
1 

 

Automated Derivation of Diagnostic Criteria for Lung Cancer using Natural Language Processing on 1 

Electronic Health Records: A pilot study. 2 

Andrew Houston
1,2

, Sophie Williams
1,2

, William Ricketts
3
, Charles Gutteridge

1
, Chris Tackaberry

4
, John 3 

Conibear
5 

4 

1
 Barts Life Sciences, Barts Health NHS Trust, London, UK 5 

2
 Digital Environment Research Institute, Queen Mary University of London, London, UK 6 

3
 Respiratory Medicine, Barts Health NHS Trust, London, UK 7 

4 
Clinithink Ltd., London, UK 8 

5
 Barts Cancer Centre, Barts Health NHS Trust, London, UK  9 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2024. ; https://doi.org/10.1101/2024.02.20.24303084doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.02.20.24303084
http://creativecommons.org/licenses/by/4.0/


2 

 

Abstract 10 

Background: The digitisation of healthcare records has generated vast amounts of unstructured data, 11 

presenting opportunities for improvements in disease diagnosis when clinical coding falls short, such 12 

as in the recording of patient symptoms. This study presents an approach using natural language 13 

processing to extract clinical concepts from free-text which are used to automatically form diagnostic 14 

criteria for lung cancer from unstructured secondary-care data. 15 

Methods: Patients aged 40 and above who underwent a chest x-ray (CXR) between 2016-2022 were 16 

included. ICD-10 and unstructured data were pulled from their electronic health records (EHRs) over 17 

the preceding 12 months to the CXR. The unstructured data were processed using named entity 18 

recognition to extract symptoms, which were mapped to SNOMED-CT codes. Subsumption of 19 

features up the SNOMED-CT hierarchy was used to mitigate against sparse features and a frequency-20 

based criteria, combined with univariate logarithmic probabilities, was applied to select candidate 21 

features to take forward to the model development phase. A genetic algorithm was employed to 22 

identify the most discriminating features to form the diagnostic criteria. 23 

Results: 75002 patients were included, with 1012 lung cancer diagnoses made within 12 months of 24 

the CXR. The best-performing model achieved an AUROC of 0.72. Results showed that an existing 25 

‘disorder of the lung’, such as pneumonia, and a ‘cough’ increased the probability of a lung cancer 26 

diagnosis. ‘Anomalies of great vessel’, ‘disorder of the retroperitoneal compartment’ and ‘context-27 

dependent findings’, such as pain, statistically reduced the risk of lung cancer, making other 28 

diagnoses more likely. The performance of the developed model was compared to the existing 29 

cancer risk scores, demonstrating superior performance. 30 

Conclusions: The proposed methods demonstrated success in leveraging unstructured secondary-31 

care data to derive diagnostic criteria for lung cancer, outperforming existing risk tools. These 32 

advancements show potential for enhancing patient care and results. However, it is essential to 33 

tackle specific limitations by integrating primary care data to ensure a more thorough and unbiased 34 
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development of diagnostic criteria. Moreover, the study highlights the importance of contextualising 35 

SNOMED-CT concepts into meaningful terminology that resonates with clinicians, facilitating a 36 

clearer and more tangible understanding of the criteria applied. 37 

Keywords: Electronic Health Records; Natural Language Processing; Cancer; Diagnostics; SNOMED-38 

CT; Machine Learning; Genetic Optimisation  39 
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Background 40 

Lung cancer stands as one of the most common and serious types of cancer, ranking 2
nd

 in terms of 41 

new cases and 1
st
 in terms of mortalities, according to global statistics from 2020 [1]. The most 42 

recent statistics show that, in England, only 29.4% of lung cancer cases are identified at stages 1 and 43 

2 [2], underscoring the critical need for improved diagnostic criteria and detection methods to 44 

enhance the chances of successful treatment and reduce the burden of this disease on patients and 45 

healthcare systems. Recognising this urgency, the NHS has a long-term plan to diagnose 75% of all 46 

lung cancers at stages 1 and 2 by 2028, aiming to significantly improve early detection rates and 47 

patient outcomes. 48 

Early diagnosis is imperative given the aggressive nature of lung cancer, with delays in detection 49 

resulting in patients presenting with more advanced stages of the disease. Recent data published by 50 

the Office for National Statistics and Public Health England showed the 5-year survival rate among 51 

patients diagnosed with stage 1 lung cancer was 56.6%, with this figure reducing to only 2.9% among 52 

those diagnosed with stage 4 disease [3]. Additionally, precise diagnostic criteria play a pivotal role in 53 

