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Patient digital twins: an introduction based on a scoping review 

 

 

SUMMARY (160 words) 

The concept of digital twins, widely adopted in industry, is entering healthcare. In this 

scoping review, we analysed definitions and characteristics of patient digital twins being 

developed for clinical use. Searching for studies claiming digital twin 

development/evaluation until August 2023, we identified 86 articles representing 80 unique 

claimed digital twins, nearly all (98%) in preclinical phases. From the analysis of definitions 

and characteristics, we propose to define patient digital twin as “a viewable digital replica of 

a patient, organ, or biological system that contains multidimensional, patient-specific 

information”. Two main forms were found: simulation digital twins using computational 

modelling of patient anatomy/physiology to run personalised outcome predictions and 

therapy evaluations, mostly for one-time assessments; and monitoring digital twins 

harnessing aggregated patient data for continuous risk/outcome forecasting over time and 

care optimisation. As patient digital twins rapidly emerge, the proposed definitions and 

subtypes offer a framework to guide research into realising the potential of these 

personalised, integrative technologies to advance clinical care. 
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Patient digital twins: an introduction based on a scoping review 

 

INTRODUCTION 

Each industrial revolution has transformed the practice of medicine. The first two led to the 

development of new techniques for the industrial collection of new data (biological, imaging, 

etc.) on the human body. The third - or digital - revolution transformed this analogue data 

into digital data, accelerating the exchange of information, and allowing the emergence of 

computer models to propose a diagnosis, establish a prognosis, and recommend a treatment.1  

For some contemporaries, we are currently in the midst of the fourth industrial revolution, 

which is the merging of the physical and digital worlds, based on three pillars: the Internet of 

Things, increasing connectivity, and machine learning-based decisions.2,3 

Digital twins are an emblematic illustration of the applications of this new industrial 

revolution. Michael Grieves introduced the concept in 2002 as a system consisting of a 

physical product, its virtual counterpart and two-way data exchange between the two 

entities.4 However, the term “digital twin” was first used and defined in 2010 by NASA 

engineers as “an integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or 

system that uses the best available physical models, sensor updates, fleet history, etc., to 

mirror the life of its flying twin”.5 Following the popularisation of the concept of the fourth 

industrial revolution in 2015, digital twins attracted interest from all industries.3 With the 

objective of reducing production times through monitoring, coordination and control of 

production systems, the manufacturing industry became the most active sector in terms of 

research and implementation of digital twins.6 Digital twins also extended to construction, 

energy, transport, smart cities, agriculture, education and health.6  
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In the health sector, the concept of digital twins attracted interest from industry, scientists, 

clinicians and patients.7,8 Besides digital twins of hospitals, there is a strong rationale for the 

development of digital twins of patients, as these systems could offer personalised medicine 

through information gathered by the Internet of Things, real-time adaptation of treatments 

through efficient connectivity, and even automation of certain aspects of medical 

management through predictions based on machine learning.9 An increasing number of 

scientific publications claim to be developing or to have developed "digital twins" of organs, 

physiological systems, or patients. However, when the term “digital twin” is used in this 

context, it remains unclear if it corresponds to the definitions used in industry, or whether 

unique concepts and characteristics emerge for patient digital twins. 

The three previous systematic literature reviews related to digital twins in health did not focus 

on patient digital twins.10–12 To contribute to the understanding of patient digital twins, we 

conducted a scoping review to systematically map research in this area. The following 

research question was formulated: "What are the definitions and characteristics of digital 

twins provided by research teams developing patient digital twins for clinical applications, as 

reported in the scientific literature?" 

