑔 = 𝑃𝑒𝑟𝑚𝑢𝑡𝑒(𝑋, 𝑔) 

𝑃𝑔 = 𝑀(𝑃𝐶𝐴(𝑋𝑝𝑒𝑟𝑚,   𝑔)) 
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∆𝑃𝑔 =
1

𝑆
∑ (𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −  𝑃𝑔,𝑠)

𝑆

𝑠=1
 

2. Pairwise gene correlation analysis: Upon establishing the average prediction changes, we 

computed pairwise correlations between the genes. This analysis aimed to reveal genes whose permutations 

had similar or diametric effects on the phenotype, suggesting a potential interactive relationship within the 

predictive model. Specifically, for genes 𝑔1  and 𝑔2 , the correlation of their respective ∆𝑃 vectors was 

computed to evaluate their interplay. 

𝐶𝑜𝑟𝑟(∆𝑃𝑔1
, ∆𝑃𝑔2

) =
∑ (∆𝑃𝑔1,𝑛

−  ∆𝑃𝑔1
̅̅ ̅̅ ̅̅ )(∆𝑃𝑔2,𝑛

−  ∆𝑃𝑔2
̅̅ ̅̅ ̅̅ ) 𝑁

𝑛=1

√∑ (∆𝑃𝑔1,𝑛
−  ∆𝑃𝑔1

̅̅ ̅̅ ̅̅ ) 𝑁
𝑛=1

2
√∑ (∆𝑃𝑔2,𝑛

−  ∆𝑃𝑔2
̅̅ ̅̅ ̅̅ ) 𝑁

𝑛=1
2
 

Here, 𝑁 represents the number of patients, and ∆𝑃𝑔
̅̅ ̅̅ ̅ denotes the mean of the prediction vector 

change for gene 𝑔. The final influence matrix is a pairwise matrix of all combinations of gene pairs (within 

the top 100 genes) generated by each model. 

The influence matrix, derived from the average prediction changes and subsequent correlation 

analysis, serves as a quantitative scaffold for modeling gene interactions. It enables a data-driven 

exploration of genetic interplay, potentially uncovering both known and novel genetic associations. By 

adopting this thorough empirical approach, we offer a novel lens through which researchers can explore 

model-inferred gene interactions. This not only aids in validating the biological relevance of the predictive 

models but also paves the way for discovering new genetic connections, which are crucial to understanding 

complex phenotypes. The influence networks constructed through this methodology thus represent a 

significant stride toward aligning computational predictions with biological functionality. 

Smart clustering of influence matrices 

Following the derivation of the influence matrices, the next objective was to cluster genes to 

elucidate their collective impact on phenotypic traits. This was aimed at partitioning the top 100 gene sets 

into clusters (based on the influence matrix) that would represent their mutual interactions as determined 

by the predictive model. 
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To achieve this, a process to identify the optimal clustering strategy was developed. The range of 

clustering algorithms tested included k-means, agglomerative clustering, spectral clustering, Gaussian 

mixture models (GMMs), affinity propagation, and OPTICS (ordering points to identify the clustering 

structure). Recognizing the complexity of the gene interaction data, we first transformed the influence 

matrix to absolute values. This preprocessing step was performed to ensure that the influence of genes with 

diametric effects on the phenotype was accurately captured, acknowledging the dual nature of genetic 

regulation. 

Each clustering algorithm underwent rigorous parameter optimization. A large set of parameter 

configurations for each clustering methodology was searched (Additional file 7, Table S2). This was 

particularly crucial for algorithms prone to variability in cluster assignments. To establish the most 

representative clustering outcomes, we ran multiple iterations (50 per parameter set) to assess the stability 

and reliability of the results. The primary metric for evaluating clustering quality was the Dunn index, 

which was chosen for its ability to identify well-separated and compact clusters [23, 24]. This metric aligns 

well with the inherent properties of genetic data, where biological processes often manifest as tightly knit 

gene clusters. Although the Dunn index was the preferred metric, the flexible approach also accommodated 

alternative metrics such as the silhouette score, Davies–Bouldin score, and Calinski–Harabasz score, 

enabling adaptability to different analytical requirements. Once the optimal parameters were determined 

for each clustering method, the most effective algorithm was subjected to additional validation through 

1000 simulations under the best parameter setup. This step accounts for stochastic elements in some 

algorithms, aiming to select a clustering outcome that consistently achieves the highest Dunn index or the 

best score according to the chosen metric. 

This 'smart clustering' strategy was used because different models may reveal distinct patterns of 

gene interactions. By evaluating multiple clustering methodologies and parameters, we ensured the 

selection of the most fitting clustering arrangement for the specific data, phenotype, and model under 

investigation. This rigorous process not only enhances the precision of the resulting gene influence 
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networks but also promotes accessibility and reproducibility for researchers, fostering further biological 

discoveries within a data-driven paradigm. 

The transformation of gene clusters into influence networks involved representing each gene as a 

node in a graph, with edges symbolizing the interactions between genes as inferred from the influence 

matrix. To impartially represent both synergistic and antagonistic gene relationships, the absolute values 

from the influence matrix were used for edge construction. This method allowed us to depict genes with 

opposing effects on the phenotype as interconnected within the network. The size of each node 

corresponded to the gene's relative importance, with edge colors—black for synergistic interactions and red 

for antagonistic interactions—indicating the nature of the gene relationships. Furthermore, nodes were 

color-coded (blue for critical genes and green for noncritical genes within the top 100 genes) to distinguish 

their categorization. For enhanced clarity and interpretability of the network, each cluster was subjected to 

selective pruning of edges. Edges were sorted by their weight and incrementally removed as the process 

continued until it disrupted the network's connectivity. Notably, if a cluster had a small number of nodes 

(less than 10), the pruning was adjusted to retain at least two edges per node. This modification was 

implemented solely for the ease of visualizing these networks, ensuring that even smaller clusters remained 

interpretable. It is important to note that while this visualization technique displays the tightest connections 

within each cluster, in reality, each cluster is fully connected. The visual representation aims to emphasize 

the most significant interactions within these networks. 

Individual cluster analysis 

The next step was to conduct an examination of the individual clusters formed in the influence 

networks to determine the biological relevance and structural integrity of these clusters. By employing a 

two-pronged approach, we aimed to validate the computational findings against established biological 

databases and frameworks. This step was essential for determining whether the gene clusters identified by 

the model mirrored natural gene structures and were functionally relevant to the phenotype being studied. 

1. Overlap with GeneMania clusters: This research was extended to compare the gene clusters 

identified through the model with those present in GeneMania, a comprehensive database for functional 
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interaction networks among genes [25]. This comparison was pivotal in determining whether our model-

derived clusters have biological parallels in existing gene interaction databases. A high degree of overlap 

would indicate that the computational clusters are not only data-driven but also biologically relevant, 

reflecting actual gene interactions found in nature. 