distinguishing lung cancer from a spectrum of cardiothoracic and respiratory conditions that may 54 

exhibit similar symptoms. With that said, to ensure the cost-effectiveness and cost-benefit of 55 

targeted interventions aimed at improving the diagnosis of lung cancer, judicious allocation of 56 

resources is required [4].  57 

Electronic health records (EHRs) have revolutionized clinical research by offering a vast and 58 

comprehensive repository of patient information. Records encompass a range of data, including 59 

patient demographics, medical history, laboratory results, medication prescriptions, and procedure 60 

information. Such extensive and structured data enable researchers to conduct large-scale, 61 

population-based studies, aiding in the identification of trends [5], risk factors [6–8], and treatment 62 

outcomes [9,10]. However, a significant limitation of EHRs pertains to accuracy and completeness, 63 

particularly among symptoms and diagnosis data. Symptoms and diagnoses are often documented in 64 
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unstructured free-text clinical notes, requiring manual coding into clinical ontologies such as ICD-10 65 

and SNOMED-CT. The process of clinical coding can introduce inaccuracies and 'missingness' in the 66 

data, posing considerable challenges for clinical research [11,12]. Considering these challenges, 67 

techniques such as natural language processing (NLP) offer valuable solutions for not only mitigating 68 

the limitations of structured data but also unlocking valuable insights that may be exclusive to free-69 

text narratives of patient encounters. 70 

Natural Language Processing (NLP) has gained utility in extracting and analysing information in 71 

Electronic Health Records (EHRs). Koleck et al. (2019) conducted a literature review, finding 27 72 

relevant studies using NLP to analyse symptoms in EHR narratives [13]. NLP has been used for 73 

auditing discharge reports [14], predicting readmissions [15], and aiding in diagnosis [16–18]. 74 

Weissman et al. (2016) used NLP to classify discharge documents based on critical illness-related 75 

keywords with high accuracy [14]. Greenwald et al. (2017) developed an NLP tool to extract 76 

readmission-related concepts and achieved comparable performance to existing prediction models 77 

[15]. In oncology, NLP extracted features from CT reports for predicting lymph node metastasis in 78 

non-small cell lung cancer (NSCLC) with competitive performance [16]. Despite its potential, there's a 79 

gap in applying NLP to oncology symptoms, highlighting an opportunity for further research [13]. 80 

While NLP has demonstrated its effectiveness in various healthcare applications, there is a growing 81 

recognition of the advantages of extracting ontological concepts rather than use-case-specific 82 

concepts [19,20]. This approach provides a more generalised framework for understanding and 83 

organising medical information, contributing to interoperability [21,22] and facilitating the linkage 84 

with already coded, structured, clinical data found in the EHR. This transition to ontological concept 85 

extraction aligns with the broader adoption of standardised medical terminologies like SNOMED CT, 86 

which play an important role in structuring and organizing clinical data for improved healthcare 87 

decision-making and research. 88 
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From a machine learning perspective, extraction of concepts from a hierarchical ontology offers a 89 

crucial advantage, enabling the retention of valuable information, even when a patient reports rarer 90 

or more specific symptoms. For instance, when a patient mentions a symptom like a ‘chesty cough’, 91 

machine learning systems can link it to a higher-level concept in the ontology, such as "cough." This 92 

hierarchical relationship allows the model to preserve the broader context and meaning of the 93 

symptom, preventing the loss of nuanced information that might occur in non-hierarchical concept 94 

lists, where rare features might otherwise be removed. Failure to account for such sparsity could 95 

result in poor or unreliable classification performance [23,24]. 96 

Given the promise of NLP for the accurate extraction of relevant features, at scale, this study applies 97 

NLP to extract SNOMED-CT concepts from free-text notes, applies subsumption to elevate rarer 98 

symptoms up the ontological hierarchy, then feeds the final feature set into a machine learning 99 

framework to train a model to discriminate lung cancer from other diseases. Furthermore, this study 100 

provides an exploration into how feature weights might be affected by demographic information like 101 

age, sex and ethnicity. 102 

 103 

Methodology 104 

Eligibility 105 

Data were extracted from the Barts Health NHS Trust Data Warehouse for all patients meeting the 106 

following eligibility criteria: Patients referred for a chest x-ray (CXR), aged 40 years or older at the 107 

point of referral,  during two time periods between 01 Jan 2016 and 31 Dec 2019 or 01 Jan 2022 and 108 