 

METHODS 

We conducted this scoping review in accordance with the Joanna Briggs Institute (JBI) 

guidelines for scoping reviews13,14 and reported it following the Scoping Review Extension of 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-ScR) 

checklist.15 The authors received training on the methodology of scoping reviews using the 

JBI Reviewers’ Manual 2020.16 We registered the protocol for this review at the Open 

Science Framework (https://osf.io/7twn8/). 
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Search Strategy 

We created search strategies with a medical librarian to identify published articles on patient 

digital twins. We initially searched MEDLINE via PubMed. The text words contained in the 

titles and abstracts of relevant articles and the MeSH terms describing those articles informed 

development of a full search strategy. We adapted this search strategy for each included 

database and information source, namely: PubMed, Scopus, Embase, IEEE Web of Science, 

and Google Scholar. When searching Google Scholar, we used incognito mode to minimize 

effects of past search histories and screened the first 500 results. Full search strategy is 

reported in the appendix (pp3-4). 

Selection process 

We collated the identified citations from the comprehensive search and uploaded them into 

Rayyan, an online review tool.17 Two independent reviewers (DD, AG) removed duplicates 

and screened titles and abstracts for inclusion based on the predefined criteria described 

below. All screening was performed in a masked, duplicate fashion. Any disagreements 

between reviewers were resolved through discussion. Reasons for exclusion at the stage of 

full-text screening were recorded. 

Inclusion and exclusion criteria 

We included peer-reviewed research articles in which the authors claimed to be developing or 

to have developed/tested a digital twin in healthcare, subsequently referred to as a 'claimed 

digital twin' (CDT). Only literature published in English, French, or German was included up 

to August 31 2023. Finally, to match the context of this review, we restricted included 

research to articles focused on developing or testing digital twins specifically representing 

patients, or components of patients. 
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Exclusion criteria were: (1) animal studies, abstracts only, conference papers, reviews, 

editorials or correspondence, non-peer-reviewed articles; (2) studies in languages other than 

English, French, or German; (3) studies unrelated to health; (4) digital twins not representing 

patients or part of a patient; and (5) studies limited to proposing a framework for a digital 

twin with no case study. 

Data charting 

Two reviewers (DD, AG) jointly developed a data charting form using Microsoft Excel to 

determine which variables to extract. For each included study, we extracted the following 

characteristics: study title, publication year, first author name, country of the corresponding 

author, and journal. We compiled the definitions of digital twins provided by the study 

authors and summarised their various dimensions (e.g. digital replica, high-fidelity 

representation, two-way data exchange). Drawing from NASA's digital twin definition, we 

assessed whether the developed digital twins were multi-scale, integrated multi-physics 

modelling, and multiple data sources. We incorporated additional descriptors specific to 

digital twins for patient care, including medical discipline, organs/systems represented, 

categorisation of whether the models constituted anatomical representations (e.g. 3D) and/or 

models of physiological systems, and the study’s objective (simulation, prediction, 

monitoring, visualisation, generation of synthetic patients). Technical digital twin 

characteristics extracted included: types of patient data used, approach used (mechanistic, 

data-driven, hybrid), whether the digital twin included analytics and advanced visualisation, 

constituted a model for simulations versus a simulation itself, capacity and frequency of 

updates, inclusion of none, one-way or two-way data exchange with the patient, and for two-

way exchange, the nature of feedback (recommendation or other type). Finally, we 

determined the clinical research phase of each digital twin by deriving the clinical research 
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phases developed for artificial intelligence in medicine.18 Additional information on each 

variable is presented in appendix (pp 5-6). 

To ensure consistency, two reviewers (AG, DD) independently extracted data from the first 

10 articles prior to full data extraction. Any disagreements were resolved through discussion. 

Following this pilot extraction and adaptation of the data charting form, we extracted data 

from the remaining studies in a masked, duplicate manner. Studies not meeting inclusion 

criteria were excluded. Any disagreements between reviewers were resolved through 

discussion.  

Unsupervised classification of claimed digital twins 

To perform unsupervised classification of CDT, we analysed dissimilarities by employing the 

Gower distance metric on a subpart of our dataset (the variables included are marked with an 

asterisk in appendix 2 (pp 5-6)).19 The optimal cluster count was identified using the 

Partitioning Around Medoids (PAM) method, guided by silhouette width analysis across 2 to 

10 clusters.20 We then employed t-Distributed Stochastic Neighbor Embedding (t-SNE) for 

dimensionality reduction to facilitate visualisation in a 2D space. These analyses were 

performed in R (v.4.2.3) with the packages cluster, Rtsne, and ggplot2. We finally compared 

the characteristics of the CDTs of each cluster using the package gtsummary. 