2. Gene Ontology (GO) enrichment analysis: An enrichment analysis of Gene Ontology (GO) 

terms within the clusters was conducted. This analysis focused on identifying overrepresented biological 

processes, cellular components, or molecular functions in each cluster [26]. The enrichment of specific GO 

terms in a cluster suggested that the genes grouped together in our influence networks were functionally 

coherent and relevant to the phenotype of interest. 

Together, these analyses provide dual validation of the data-driven gene clusters. By comparing 

the clusters with established gene interaction networks and biological functions, we demonstrated that the 

networks identified by our models are not only computationally robust but also fundamentally aligned with 

natural biological systems and relevant to the phenotype under study. This multifaceted approach 

underscores the biological significance of the computational groupings derived from the influence networks. 

Combined cluster analysis 

Finally, the focus shifted toward exploring the variety and types of gene relationships that are 

discovered by our influence networks, which were generated by various modeling architectures. This 

exploration aimed to identify and understand the types of relationships each model architecture could reveal. 

The process entailed the following steps for the influence clusters identified by each model: 

1. GeneMania comparison: GeneMania was utilized to examine the types of gene‒gene 

relationships present within each cluster identified within the model. This analysis helped in understanding 

the nature and dynamics of gene interactions as revealed by the influence networks derived from different 

modeling architectures. This comprehensive database includes information on various types of gene‒gene 

relationships, such as coexpression, genetic interactions, physical interactions, colocalization, pathway 

participation, predicted interactions, and shared protein domains [25]. For the GeneMania comparisons, the 

search parameters used were specifically configured to input the genes from each cluster, with the 
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maximum number of resulting genes set to zero. This restriction ensures that only direct (1-hop neighbor) 

relationships are analyzed for simplicity. Additionally, the maximum number of resultant attributes was 

capped at 10 (default), and the weighting scheme was set to be based on the query genes, thus maintaining 

a focused and relevant output. 

2. Relationship aggregation: We aggregated the types of relationships for the clusters identified 

by each individual modeling methodology. This aggregation provided a summary of interaction types 

prevalent within the clusters of a given model, offering insights into the nature of the relationships inferred 

by that particular model. 

3. Intermodel comparison: A comparison among these aggregated interaction profiles was 

performed across models. This comparison was aimed at discovering how different modeling architectures 

might vary in uncovering the complex web of gene interactions and their potential implications for 

understanding the phenotype of interest. 

Through this analytical approach, we sought to delve more deeply into the kinds of gene 

relationships that our influence networks, borne out of diverse modeling architectures, could elucidate. This 

not only offered a nuanced understanding of model-specific capabilities but also enriched our 

comprehension of the biological networks underlying the studied phenotypes. 

 

Results 

To assess the applicability of the models in the context of breast cancer prognosis, their 

performance in predicting Ki-67 status, a critical biomarker in breast cancer, was evaluated [19]. The trained 

models (LOG, MLP, and CNN) were tested on two datasets: 20% of the GSE96058 dataset was used as an 

internal test set, and GSE81538 was used as an external validation set. The AUROC values were 0.78/0.80 

(LOG), 0.79/0.82 (MLP), and 0.77/0.73 (CNN) respectively (Additional file 3, Figure S3). While the CNN 

model showed a decline in performance on the external dataset, it remained well above the baseline 

AUROC of 0.50, indicating its predictive validity, albeit less effective than the LOG and MLP models. 

These models, which are designed with varying complexities, were tasked with predicting Ki-67 status, a 
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well-known biomarker in cancer. The objective was to show that it is possible to harness the interpretative 

power of these complex models to unravel the intricate features essential for cancer prognosis. The aim was 

to uncover not only key prognostic factors but also the complex gene interactions that underpin cancer 

progression. This approach was intended to provide a deeper understanding of the biological underpinnings 

that drive cancer behavior, leveraging the models' analytical capabilities to illuminate the underlying 

genetic networks. 

Assessment of critical gene selection 

The results of the methodology indicated that 44, 21, and 49 of the top genes were needed for the 

LOG, MLP, and CNN models, respectively, for plateauing modeling performance (Additional file 4, Figure 

S4). This implementation provided insights into the optimal number of genes required for effective model 

performance. We substantiated our critical gene selection approach on two fronts: first, by demonstrating 

that the genes identified as critical through our modeling techniques effectively elucidate Ki-67 status, 

surpassing previous methodologies; and second, by confirming the biological significance of these genes 

in the context of breast cancer progression and survival. 

1. Model-based justification: The comparative analysis of feature selection methodologies 

validated the efficacy of our full permutation feature selection approach (Figure 2). Compared with 

established methods such as SHAP inverse mapping, ALE, surrogate model, SHAP with surrogate model, 

LIME-based approaches, our method demonstrated either greater or marginally greater performance in 

predicting Ki-67 status. It was tested across all three models (LOG, MLP, and CNN) using the critical gene 

count determined by our cutoff, and our approach yielded the highest average AUROC score of 0.823 and 

one of the lowest standard deviations in these scores (0.015), indicating the method capability and stability 

in feature selection for model predictions (Figure 2). 

2. Biological relevance: The evaluation of the LOG, MLP, and CNN models yielded significant 

insights into the biological relevance of their critical genes in the context of breast cancer (Figure 3). 

Through this method, we discovered that a considerable percentage of the genes (84% for LOG, 80% for 

MLP, and 67% for CNN) are known to be associated with breast cancer, as verified by an extensive 
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literature review (Additional files 8-10; Tables S3-S5). Furthermore, our findings suggest that 61% of the 

genes identified through both the LOG and MLP models and 53% identified through the CNN model are 

recognized or proposed prognostic biomarkers for breast cancer. The analysis also revealed that 36%, 53%, 

and 35% of the critical genes identified by the LOG, MLP, and CNN models, respectively, are recognized 

or proposed as therapeutic targets in breast cancer treatment (Figure 3). 

Notable among the therapeutic target genes associated with breast cancer identified through this 

approach with the LOG model are TFPI2 [27–29], TROAP [30–33], and TONSL [34–36]. In the MLP model, 

critical genes such as TNNT1 [37, 38] and AQP7 [39–41] were also identified as potential therapeutic targets. 

Five genes (TACC3 [42–45], CDC20 [46–50], FOXI1 [51–53], KIF11 [54–57], and MKI67 [17, 19–21]) 

were identified as critical in both the LOG and MLP models and have been proposed to be therapeutic 

targets, with MKI67 being particularly noteworthy because it encodes the Ki-67 protein. Additionally, our 

analysis employing the CNN model identified several key genes as potential therapeutic targets for breast 

cancer. These genes include GRIK3 [58, 59], BEX2 [60–64], AGTR1 [65–68], and PAX2 [69–71]. 

Significantly, many of the genes underscored in the literature review as therapeutic targets, including 

TACC3, MKI67, TFPI2, TNNT1, FOXI1, KIF11, GRIK3, BEX2, and AGTR1, are featured prominently 

in the top 10 critical genes across the three model (Table 1). A comprehensive overview of all critical genes 

identified through our methodologies utilizing the LOG (Additional file 8, Table S3), MLP (Additional file 

9, Table S4), and CNN models (Additional file 10, Table S5) and their respective relationships with breast 

cancer — whether as established relationships, proposed or recognized prognostic markers, or as potential 

therapeutic targets — is included. 