31 Dec 2022 were eligible for inclusion. The time window of 01 Jan 2020 - 31 Dec 2021 were not 109 

considered due to deviations from the typical cancer care-pathways as a result of the COVID-19 110 

pandemic. Patients who had opted out of their data being used for research, those without medical 111 

notes beyond four years from the original x-ray, unless a second confirmatory x-ray within four years 112 
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ruled out lung cancer, and patients with an existing or historical diagnosis of any cancer were 113 

excluded from participation in the study. 114 

Data Sources 115 

All free-text data contained in the secondary care EHR system, from one year prior to the date of the 116 

first chest X-ray, were extracted and combined with demographic information, including Age, Sex and 117 

Ethnicity, and ICD-10 data from the same time period. Additionally, diagnostic data in the form of 118 

ICD-10 codes and the Somerset Cancer Registry were extracted for the subsequent four years post-119 

CXR, or up to the maximum available timepoint. 120 

To determine the ground truth, a patient was labelled as having lung cancer if a diagnosis was 121 

recorded in the Somerset Cancer Registry, or an ICD-10 code of C34 (Malignant neoplasm of 122 

bronchus and lung) was present in the patient’s EHR post-CXR. Considering the potential delays in 123 

diagnoses, post-CXR, and the delays in uploading this information onto the electronic health records 124 

system, model training was performed iteratively, each time re-labelling the ground truth to consider 125 

an additional month of diagnoses. The iterative process was performed first considering only 126 

patients diagnosed with lung cancer within the subsequent month following their CXR, continuing to 127 

add more patients until 12-months post-CXR. Instances of lung cancer diagnoses over time the 128 

respective model performance is presented in Fig. 1a. 129 

Feature Extraction 130 

To extract structured information from the free-text data, named entity recognition (NER) was 131 

performed using the NLP software, CLiX (Clinithink Ltd., London, UK). The free-text was queried 132 

against two resource sets, a ‘Core-Problems’ list containing common clinical symptoms and 133 

diagnoses, and the Human Phenotype Ontology. The top 100 clinical features for each resource set 134 

are presented in the supplementary file. 135 

Feature Engineering 136 

To handle missing data, sex and ethnicity were imputed using the most common category. Symptom 137 

data were binary, and an assumption was made that if a diagnosis or symptom was not found in 138 
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either the structured ICD-10 data or identified by the NLP algorithm, the patient did not have the 139 

diagnosis or symptom. 140 

To ensure a harmonised dataset, all features were mapped to the SNOMED-CT ontology. To address 141 

the sparseness of features in the lower levels of the SNOMED-CT hierarchy, we employed a 142 

subsumption process to generate and maintain features at higher levels of the hierarchy, ensuring 143 

the inclusion of all subordinate features. 144 

Feature Selection 145 

Given the high dimensionality, with the number of symptom features exceeding 12,000, the dataset 146 

could not be analysed statistically. Instead, a genetic approach was taken. First, symptom features 147 

were removed where less than 0.5% of all patients or less than 5% of lung cancer patients had the 148 

symptom documented in their notes. Thereafter, the remaining features were ranked according to 149 

their Bayesian importance value, calculated as:  150 

IMPTNB � |log
p�xi � 1|yj � 1�� � log
p�xi � 1|yj � 0��| 

where xi and yj are 1-dimensional binary arrays indicating the presence of feature � and diagnosis � 151 

for each patient. 152 

Following the ranking of all features, starting from the lowest ranking symptom, symptoms were 153 

removed should they have a Jaccard coefficient greater than 0.8. Thereafter, the remaining 154 

symptoms were input into a tabu asexual genetic algorithm (TAGA) [25], configured to select the 155 

feature set which maximises the area under the receiver operating characteristic curve (AUROC). 156 

TAGA was tasked with returning λ features, where λ is a number between 5 and 20. The rationale for 157 

capping the number of features included in a model at 20 was to ensure the interpretability of the 158 

final diagnostic criteria and to prevent overfitting. 159 

Model Development and Evaluation 160 
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20% of the data was held out of the model development process and used as a test set, with the 161 

remaining 80% being used for training and validation. For each model, a 5-fold cross-validation 162 

process was applied to select the most relevant features and identify the appropriate 163 

hyperparameters for the model, following which performance was examined using the test set. The 164 

performance of the trained models was assessed using the following diagnostic test characteristics; 165 

accuracy, sensitivity, and specificity, in addition to the calculation of the AUROC, with AUROC acting 166 

as the primary evaluation measure. 167 

This study considered the following classification models: Logistic Regression, Mixed Naïve Bayes, 168 

and Decision Trees. The rationale for the selection of these models lies in their interpretability and 169 

ease of application. 170 

Comparison with existing risk tools 171 

To determine whether the proposed method improves the diagnosis of lung cancer beyond that of 172 

existing methods that make use of similar features, a comparison with existing risk tools was 173 

performed. The proposed method was compared against the lung cancer component of the QCancer 174 

score [26,27] and the lung cancer-related risk assessment tools listed on the Cancer Research UK 175 

website [28]. 176 

In applying the QCancer score, the publicly available weights were used, and the score calculated on 177 

the same test set used for all previous comparisons. The risk assessment tools (RATs) of Hamilton et 178 

al. (2005) [28] are solely a set of feature combinations and their associated positive predictive values. 179 