 

RESULTS 

Characteristics of included studies 

A total of 7,224 citations were identified from the search strategies (Figure 1). After 

removing duplicates and screening titles and abstracts, 154 articles were examined in full-

text, and 68 were excluded (see appendix pp 7-11 for a full list of excluded full text reviews 
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with exclusion reasons). Finally, 86 articles21–106 representing 80 unique CDTs were included 

in this scoping review. The full results, with individual data for each study, can be viewed in 

tabular form at the following address: https://osf.io/7twn8/.  

The first publications of CDTs appeared in 2019. Since then, publication volume increased 

yearly from 3 papers in 2019 rising to 23 in 2022 and 32 papers in the partial 2023 year 

(appendix p 12). Though incomplete, 2023 totals through August 31 still reflect rising 

publication volume. 

The included publications originated from 22 countries (appendix p 12). The United States of 

America was the most common country of origin, with 22 articles (25% of included 

publications). At the continental level, Europe was leading with 43 publications (49%), 

followed by North America with 25 (29%), and Asia with 16 (18%). No articles from South 

America or Africa were found. 

 

Definitions of digital twin provided by authors 

Definitions of "digital twin" were provided in 55 articles (63% of publications, appendix pp 

13-16). Among articles with definitions, a digital twin was defined as a digital replica of a 

real object in 42 publications (76%), with real-time update in 23 (42%), a patient-specific 

approach in 13 (24%), and a two-way communication between the real and the digital object 

in 8 (15%) (Figure 2).  

 

Medical domains  

Of the 80 CDT identified, 48 (60%) represented specific organs or anatomical regions, while 

11 (14%) embodied biological systems (e.g. immune system). The remaining 21 (26%) 
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publications described other types of CDT (e.g. systems for emotion recognition, foetal heart 

monitoring, etc.). Among the 48 publications with CDT representing specific organs, the 

most widely modelled organs were the heart (15 CDT, 31%), the bones and joints (10, 21%), 

the lung (6, 12%), and the arteries (5, 10%) (Figure 3 and appendix p 17). Three (6%) CDT 

involved multiple organs. Among the 11 CDT representing biological systems, the endocrine 

(4, 36%) and the immune system (3, 27%) were the most widely involved (appendix p 17). 

The most highly represented medical disciplines were cardiology (16 CDT, 20%), oncology 

(10, 13%) and orthopaedics (9, 11%) (appendix p 18). 

 

Characteristics of the claimed “digital twins” 

The patient data used to develop and/or run the 80 unique CDT encompassed: data from 

clinical notes (15 CDT, 19% of publications), laboratory test results (13 CDT, 16%), medical 

imaging exams (35 CDT, 44%), wearable device data (12 CDT, 15%), and other data 

modalities such as ECG, optical tracking, diet data, intra-operative haemodynamic 

measurements, in 32 CDT (40%) (appendix p 19). Multimodal data incorporation, 

synthesising various data types and sources, was present in 39 (49%) CDT. Nearly all CDTs 

(78, 98%) involved data analytics and 29 (36%) some form of advanced visualisation. Eight 

(10%) CDT involved multiphysics, and nine (11%) were multi-scale. In terms of 

implementation, 40 (50%) CDT followed a mechanistic approach, 22 (28%) a data-driven 

approach, 17 (21%) combined both approaches, and one (1%) none of these approaches. 

Most of the CDT developed (56, 70%) corresponded to models for simulation, and not 

simulations themselves.  

In terms of medical approach, 10 (12%) CDT were categorised as anatomical, 22 (28%) as 

physiological, and 28 (35%) combined anatomical and physiological features. The objectives 
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of CDTs were prediction (61 CDTs, 76%), simulation (52 CDTs, 65%), monitoring (11 

CDTs, 14%), visualisation (10 CDTs, 12%) and generation of synthetic patient data (8 CDTs, 

10%).  