Furthermore, to demonstrate the biological relevance of the identified critical genes beyond the 

support of the literature and from a prognostic standpoint, we utilized the GSE96058 dataset, which includes 

survival data, to develop custom biomarkers. These biomarkers, derived from the critical genes identified 

by our top two models (LOG and MLP), markedly outperformed the Ki-67 status as a biomarker, a widely 

recognized and utilized indicator of breast cancer prognosis. Survival analysis revealed significant 

differences (p-value < 0.05 in the log-rank test) for biomarkers generated by the LOG (0.0133) and MLP 
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(0.0033) models, both surpassing the performance of the Ki-67 biomarker (0.0142), while the biomarker 

from the CNN (0.0628) model exhibited a near-significant result (Figure 3). 

This evidence underscores the effectiveness of our approach in using models as proxies to elucidate 

their biological underpinnings, particularly in the context of breast cancer prognosis. This highlights how 

our methodology not only identifies key biomarkers but also demonstrates the intrinsic relationship between 

the performance of these models and their fidelity in capturing the nuances of underlying biological systems. 

The higher the model's performance is, the more accurately it reflects complex biological realities, which 

in turn enhances our ability to extract meaningful biological insights from these models. This interplay 

between model performance and biological discovery validates the significant role of our approach in 

advancing our understanding of breast cancer from a data-driven and biologically informed perspective. 

Individual cluster analysis 

The next phase involved developing influence matrices for the top 100 genes from each model 

architecture (LOG, MLP, and CNN), revealing the gene interactions within our predictive models. These 

matrices encapsulate the weighted mean influence of gene permutations, averaged across the testing (273 

patients) and validation (405 patients) sets. This balanced approach accounts for variances in sample sizes 

between datasets. Utilizing our 'smart clustering' algorithm, we delineated clusters within these matrices, 

optimizing classification to accurately represent the genetic interplay learned by our models. These clusters 

illustrate our understanding of how groups of genes collectively influence predictive outcomes, providing 

a graphical exploration of their synergy or antagonism (Additional file 5, Figure S5). 

1. Overlap with GeneMania clusters: A critical part of our analysis involved the comparison of 

three distinct clusters (one from each model) with the gene interaction networks from GeneMania (Figure 

4). This cross-referencing revealed impressive concordance; every gene within our clusters was also 

represented in GeneMania's networks, thereby substantiating the biological relevance of our model-derived 

clusters. Particularly notable is the alignment observed in the LOG and MLP model-derived clusters with 

those in GeneMania. For instance, genes such as CIT, TRAIP, TONSL, NEIL3, TIMELESS, SKA1, and 

RECQL4 in the LOG model and MND1, POLQ, CDCA2, ESPL1, and PKYT1 in the MLP model showed 
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consistent peripheral positioning in both our influence networks and those established in GeneMania. The 

specific CNN model-generated influence network, although smaller, also displayed significant concordance, 

with genes such as FOS, FOSB, IEE2, JUNB, ERG1, and ERG3 mirroring the known GeneMania network 

(Figure 4). This correlation between our model-generated networks and established genetic interactions 

attests to the precision and biological relevance of our method. 

2. Gene Ontology (GO) enrichment analysis: This analysis of clusters from the LOG and MLP 

models revealed a significant enrichment of processes intimately linked to cancer survival and Ki-67 status 

(Table 2). GO terms such as "mitotic nuclear division," "chromosome segregation," and "sister chromatid 

segregation," known for their roles in cell proliferation and genomic stability [72, 73], were notably 

prevalent. Additionally, terms related to the immune response, such as "response to type I interferon" and 

"regulation of viral process", which are known to impact cancer progression [74, 75], were also enriched. 

Interestingly, a cluster from the CNN model evaluation exhibited enrichment for "recombinatorial repair" 

(FDR: 5.73e-2), just beyond the significance threshold, further indicating its relevance in cancer 

progression [76]. This congruence between the identified GO terms and recognized cancer-related 

biological processes demonstrated that our computational approach effectively leverages model decision-

making to decode complex biological interactions related to Ki-67 status. The top 10 GO terms for three 

clusters exhibited significant enrichment (Table 2). The clusters derived from our predictive models not 

only demonstrated alignment with known biological networks but also resonated with key functional 

pathways central to cancer survival and Ki-67 status (Table 2). 

Combined cluster analysis 

In the analysis of combined cluster gene interactions, we aimed to evaluate the nature of 

relationships within clustered gene networks identified via our models compared to established biological 

interactions in GeneMania. Our methodological approach enabled us to discern distinct patterns in the types 

of gene‒gene relationships reflected by the different models. The LOG model primarily captured simpler 

gene–gene relationships, such as coexpression and colocalization. Only an average of 4.6% of the 
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interactions across clusters represented more complex interactions, such as physical interactions, genetic 

interactions, predicted associations, pathway involvements, or shared protein domains (Figure 5). 

In contrast, the MLP and CNN models, which are better suited for capturing intricate relationships, 

showed a marked increase in the complexity of identified interactions. The MLP models exhibited an 

average of 31.1% of such complex relationships, while the CNN models demonstrated an even greater 

proportion, with an average of 61.2% (Figure 5). 

These findings illustrate that as the complexity of computational models increases, their ability to 

reflect the nuanced interplay of gene interactions observed in biological systems correspondingly increases. 

The intricate relationships discerned by the more sophisticated MLP and CNN models are in line with 

expectations, suggesting that these models are more adept at unraveling the elaborate web of gene 

interactions that occur in nature. 

 

Discussion 

Our research presents a novel computational methodology that considerably enhances our 

understanding of gene interactions, especially in the context of complex diseases such as cancer. This 

model-agnostic approach breaks new ground by transcending the traditional confines of predictive 

modeling, offering universal applicability across various computational frameworks, from logistic 

regression to the complexities of deep neural networks. A key strength of this approach lies in its ability to 

reveal the inner workings of complex models by methodically controlling inputs and observing changes in 

predictions. This aspect is crucial because it means that the specifics of the model's internal architecture are 

irrelevant to the methodology's effectiveness. It can be applied to any model designed for predicting binary 

outcomes, thereby offering a wide range of applicability. This input‒output-based approach is particularly 

powerful in unmasking the nuanced decision-making processes of these models, allowing for a deep dive 

into the relationships and interactions within genetic networks. 

The robustness of this methodology is evidenced by its ability to extract biologically meaningful 

relationships from the models used. These models not only demonstrate predictive accuracy but also reflect 
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fidelity to complex biological interactions. The enrichment of cancer survival- and Ki-67-related GO terms 

within their clusters and the identification of clinically relevant biomarkers and therapeutic targets such as 

MKI67 validate the alignment of this approach with biological realities. Moreover, the analysis shows that 

as models increase in complexity, such as MLPs and CNNs, they are better equipped to capture a wider 

spectrum of genetic interactions. This finding suggests that the sophistication of a model is proportional to 

the depth of biological insights it can provide. As such, this methodology is well suited to evolve with the 

advancing landscape of computational biology, promising richer insights as models become more complex. 