Therefore, to apply the RATs to the data used in this body of work, a logistic regression model was 180 

trained for each feature combination, using the training set used for all previous experiments, 181 

returning the probability of lung cancer for each patient in the test set. Thereafter, the highest 182 

probability of all feature combinations was regarded as the final prediction for each patient. As 183 

before, the AUROC was used to compare each model. 184 
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 185 

Results 186 

Demographic Information 187 

In total, 75002 patients (35628 female) were included in this study. The study population had a mean 188 

age of 63 years ± 14 years. 36123 identified as ‘White’, 20219 identified as ‘Asian’, 7851 identified as 189 

‘Black’, 3330 identified as ‘Other’ and 835 identified as ‘Mixed Ethnicity’. Two and 6644 patients were 190 

missing sex and ethnicity data, respectively, which were imputed. 191 

In total, over the 12-month observation period after the first CXR, a total of 1012 lung cancer 192 

diagnoses were made. The occurrence of lung cancer at each monthly increment are shown in Fig. 193 

1a. Also, plotted are the number of diagnoses made following a repeat scan. The total number of 194 

diagnoses following the first scan plateaued four months post-CXR, with additional diagnoses after 195 

which time being made only after a further CXR. Aside from lung cancer, other common respiratory 196 

diagnoses in the dataset included: COPD (n=1883), atelectasis (n=2432) and pneumonia (n=398). 197 

Risk-Score Performance Characteristics 198 

Fig. 1b shows the performance of each of the three models, in terms of AUROC, across all 12 time 199 

intervals. The performance of the logistic regression model significantly outperformed the other two 200 

models, in terms of absolute performance but also model stability, denoted by the reduced standard 201 

deviation of AUROC. Of note, the performance of all models was less stable in the first five months, 202 

highlighting the likelihood of poorer class labelling resulting from a delay in diagnoses being 203 

uploaded to the EHRs. Considering the stabilisation in performance at five months, coupled with the 204 

plateau in diagnoses without additional scans, to strike the balance between the highest quality 205 

labelling and stable model performance, the ground truth labels established at 5-months were used 206 

for all future experiments.207 
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 208 

 

Figure 1: a) The number of diagnoses occurring at each monthly interval, for the subsequent 12 months post-CXR. b) The mean AUROC of the three 

tested models across each monthly interval, demonstrating the performance stabilisation and plateau from month five onwards. The shaded area 

indicates the standard deviation of the AUROC across the cross-validation folds. 
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Influence of Age, Sex and Ethnicity on Risk-Score Performance 209 

Table 1 shows the performance of the model solely using the symptoms found in the EHR of the 210 

patient, then with the inclusion of demographic data. The inclusion of age and ethnicity was shown 211 

to improve the diagnostic performance of the model, increasing AUROC to 0.69 and 0.67, 212 

respectively. Gender did not improve model performance in isolation. The inclusion of age, gender 213 

and ethnicity improved model performance across all metrics resulting in an AUROC of 0.72, with an 214 

associated sensitivity and specificity of 0.69 and 0.67, respectively. 215 

Table 1: Performance characteristics of the logistic regression model on the test set, when each 

combination of the demographic features is incorporated. Values in brackets indicate the mean and 

standard deviation of the cross-validation performed on the training set. 

Input Features Accuracy Balanced 

Accuracy 

AUROC Sensitivity Specificity 

Symptoms Only 0.78  

(0.77 ± 0.02) 

0.59  

(0.6 ± 0.01) 

0.63  

(0.63 ± 0.02) 

0.41  

(0.44 ± 0.03) 

0.78  

(0.77 ± 0.02) 

Symptoms and  

Age 

0.66  

(0.66 ± 0.00) 

0.64  

(0.66 ± 0.01) 

0.69  

(0.71 ± 0.01) 

0.62  

(0.66 ± 0.03) 

0.66  

(0.66 ± 0.00) 

Symptoms and 

Gender 

0.78  

(0.73 ± 0.08) 

0.59  

(0.6 ± 0.02) 