Among the 64 (80% of total) patient-specific CDTs, 44 (69%) were static models, whereas 20 

(31%) were designed as dynamic models with regular data inputs or outputs on a daily, 

hourly, or real-time basis (appendix p 20). 

Data flow topology characterises the exchange of information between patient and digital 

twin. Thirteen (16%) CDTs involved no flow from patient to their virtual counterpart; 58 

(73%) used one-way flow from patient to their virtual counterpart; and 9 (11%) enabled two-

way data flow between patient and their virtual counterpart (Figure 2). Within the nine two-

way digital twins, automated feedback occurred via recommendations to the patient or the 

physician in six cases and via direct feedback during surgical navigation in three cases.  

Finally, regarding the clinical research phase of the CDTs, 78 (98%) were categorised as 

phase 0 or 1 (pre-clinical phases) and only 2 (2%) involved clinical assessments and thus 

reached phase 2. No CDT corresponded to phases 3 or 4. 

 

Unsupervised classification of claimed digital twins 

Three clusters were identified using the PAM method (Figure 4, appendix p 21). 

Cluster 1 included 43 unique CDTs, which corresponded to patient-specific organs or 

systems models for simulations and predictions. Indeed, 42 (98%) were models to perform 

simulations, of an organ or system in 42 (98%) cases, and these were anatomical and/or 

physiological models in 43 (100%) cases relying on a mechanistic approach in 41 (95%) 
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cases. The output of these CDT was patient-specific in 42 (98%) cases, and their use was 

planned for one-time use in 36 (84%) cases rather than for dynamic use. 

Cluster 2 included 22 CDTs and mainly corresponded to prediction models and monitoring 

systems. In this category, the CDT most often did not involve an anatomical or physiological 

model of the patient (18 CDTs, 82%). The approach was mainly data-driven (20 CDTs, 

91%). These CDTs were often dynamic (13 CDTs, 59%), and provided feedback in 5 (23%) 

cases. 

Cluster 3 included 15 CDTs and usually corresponded to models not linked to patients but 

designed for research. Indeed, in this group, only one (7%) CDT was patient-specific63. Most 

CDTs were models for simulation (12, 80%) and involved a mechanistic approach (9 CDTs, 

60%). Examples of such CDTs are models of the immune response to vaccines,62 but also 

CDTs that corresponded to the generation of synthetic patients for in-silico trials103 (5 CDTs, 

33%).  

 

DISCUSSION 

This systematic review highlights the growing interest in the concept of patient digital twins 

while at the same time revealing the lack of a uniform vision of this same concept among 

research teams. 

The publication of scientific articles on digital twins across all sectors has experienced 

exponential growth, starting from one article in 2014 to more than 1,000 articles per year in 

2022, predominantly in the manufacturing industry.107,108 Studies focusing on the 

development and/or evaluation of patient digital twins emerged later, from 2019 onwards, but 

have seen the same growth, particularly in Europe and North America. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.20.24303096doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24303096
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Despite growing interest, there is no consensus definition of the digital twin concept. 

Depending on the research teams and fields of application, the definitions and characteristics 

of digital twins differ,108 and this is also reflected in our study, with a diversity of definitions 

and types of CDTs. 

If one were to strictly import the digital twin definition used by Michael Grieve4 and NASA5 

from the manufacturing industry and aerospace sector to patients, a digital twin of a patient 

would be an integrated multi-scale, probabilistic simulation of a patient that uses the best 

available models, sensor updates, medical history, etc., to mirror the health status of the 

patient in real-time and act on them. But this definition is not currently achievable since no 

patient digital twin is able to capture the complexity of the human body in real time. Indeed, 

creating a patient's digital twin is different from creating a digital twin of an object like an 

airplane. An airplane is designed and developed entirely by humans, who have mastery over 

the composition and physical properties of each part of an airplane, the assembly of all these 

parts, and the interaction of the whole. In contrast, we still have an imperfect understanding 

of the functioning of the human body and the interaction of its different organs and systems. 