While the computational demands of our approach are significant, its effectiveness more than 

compensates for these requirements. In resource-limited settings, a hybrid approach incorporating SHAP 

interaction-based feature importance for initial feature determination, followed by our gene influence 

network analysis, is recommended. This strategy maintains a high level of biological insight extraction 

while managing computational constraints. In its current design, our approach is limited to models based 

on predictions of binary outcomes. While this allows for broad applicability in many biomedical scenarios, 

future expansions to accommodate multiclass and continuous outcomes could further enhance its utility and 

scope in genomics research. 

 

Conclusions 

In conclusion, our study not only demonstrates the efficacy of using advanced computational 

models to understand complex genetic networks but also opens new avenues for more interpretable and 

biologically relevant applications of these models in genomics. By leveraging model decision-making 

processes, this methodology identifies critical genes and interactions, offering valuable insights into the 

biological rationale behind these decisions. This capability is pivotal in advancing personalized medicine, 

as it leverages the precision of deep learning models to uncover biologically relevant genes and gene 

networks, fostering the discovery of new biomarker combinations and previously unknown gene 

interactions. 
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Supplementary Information 

Additional file 1: Figure S1. Overview of models for genotype‒phenotype relationships with the top 100 

principal components. Three models—logistic regression (LOG), multilayer perceptron (MLP), and 

convolutional neural network (CNN)—each of which uses the top 100 kernel PCs from 15,132 genes. 

Additional file 2: Figure S2. Evaluation of models for genotype‒phenotype discernment via 5-fold cross-

validation. Detailed performance of the LOG, MLP, and CNN models. The data included average AUROC 

and AUPRC scores. 

Additional file 3: Figure S3. Performance evaluation on test and unseen validation sets. LOG, MLP, and 

CNN models were assessed on a test set (GSE96058) and a validation set (GSE81538). 

Additional file 4: Figure S4. Identifying optimal gene importance cutoffs in predictive models. Graphs 

showing AUROC and AUPRC scores for the top-ranked genes. The optimal cutoff for gene inclusion is 

indicated. 

Additional file 5: Figure S5. Clustering performances of various clustering algorithms for all the models. 

Clustering recommendation and {selected parameter} for LOG: agglomerative clustering - {'n_clusters': 5, 

'affinity': 'l1', 'linkage': 'average'}, MLP: agglomerative clustering - {'n_clusters': 9, 'affinity': 'euclidean', 

'linkage': 'average'}, CNN: agglomerative clustering - {'n_clusters': 10, 'affinity': 'euclidean', 'linkage': 

'complete'}. 
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Additional file 6: Table S1. Feature selection methodologies, their features, and pseudocode. The full code 

is available on the GitHub page. 

Additional file 7: Table S2. Smart clustering: methodologies, search parameters, and features. 

Additional file 8: Table S3. Literature review of critical genes identified by the LOG model. The critical 

genes are listed in descending order of importance with annotations on breast cancer, biomarkers, and 

therapeutic targets. 

Additional file 9: Table S4. Literature review of critical genes identified by the MLP model. The critical 

genes are listed in descending order of importance with annotations on breast cancer, biomarkers, and 

therapeutic targets. 

Additional file 10: Table S5. Literature review of critical genes identified by the CNN model. The critical 

genes are listed in descending order of importance with annotations on breast cancer, biomarkers, and 

therapeutic targets. 

Additional file 11: Table S6. Model-derived and GeneMania network analyses across models. Locations 

of networks derived from LOG, MLP, and CNN models against GeneMania's output, emphasizing 

similarities within networks. The table illustrates networks generated by our methodology for all models, 

ranked by in-network similarity. 

 

References 

1. Bourgeais V, Zehraoui F, Ben Hamdoune M, Hanczar B. Deep GONet: self-explainable deep neural 
network based on Gene Ontology for phenotype prediction from gene expression data. BMC 
Bioinformatics. 2021;22:455. 

2. Ji Z, Tao S, Wang B. Editorial: Artificial Intelligence (AI) Optimized Systems Modeling for the Deeper 
Understanding of Human Cancers. Frontiers in Bioengineering and Biotechnology. 2021;9. 

3. Gazestani VH, Lewis NE. From genotype to phenotype: augmenting deep learning with networks and 
systems biology. Current Opinion in Systems Biology. 2019;15:68–73. 

4. van Hilten A, Kushner SA, Kayser M, Ikram MA, Adams HHH, Klaver CCW, et al. GenNet framework: 
interpretable deep learning for predicting phenotypes from genetic data. Commun Biol. 2021;4:1–9. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


5. Alharbi WS, Rashid M. A review of deep learning applications in human genomics using next-
generation sequencing data. Human Genomics. 2022;16:26. 

6. Koumakis L. Deep learning models in genomics; are we there yet? Computational and Structural 
Biotechnology Journal. 2020;18:1466–73. 

7. Adadi A, Berrada M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). 
IEEE Access. 2018;6:52138–60. 

8. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings of the 
31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran 
Associates Inc.; 2017. p. 4768–77. 

9. Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any 
Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining. New York, NY, USA: Association for Computing Machinery; 2016. p. 1135–44. 

10. Ranftl S, Von Der Linden W. Bayesian Surrogate Analysis and Uncertainty Propagation. In: The 40th 
International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and 
Engineering. MDPI; 2021. p. 6. 

11. Apley DW, Zhu J. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning 
Models. Journal of the Royal Statistical Society Series B: Statistical Methodology. 2020;82:1059–86. 

12. Molnar C. Accumulated Local Effects (ALE) Plot. In: Interpretable Machine Learning. 2019. 

13. Molnar C. Permutation Feature Importance. In: Interpretable Machine Learning. 2019. 

14. Cui T, El Mekkaoui K, Reinvall J, Havulinna AS, Marttinen P, Kaski S. Gene–gene interaction detection 
with deep learning. Commun Biol. 2022;5:1–12. 

15. KC K, Li R, Cui F, Yu Q, Haake AR. GNE: a deep learning framework for gene network inference by 
aggregating biological information. BMC Systems Biology. 2019;13:38. 

16. Afshar S, Braun PR, Han S, Lin Y. A multimodal deep learning model to infer cell-type-specific 
functional gene networks. BMC Bioinformatics. 2023;24:47. 

17. Brueffer C, Vallon-Christersson J, Grabau D, Ehinger A, Häkkinen J, Hegardt C, et al. Clinical Value of 
RNA Sequencing-Based Classifiers for Prediction of the Five Conventional Breast Cancer Biomarkers: A 
Report From the Population-Based Multicenter Sweden Cancerome Analysis Network-Breast Initiative. 
JCO Precis Oncol. 2018;2:PO.17.00135. 

18. Chen X, Chen DG, Zhao Z, Balko JM, Chen J. Artificial image objects for classification of breast cancer 
biomarkers with transcriptome sequencing data and convolutional neural network algorithms. Breast 
Cancer Research. 2021;23:96. 

19. Davey MG, Hynes SO, Kerin MJ, Miller N, Lowery AJ. Ki-67 as a Prognostic Biomarker in Invasive 
Breast Cancer. Cancers (Basel). 2021;13:4455. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


20. Zhang A, Wang X, Fan C, Mao X. The Role of Ki67 in Evaluating Neoadjuvant Endocrine Therapy of 
Hormone Receptor-Positive Breast Cancer. Frontiers in Endocrinology. 2021;12. 

21. Varga Z, Lebeau A, Bu H, Hartmann A, Penault-Llorca F, Guerini-Rocco E, et al. An international 
reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in 
breast cancer using MammaTyper®. Breast Cancer Research. 2017;19:55. 

22. Ojala M, Garriga GC. Permutation Tests for Studying Classifier Performance. In: 2009 Ninth IEEE 
International Conference on Data Mining. Miami Beach, FL, USA: IEEE; 2009. p. 908–13. 

23. Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated 
Clusters. Journal of Cybernetics. 1973;3:32–57. 

24. Dunn† JC. Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics. 1974;4:95–
104. 

25. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple 
association network integration algorithm for predicting gene function. Genome Biol. 2008;9 Suppl 1:S4. 

26. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the 
unification of biology. Nat Genet. 2000;25:25–9. 

27. Zhao D, Qiao J, He H, Song J, Zhao S, Yu J. TFPI2 suppresses breast cancer progression through 
inhibiting TWIST-integrin α5 pathway. Molecular Medicine. 2020;26. 

28. Andresen MS, Stavik B, Sletten M, Tinholt M, Sandset PM, Iversen N, et al. Indirect regulation of 
TFPI-2 expression by miR-494 in breast cancer cells. Sci Rep. 2020;10:4036. 

29. Wang G, Huang W, Li W, Chen S, Chen W, Zhou Y, et al. TFPI-2 suppresses breast cancer cell 
proliferation and invasion through regulation of ERK signaling and interaction with actinin-4 and myosin-
9. Sci Rep. 2018;8:14402. 

30. Li K, Zhang R, Wei M, Zhao L, Wang Y, Feng X, et al. TROAP Promotes Breast Cancer Proliferation and 
Metastasis. Biomed Res Int. 2019;2019:6140951. 

31. Li L, Wei J-R, Song Y, Fang S, Du Y, Li Z, et al. TROAP switches DYRK1 activity to drive hepatocellular 
carcinoma progression. Cell Death Dis. 2021;12:1–15. 

32. Liu H, Zhou Q, Xu X, Du Y, Wu J. ASPM and TROAP gene expression as potential malignant tumor 
markers. Annals of Translational Medicine. 2022;10:586–586. 

33. Li Z, Pu Z, Yang Z, Zhu Y, Deng Y, Li N, et al. Pan-cancer analysis of trophinin-associated protein with 
potential implications in clinical significance, prognosis, and tumor microenvironment in human cancers. 
Front Oncol. 2022;12:971618. 

34. Khatpe AS, Dirks R, Bhat-Nakshatri P, Mang H, Batic K, Swiezy S, et al. TONSL Is an Immortalizing 
Oncogene and a Therapeutic Target in Breast Cancer. Cancer Res. 2023;83:1345–60. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


35. Lee H, Ha S, Choi S, Do S, Yoon S, Kim YK, et al. Oncogenic Impact of TONSL, a Homologous 
Recombination Repair Protein at the Replication Fork, in Cancer Stem Cells. International Journal of 
Molecular Sciences. 2023;24:9530. 

36. Chang HR, Jung E, Cho S, Jeon Y-J, Kim Y. Targeting Non-Oncogene Addiction for Cancer Therapy. 
Biomolecules. 2021;11:129. 

37. Shi Y, Zhao Y, Zhang Y, AiErken N, Shao N, Ye R, et al. TNNT1 facilitates proliferation of breast cancer 
cells by promoting G1/S phase transition. Life Sci. 2018;208:161–6. 

38. Chen Y, Wang J, Wang D, Kang T, Du J, Yan Z, et al. TNNT1, negatively regulated by miR‐873, 
promotes the progression of colorectal cancer. J Gene Med. 2020;22:e3152. 

39. Dai C, Charlestin V, Wang M, Walker ZT, Miranda-Vergara MC, Facchine BA, et al. Aquaporin-7 
Regulates the Response to Cellular Stress in Breast Cancer. Cancer Res. 2020;80:4071–86. 

40. Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New 
players in breast cancer progression and treatment response. Front Oncol. 2022;12:988119. 

41. Kirkegaard T, Riishede A, Tramm T, Nejsum LN. Aquaglyceroporins in Human Breast Cancer. Cells. 
2023;12:2185. 

42. Saatci O, Akbulut O, Cetin M, Sikirzhytski V, Uner M, Lengerli D, et al. Targeting TACC3 represents a 
novel vulnerability in highly aggressive breast cancers with centrosome amplification. Cell Death Differ. 
2023;30:1305–19. 

43. Akbulut O, Lengerli D, Saatci O, Duman E, Seker UOS, Isik A, et al. A Highly Potent TACC3 Inhibitor as 
a Novel Anticancer Drug Candidate. Mol Cancer Ther. 2020;19:1243–54. 

44. Huo Q, Chen S, Li Z, Wang J, Li J, Xie N. Inhibiting of TACC3 Promotes Cell Proliferation, Cell Invasion 
and the EMT Pathway in Breast Cancer. Frontiers in Genetics. 2021;12. 

45. Song H, Liu C, Shen N, Yi P, Dong F, Li X, et al. Overexpression of TACC3 in Breast Cancer Associates 
With Poor Prognosis. Appl Immunohistochem Mol Morphol. 2018;26:113–9. 

46. Xian F, Zhao C, Huang C, Bie J, Xu G. The potential role of CDC20 in tumorigenesis, cancer 
progression and therapy: A narrative review. Medicine. 2023;102:e35038. 

47. Song C, Lowe VJ, Lee S. Inhibition of Cdc20 suppresses the metastasis in triple negative breast cancer 
(TNBC). Breast Cancer. 2021;28:1073–86. 

48. Wang Z, Wan L, Zhong J, Inuzuka H, Liu P, Sarkar FH, et al. Cdc20: a potential novel therapeutic target 
for cancer treatment. Curr Pharm Des. 2013;19:3210–4. 

49. Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W. Targeting Cdc20 as a novel cancer therapeutic 
strategy. Pharmacol Ther. 2015;151:141–51. 

50. He W, Meng J. CDC20: a novel therapeutic target in cancer. Am J Transl Res. 2023;15:678–93. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


51. Castaneda M, den Hollander P, Mani SA. Forkhead Box Transcription Factors: Double-Edged Swords 
in Cancer. Cancer Res. 2022;82:2057–65. 

52. Onodera Y, Takagi K, Neoi Y, Sato A, Yamaguchi M, Miki Y, et al. Forkhead Box I1 in Breast Carcinoma 
as a Potent Prognostic Factor. Acta Histochem Cytochem. 2021;54:123–30. 