It is therefore simpler to model an airplane than the human body with a high degree of 

fidelity and in a multiscale way. It is also easier to integrate additional sensors and actuators 

on an airplane's controls than to have patients continuously wear or have implanted sensors or 

actuators to obtain the two-way, real-time data exchange between the plane or patient and 

their digital twin. Moreover, while the digital twin of the airplane relies essentially on the 

physical properties of the aircraft, the digital twin of a patient will have to go beyond 

anatomical and physiological models of the patient's various organs and systems to include 

models of the patient's cognitive and emotional functioning.109 Finally, concerning the 

practical use of the terms "patient digital twin", they must be able to echo patients' own 

perceptions of what a digital twin is. These terms are not neologisms, but each refers to 
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concepts already used in everyday language by patients. Because twin refers to a multiple 

birth, it is likely that the patient pictures a digital twin as a realistic avatar of themselves in 

the same health state. This implies that in the mind of a clinician or patient not well-versed in 

computer science, the first representation of a patient digital twin will be that of a 3D 

representation of the patient's body and its functioning. 

For all these reasons, the concept of a digital twin, which is appropriate in manufacturing, 

could be considered inappropriate in medicine. However, on the basis of the various articles 

in this review, we believe that this concept actually corresponds to current advances brought 

by the multiplication of data sources, data analysis and the visualisation of patients' state of 

health. It could also be a useful educational tool for the communication with patients when 

discussing models and predictions made from their data. Since it is currently not feasible to 

bring together all the characteristics of the digital twin in manufacturing, we propose the 

following definition of a patient digital twin: “A patient digital twin is a viewable digital 

replica of a patient, organ, or biological system that contains multidimensional, patient-

specific information”. 

The first advantage of this definition is that it can exclude what is not a patient digital twin: 

generic models of cells, tissues, organs, or biological systems not linked to a patient but used 

to study disease progression or drug development29,54,80; pure cyber-physical systems, that is, 

systems such as implantable cardioverter-defibrillators, which do not use a representation of 

the patient and therefore not a “viewable” digital replica of the patient; digital patient data 

created from patient databases for in silico trials;47,99,103 often using generative adversarial 

networks, which we propose to call “synthetic patients” instead; data sets from another 

patient, similar to those of the index patient;77 machine learning based classifiers, trained on a 

population to predict a diagnosis;69 and patient models built from a single data source, such as 

demographic characteristics or imaging.31,47,49 
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The second advantage of this definition is that it encompasses the two major trends in patient 

digital twins revealed by this study. On one hand, digital twins offering a high degree of 

fidelity, combining advanced anatomical and physiological models, based on mechanistic 

approaches or combining mechanistic and data-driven approaches.43,66,105 However, their 

limitation is their common reliance on hospital-acquired data such as imaging data (CT, MRI) 

or intraoperative haemodynamic data. They are therefore generally restricted to one-time 

purposes, and not in a dynamic form. On the other hand, digital twins corresponding to real-

time representations of patients through home-based data collection via wearables, using 

machine learning techniques for analysis and alert detection.25,27 This type of digital twin is 

dynamic, can be two-way by giving recommendations to patients or by modifying a 

biological parameter of the patient via medical devices, but often offers little or no 

information on the patient's anatomy or physiology. For it to be differentiable from a cyber-

physical system or a telemonitoring system, it must integrate different data sources, data 

analysis systems, and a visualisation of the patient organ, system or body. We thus propose 

two major categories of patient digital twins (Figure 5): 

- Simulation patient digital twins: personalised, viewable digital replicas of patients' anatomy 

and physiology based on computational modelling to run simulations predicting outcomes in 

hypothetical scenarios or evaluating therapeutic approaches. These digital twins are mostly 

used for one-time assessments rather than continuous monitoring. 