53. Lee S, Osmanbeyoglu HU. Chromatin accessibility landscape and active transcription factors in 
primary human invasive lobular and ductal breast carcinomas. Breast Cancer Research. 2022;24:54. 

54. Jiang M, Zhuang H, Xia R, Gan L, Wu Y, Ma J, et al. KIF11 is required for proliferation and self-renewal 
of docetaxel resistant triple negative breast cancer cells. Oncotarget. 2017;8:92106–18. 

55. Zhou J, Chen W-R, Yang L-C, Wang J, Sun J-Y, Zhang W-W, et al. KIF11 Functions as an Oncogene and 
Is Associated with Poor Outcomes from Breast Cancer. Cancer Res Treat. 2019;51:1207–21. 

56. Wang B, Yu J, Sun Z, Luh F, Lin D, Shen Y, et al. Kinesin family member 11 is a potential therapeutic 
target and is suppressed by microRNA‐30a in breast cancer. Mol Carcinog. 2020;59:908–22. 

57. Li Z, Yu B, Qi F, Li F. KIF11 Serves as an Independent Prognostic Factor and Therapeutic Target for 
Patients With Lung Adenocarcinoma. Frontiers in Oncology. 2021;11. 

58. Xiao B, Kuang Z, Zhang W, Hang J, Chen L, Lei T, et al. Glutamate Ionotropic Receptor Kainate Type 
Subunit 3 (GRIK3) promotes epithelial‐mesenchymal transition in breast cancer cells by regulating 
SPDEF/CDH1 signaling. Mol Carcinog. 2019;58:1314–23. 

59. Gong B, Li Y, Cheng Z, Wang P, Luo L, Huang H, et al. GRIK3: A novel oncogenic protein related to 
tumor TNM stage, lymph node metastasis, and poor prognosis of GC. Tumour Biol. 
2017;39:1010428317704364. 

60. Naderi A. Molecular functions of brain expressed X-linked 2 (BEX2) in malignancies. Exp Cell Res. 
2019;376:221–6. 

61. Naderi A, Liu J, Bennett IC. BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer. 
International Journal of Cancer. 2010;126:1596–610. 

62. Naderi A, Liu J, Hughes-Davies L. BEX2 has a functional interplay with c-Jun/JNK and p65/RelA in 
breast cancer. Mol Cancer. 2010;9:111. 

63. Naderi A, Teschendorff AE, Beigel J, Cariati M, Ellis IO, Brenton JD, et al. BEX2 is overexpressed in a 
subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of 
apoptosis in breast cancer cell lines. Cancer Res. 2007;67:6725–36. 

64. Tamai K, Nakamura-Shima M, Shibuya-Takahashi R, Kanno S-I, Yasui A, Mochizuki M, et al. BEX2 
suppresses mitochondrial activity and is required for dormant cancer stem cell maintenance in 
intrahepatic cholangiocarcinoma. Sci Rep. 2020;10:21592. 

65. Rhodes DR, Ateeq B, Cao Q, Tomlins SA, Mehra R, Laxman B, et al. AGTR1 overexpression defines a 
subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proceedings of the 
National Academy of Sciences. 2009;106:10284–9. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


66. Ma Y, Xia Z, Ye C, Lu C, Zhou S, Pan J, et al. AGTR1 promotes lymph node metastasis in breast cancer 
by upregulating CXCR4/SDF-1α and inducing cell migration and invasion. Aging (Albany NY). 
2019;11:3969–92. 

67. Tang W, Guo X, Niu L, Song D, Han B, Zhang H. Identification of key molecular targets that correlate 
with breast cancer through bioinformatic methods. J Gene Med. 2020;22:e3141. 

68. Oh E, Kim JY, Cho Y, An H, Lee N, Jo H, et al. Overexpression of angiotensin II type 1 receptor in 
breast cancer cells induces epithelial–mesenchymal transition and promotes tumor growth and 
angiogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016;1863:1071–81. 

69. Yang S, Gao W, Wang H, Zhang X, Mi Y, Ding Y, et al. Role of PAX2 in breast cancer verified by 
bioinformatics analysis and in vitro validation. Ann Transl Med. 2023;11:58. 

70. Beauchemin D, Lacombe C, Van Themsche C. PAX2 is activated by estradiol in breast cancer cells of 
the luminal subgroup selectively, to confer a low invasive phenotype. Molecular Cancer. 2011;10:148. 

71. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, et al. Regulation of 
ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature. 2008;456:663–6. 

72. Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev 
Cancer. 2001;1:109–17. 

73. Levine MS, Holland AJ. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes 
Dev. 2018;32:620–38. 

74. Weitzman MD, Fradet-Turcotte A. Virus DNA Replication and the Host DNA Damage Response. Annu 
Rev Virol. 2018;5:141–64. 

75. Cheon H, Wang Y, Wightman SM, Jackson MW, Stark GR. How cancer cells make and respond to 
interferon-I. Trends in Cancer. 2023;9:83–92. 

76. Murfuni I, Rass U. Targeting homologous recombination repair in cancer. In: DNA Repair in Cancer 
Therapy. Elsevier; 2016. p. 225–75. 

77. Feng L, Jin F. Screening of differentially methylated genes in breast cancer and risk model 
construction based on TCGA database. Oncol Lett. 2018;16:6407–16. 

78. Jiang Y, Liu L, Shan W, Yang Z-Q. An integrated genomic analysis of Tudor domain–containing 
proteins identifies PHD finger protein 20‐like 1 (PHF20L1) as a candidate oncogene in breast cancer. Mol 
Oncol. 2016;10:292–302. 

79. Lilyquist J, Ruddy KJ, Vachon CM, Couch FJ. Common Genetic Variation and Breast Cancer Risk - Past, 
present, and future. Cancer Epidemiol Biomarkers Prev. 2018;27:380–94. 

80. Wunderle M, Olmes G, Nabieva N, Häberle L, Jud SM, Hein A, et al. Risk, Prediction and Prevention of 
Hereditary Breast Cancer – Large-Scale Genomic Studies in Times of Big and Smart Data. Geburtshilfe 
Frauenheilkd. 2018;78:481–92. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


81. Huang S, Wei Y-K, Kaliamurthi S, Cao Y, Nangraj AS, Sui X, et al. Circulating miR-1246 Targeting 
UBE2C, TNNI3, TRAIP, UCHL1 Genes and Key Pathways as a Potential Biomarker for Lung 
Adenocarcinoma: Integrated Biological Network Analysis. J Pers Med. 2020;10:162. 

82. Tao D, Wang Y, Zhang X, Wang C, Yang D, Chen J, et al. Identification of Angiogenesis-Related 
Prognostic Biomarkers Associated With Immune Cell Infiltration in Breast Cancer. Front Cell Dev Biol. 
2022;10:853324. 

83. Brotto DB, Siena ÁDD, de Barros II, Carvalho S da C e S, Muys BR, Goedert L, et al. Contributions of 
HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol. 
2020;42:1010428320918050. 

84. Tian S, Fu L, Zhang J, Xu J, Yuan L, Qin J, et al. Identification of a DNA Methylation-Driven Genes-
Based Prognostic Model and Drug Targets in Breast Cancer: In silico Screening of Therapeutic 
Compounds and in vitro Characterization. Frontiers in Immunology. 2021;12. 

85. Yan L, He J, Liao X, Liang T, Zhu J, Wei W, et al. A comprehensive analysis of the diagnostic and 
prognostic value associated with the SLC7A family members in breast cancer. Gland Surg. 2022;11:389–
411. 

86. Sun X, Liu P. Prognostic biomarker NEIL3 and its association with immune infiltration in renal clear 
cell carcinoma. Frontiers in Oncology. 2023;13. 

87. Zhao C, Liu J, Zhou H, Qian X, Sun H, Chen X, et al. NEIL3 may act as a potential prognostic biomarker 
for lung adenocarcinoma. Cancer Cell Int. 2021;21:228. 

88. Matta J, Morales L, Dutil J, Bayona M, Alvarez C, Suarez E. Differential expression of DNA repair 
genes in Hispanic women with breast cancer. Mol Cancer Biol. 2013;1:54. 

89. Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, et al. Contribution of the 
Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol. 2020;10:882. 

90. Tuo Y, An N, Zhang M. Feature genes in metastatic breast cancer identified by MetaDE and SVM 
classifier methods. Mol Med Rep. 2018;17:4281–90. 

91. Vellichirammal NN, Tan Y-D, Xiao P, Eudy J, Shats O, Kelly D, et al. The mutational landscape of a US 
Midwestern breast cancer cohort reveals subtype-specific cancer drivers and prognostic markers. 
Human Genomics. 2023;17:64. 

92. Bz S, P H, F G, Pj H, Xz W. Gal3ST-2 involved in tumor metastasis process by regulation of adhesion 
ability to selectins and expression of integrins. Biochemical and biophysical research communications. 
2005;332. 

93. Guerra LN, Suarez C, Soto D, Schiappacasse A, Sapochnik D, Sacca P, et al. GAL3ST2 from mammary 
gland epithelial cells affects differentiation of 3T3-L1 preadipocytes. Clin Transl Oncol. 2015;17:511–20. 

94. Shi H, Song Y, Song Z, Huang C. CKMT1B is a potential prognostic biomarker and associated with 
immune infiltration in Lower-grade glioma. PLoS One. 2021;16:e0245524. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


95. Yang M, Liu S, Xiong Y, Zhao J, Deng W. An integrative pan-cancer analysis of molecular 
characteristics and oncogenic role of mitochondrial creatine kinase 1A (CKMT1A) in human tumors. Sci 
Rep. 2022;12:10025. 

96. Du B, Wang F, Jarad B, Wang Z, Zhang Y. A novel signature based on microvascular invasion predicts 
the recurrence of HCC. J Transl Med. 2020;18:272. 

97. Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, et al. Nuclear localization 
and increased levels of transcription factor YB-1 in primary human breast cancers are associated with 
intrinsic MDR1 gene expression. Nat Med. 1997;3:447–50. 

98. Kohno Y, Matsuki Y, Tanimoto A, Izumi H, Uchiumi T, Kohno K, et al. Expression of Y-box-binding 
protein dbpC/contrin, a potentially new cancer/testis antigen. Br J Cancer. 2006;94:710–6. 

99. Ichikawa T, Shibata M, Inaishi T, Soeda I, Kanda M, Hayashi M, et al. Synaptotagmin 13 Is Highly 
Expressed in Estrogen Receptor-Positive Breast Cancer. Curr Oncol. 2021;28:4080–92. 

100. Zhang Y-D, Zhong R, Liu J-Q, Sun Z-X, Wang T, Liu J-T. Role of synaptotagmin 13 (SYT13) in 
promoting breast cancer and signaling pathways. Clin Transl Oncol. 2023;25:1629–40. 

101. Tayubi IA, Madar IH. Biomineralization associated alkaline phosphatase as a potential marker of 
bone metastasis in the patients with invasive breast cancer. Saudi J Biol Sci. 2022;29:103340. 

102. Klepinin A, Miller S, Reile I, Puurand M, Rebane-Klemm E, Klepinina L, et al. Stable Isotope Tracing 
Uncovers Reduced γ/β-ATP Turnover and Metabolic Flux Through Mitochondrial-Linked Phosphotransfer 
Circuits in Aggressive Breast Cancer Cells. Front Oncol. 2022;12:892195. 

 

Figure legends 

Figure 1 

Integrative framework for model-based phenotype-specific gene analysis and influence network 

construction. The figure illustrates the comprehensive methodology for understanding gene contributions 

and interactions in phenotype determination, using a trained computational model as a proxy for biological 

reality. The model was trained on training data (80% of the dataset GSE96058). The approach then used 

this trained model, alongside testing (20% of GSE96058) and validation datasets (GSE18363), to evaluate 

the model’s decision-making processes. The objective is twofold: (1) to ascertain which genes are pivotal 

for the model to make phenotypic predictions and (2) to uncover the interactions among these important 

genes. This is achieved through a systematic analysis involving individual gene permutation testing and 

gene importance cutoff modeling, which leads to the derivation of ranked gene importance using a dual 
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metric of accuracy and explained variance (R2). With the validation dataset incorporated, the methodology 

was extended to generate a gene influence matrix based on the similarity of average permutation effects 

between important genes on the predictive landscape. Smart clustering is subsequently applied to this matrix 

to reveal phenotype specific, model-inferred gene interaction networks, thereby illustrating the concerted 

gene interactions that underpin phenotypic determination as interpreted by the model. 

 

Figure 2 

Comparative performance of feature selection methodologies on fixed-size feature sets across model 

architectures. This figure illustrates the performance impact of distinct feature selection methodologies on 

the three deep learning architectures when constrained to the critical number of top features (LOG – 44, 

MLP – 21, CNN – 49). The feature sets, while equal in number for each model type, are composed of 

different genes, and each set is selected based on the rankings provided by the respective feature selection 

method. AUROC performance (top panel): The graph shows the average AUROC scores for each 

methodology, representing the discriminative power in predicting Ki-67 status. These scores are averaged 

across 100 simulation runs to ensure robustness in the performance evaluation. AUROC stability (bottom 

panel): The corresponding standard deviations of the AUROC scores, showing the stability and 

repeatability of each feature selection method. The results underscore the efficacy of our method, which 

not only achieves superior average AUROC scores but also demonstrates one of the lowest standard 

deviations, confirming its robustness and consistency in identifying the most predictive features for Ki-67 

status. 