- Monitoring patient digital twins: personalised, viewable digital replicas of patients 

leveraging aggregated health data and analytics to enable continuous predictions of risks and 

outcomes over time and provide feedback for optimising care. These digital twins are mostly 

focused on continuous tracking rather than detailed mechanistic simulation. 
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As technical progress is made, it is likely that these two types of patient digital twins will 

converge, combining both mechanistic models and increasingly efficient continuous data 

collection and data-driven approaches.110 However, currently, only 14 CDTs from this review 

would meet the definition of patient digital twins combining multidimensional, patient-

specific data, data analytics and advanced visualisation, all being simulation patient digital 

twins.23,34,37,43,48,57,58,61,66,70,88,98,105,106 Digital twins for surgical navigation systems are the 

most advanced, with three teams presenting patient digital twins combining both a 

mechanistic approach and dynamic real-time adaptation.58,88,106  

The main benefit expected from these patient digital twins is to offer increasingly 

personalised medicine, taking into account all the available data and patient-specific 

simulations and predictions. This would make it possible, for example, to choose the most 

appropriate drug treatment based on the patient's medical history, allergies, comorbidities and 

genetic profile;22 the most appropriate stent for the configuration of the aortic dilatation;23 

and the least risky surgical approach thanks to pre-operative simulations. But the benefits 

could also be for patient education and engagement: patients would interact with their digital 

replica to better understand their own body, health conditions, and influence of behaviours, 

and collaborate more with providers. 

Strengths and limitations 

The strength of this review is to be the first to have carried out a systematic analysis of the 

literature concerning patient digital twins, and to have been able to identify the major trends. 

We also acknowledge several limitations. The main one is that in the absence of a consensual 

definition of the digital twin concept, we chose to include all articles in which the authors 

claimed they had developed a digital twin or part of a digital twin. This has undoubtedly led 

us to not include some articles that meet the concept of a digital twin but did not use that 
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term, and to include some articles that in fact did not develop a digital twin but only a simple 

prediction model. Another limitation is that we realised that some characteristics of digital 

twins were not appropriate either because very industry-specific such as the “multiphysic” 

characteristic or because they did not allow us to be consistent in our assessment. For 

example, we often failed to determine whether the presented digital twin was at phase 0 or 1 

of development and chose to merge these two categories as preclinical. Finally, we did not 

include articles written in languages other than English, French, or German, and this may 

have led to underrepresenting the work of some regions of the globe. 

 

CONCLUSIONS 

In conclusion, we propose that a patient digital twin be defined as “a viewable digital replica 

of a patient, organ, or biological system that contains multidimensional, patient-specific 

information”. We currently identify two categories, simulation patient digital twins and 

monitoring patient digital twins. In the future, we envisage a fusion of these two types of 

digital twins that will combine a high degree of fidelity based on anatomical and 

physiological models with real-time updating and feedback to the patient. 
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Figure legends 

 

Figure 1: PRISMA flowchart 

Figure 2: Dimensions of digital twins included in definitions provided by authors (grey) and 
included in the claimed digital twins (black). Created with Biorender.  

Figure 3: Distribution of organs/systems modelled in the claimed digital twins identified. 
Created with Biorender. n = 48 claimed digital twin representing specific organs 

Figure 4: Clusters of claimed digital twins identified. Each point and its associated number 
correspond to one study and its study identification number. 

Figure 5: Proposed definitions and characteristics of patient digital twins. Created with 
Biorender. PDT: Patient digital twin 
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Digital replica 
n = 42/55 (76%)

High-fidelity representation 
n = 9/55 (16%)

Two way communication
n = 8/55 (15%)
n = 9/80 (11%)

Real time 
n = 23/55 (42%)

Dynamic model 
n = 20/80 (25%)

Patient specific 
n = 13/55 (24%)
 n = 64/80 (80%) 

Ca2+

Multiscale 
n = 3/55 (6%)
n = 9/80 (11%)
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Heart
n = 15 (31%)

Bones and joints
 n = 10 (21%)

Lung 
n = 6 (12%)

Arteries 
n = 5 (10%)

Multiple organs 
n = 3 (6%)

Brain 
n = 1 (2%)

Skull - teeth - craniofacial stucture  
n = 3 (6%)

Liver 
n = 1 (2%)

Breast
n = 1 (2%)

Gastrointestinal tract 
n = 2 (4%)

Skin 
n = 1 (2%)
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