 

Figure 3 

Biological relevance of critical genes identified across model architectures. This figure presents a 

multifaceted evaluation of the biological significance of critical genes identified by our feature selection 

methodology, as applied to logistic regression (LOG), multilayer perceptron (MLP), and convolutional 

neural network (CNN) models. Literature search relevance (top panel): The donut charts illustrate the 
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literature search results for the critical genes, with the central gray number indicating the total count of 

critical genes identified. The outer colored rings represent the percentage of genes associated with breast 

cancer (red), known or proposed as prognostic biomarkers (green), and known or identified as potential 

therapeutic targets (blue). Differential expression analysis (middle panel): Violin plots displaying the 

differential expression of a custom biomarker panel derived from critical genes with significant differential 

expression according to Ki-67 status. The plots contrast survival groups with the Mann‒Whitney P value 

indicating expression differences between the two groups. Survival analysis (bottom panel): The survival 

curves generated from model-specific biomarkers were used to assess the prognostic value of the identified 

critical genes. The curve separation and the log-rank test p-value underscore the significance of the 

biomarkers in survival outcomes. Baseline (far right column): This column shifts the focus to the 

established Ki-67 biomarker. The differential expression by survival groups and their corresponding 

survival curves are depicted, serving as a reference point for the critical gene biomarker panels derived 

from our evaluated models. 

 

Figure 4 

Comparative visualization of example model-inferred gene influence networks and corresponding 

biological networks. Generated influence networks (top panel): The diagrams illustrate an example of 

influence networks as inferred by three different computational models. Nodes represent genes, with 

proximity indicating stronger influence relationships—denoted by black edges for positive correlations (red 

for negative). Node color indicates gene ranking, with light blue for the top 100 genes and green for those 

identified as critical. Node size is proportional to gene importance within the model. GeneMania networks 

(bottom panel): Corresponding GeneMania networks for the genes in the specific influence network 

identified above. These networks show various types of gene–gene interactions, including coexpression 

(purple), physical interactions (red), genetic interactions (green), predicted relationships (orange), 

colocalization (blue), pathway interactions (cyan), and shared protein domains (tan). These networks serve 

as a biological validation and comparison layer for the computational influence networks shown above, 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.21.24303141doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.21.24303141
http://creativecommons.org/licenses/by-nc/4.0/


offering a holistic view of gene interrelationships in a biological context. Additional file 11, Table S6 

provides an extended review of all networks identified within the top 100 genes for each model evaluation 

and their GeneMania counterparts. 

 

Figure 5 

Distribution of interaction types averaged across gene clusters by model. The figures above display the 

proportional breakdown of gene‒gene interaction types within the clusters generated by the three different 

models as given by GeneMania searches. The LOG model (left) primarily captures coexpression (purple) 

and colocalization (blue) interactions, with a minor representation of complex interaction types (4.6%). In 

contrast, the MLP (middle) and CNN (right) models show an increased proportion of complex interaction 

types, including physical interactions (red), genetic interactions (green), predicted interactions (orange), 

pathway interactions (cyan), and shared protein domains (brown), making up 31.1% and 61.2% of the 

average across all of their respective clusters. This suggests a relationship between the complexity of the 

model and the sophistication of the biological relationships our approach can infer.  
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Tables 

Table 1. Summary of literature search of the top 10 critical genes identified by evaluation of each model  

 LOG Critical Genes MLP Critical Genes CNN Critical Genes 

Rank Gene BC BM TT Source Gene BC BM TT Source Gene BC BM TT Source 

1 TACC3 X X X  [42–45] MFSD6L      TDRD1 X   [77, 78] 

2 KLHDC7A X    [79, 80] TNNI3 X X X  [81, 82] GRIK3 X X X [58, 59] 

3 HOXC12 X    [83] TNNT1 X X X  [37, 38] SLC7A4 X X  [84, 85] 

4 NEIL3 X X   [86–88] FOXI1 X X X  [51–53] LRP2 X   [89] 

5 MKI67 X X X  [17, 19–21] HOMER2 X    [90] BEX2 X X X [60–64] 

6 TFPI2 X X X  [27–29] DNAH2 X    [91] AGTR1 X X X [65–68] 

7 GAL3ST2 X    [92, 93] TDRD5 X    [78] CKMT1B X X  [94–96] 

8 YBX2 X    [97, 98] KIF11 X X X  [54–57] SLC4A4     

9 SYT13 X    [99, 100] MRAP X    [101] ENPP5     

10 GYPE     CYFIP2     CKMT1A X X  [94–96, 102] 

 

This table presents the top 10 critical genes from each of the three computational modeling techniques within the context of breast cancer research. 

The table highlights whether each gene is associated with breast cancer (BC), recognized or suggested as a prognostic biomarker (BM), or considered 

a potential therapeutic target (TT). An X signifies an established or proposed link in the respective category based on a thorough literature review. 

Full accounts of the complete critical gene sets and the references underpinning their biological significance are accessible in the supplementary 

documents (Additional files 8-10; Tables S3-S5). 
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Table 2. Statistically significant Gene Ontology (GO) terms derived from the discovered influential gene networks 

LOG (Cluster 1) MLP (Cluster 5) MLP (Cluster 7) 

Function FDR Coverage Function FDR Coverage Function FDR Coverage 

mitotic nuclear division 1.19e-20 18/270 mitotic nuclear division 2.11e-13 11/270 response to type I interferon 2.01e-19 10/88 

chromosome segregation 7.88e-18 16/248 
mitotic sister chromatid 

segregation 
4.77e-10 8/137 

cellular response to type I 

interferon 
2.01e-19 10/88 

sister chromatid segregation 1.24e-16 14/176 chromosome segregation 4.77e-10 9/248 response to virus 5.68e-16 10/197 

nuclear chromosome segregation 1.24e-16 15/236 sister chromatid segregation 2.06-9 8/176 
response to viral genome 

replication 
7.17e-11 7/94 

mitotic sister chromatid 

segregation 
2.24e-14 12/137 nuclear chromosome segregation 1.76-8 8/236 negative regulation of viral process 8.61e-11 7/102 

spindle 1.42e-11 12/236 regulation of nuclear division 5.29e-7 6/106 regulation of viral process 8.61e-11 8/210 

microtubule cytoskeleton 

organization involved in mitosis 
6.24e-11 10/133 

metaphase/anaphase transition of 

cell cycle 
1.20e-6 5/53 regulation of symbiotic process 8.71e-11 8/221 

spindle organization 3.41e-8 9/172 mitotic sister chromatid separation 1.20e-6 5/54 viral genome replication 8.71e-11 7/106 

condensed chromosome 4.43e-8 8/114 
regulation of mitotic sister 

chromatid separation 
1.20e-6 5/57 regulation of viral life cycle 8.64e-10 7/149 

chromosomal region 4.57e-8 10/266 
regulation of chromosome 

separation 
1.42e-6 5/59 viral life cycle 4.82e-8 7/267 

 

This table presents the top 10 GO terms from three distinct gene clusters. These terms are associated with essential biological functions in cell 

division and the immune response, which are critical for understanding Ki-67 status in cancer prognosis. The false discovery rate (FDR) values show 

the reliability of the associations, and the coverage indicates the number of genes within each cluster that are linked to the respective GO term. 

Clusters not shown lacked significant GO terms (FDR < 0.05) or associated biological processes according to GeneMania data. 
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