0.64  

(0.64 ± 0.03) 

0.41  

(0.46 ± 0.07) 

0.78  

(0.74 ± 0.08) 

Symptoms and 

Ethnicity 

0.54  

(0.55 ± 0.02) 

0.61  

(0.61 ± 0.02) 

0.67  

(0.66 ± 0.02) 

0.69  

(0.68 ± 0.06) 

0.54  

(0.55 ± 0.02) 

Symptoms, Age and 

Gender 

0.66  

(0.66 ± 0.00) 

0.66  

(0.67 ± 0.01) 

0.7  

(0.72 ± 0.01) 

0.66  

(0.67 ± 0.02) 

0.66  

(0.66 ± 0.00) 

Symptoms, Age and 

Ethnicity 

0.66  

(0.66 ± 0.00) 

0.67  

(0.66 ± 0.01) 

0.71  

(0.72 ± 0.01) 

0.68  

(0.67 ± 0.02) 

0.66  

(0.66 ± 0.00) 

Symptoms, Gender 

and Ethnicity 

0.66  

(0.63 ± 0.04) 

0.6  

(0.61 ± 0.02) 

0.68  

(0.67 ± 0.02) 

0.54  

(0.59 ± 0.04) 

0.66  

(0.63 ± 0.04) 

Symptoms, Age, 

Gender and Ethnicity 

0.66  

(0.66 ± 0.00) 

0.67  

(0.67 ± 0.02) 

0.72  

(0.72 ± 0.01) 

0.69  

(0.69 ± 0.03) 

0.66  

(0.66 ± 0.00) 

  216 
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Feature Importance 217 

To understand how each predictor influences the prediction of lung cancer, SHAP (Shapley Additive 218 

Explanations) values were calculated (Fig. 2). The most influential feature was age, with older 219 

individuals exhibiting a significant increase in the model's output towards predicting lung cancer. 220 

Additionally, the presence of an ‘existing disorder of the lung’ was found to positively impact the 221 

prediction. Notably, individuals of white ethnicity had the greatest influence on the model outputs, 222 

increasing the SHAP value towards the prediction of lung cancer, although all ethnicities displayed 223 

varying degrees of impact toward a positive diagnosis. Males had an increased SHAP value, 224 

contributing to the prediction. Conversely, the presence of a ‘congenital anomaly of a great vessel’ 225 

and ‘disorders of the retroperitoneal compartment’ reduced the SHAP value. Context-dependent 226 

factors, such as pain, bleeding, and arthropathy, also reduced the SHAP value, making a prediction of 227 

lung cancer less likely. Finally, the presence of a cough was found to increase the SHAP value, further 228 

emphasising its relevance in the prediction of lung cancer.  229 

Given the high-level nature of several the features, due to the subsumption process applied, an 230 

exploration into what symptoms or co-morbidities comprised such features was performed. Fig. 3 231 

shows each of the selected features, and some of the most prominent features which comprise 232 

them. 233 

Comparison of the proposed approach with other cancer risk tools 234 

Fig. 4 shows the receiver operating characteristic curve of the model produced using the methods 235 

described in this paper, the QCancer score [26,27], and the lung cancer related risk assessment tools 236 

listed on the Cancer Research UK website [28]. As previously reported, the proposed methods 237 

resulted in an AUROC of 0.72. The application of the QCancer calculator to the test set used 238 

throughout this paper resulted in an AUROC of 0.67 and the methods of Hamilton et al. (2005) 239 

achieved and AUROC of 0.55.  240 
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Figure 2: A summary plot of the SHAP values denoting the impact of each feature in the best 

performing model, on the prediction of lung cancer. Shading of each datapoint indicates the value 

of the feature. For all binary features, except age, a red value denotes a “true” value and blue 

denotes a false value. For age, the bluer a datapoint reflect a younger age, and the redder a data 

point, the older the patient. 
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Figure 3: Visualisation of common concepts subsumed into higher level concepts in the SNOMED-

CT hierarchy.  
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Figure 4: Receiver operating characteristic curves for the proposed method, QCancer and methods 

of Hamilton et al. (2005), when applied to the test set used in this study. 

 241 

Discussion 242 

This work aimed to explore the use of NLP for the extraction of SNOMED-CT concepts from 243 

unstructured clinical free-text, coupled with subsumption techniques to address the challenges 244 

posed by sparse features in high-dimensional datasets. Leveraging genetic optimisation and machine 245 

learning, the generated dataset was used to develop a predictive model for lung cancer diagnosis. 246 

Model development resulted in a classifier with stable performance characterised by low standard 247 

deviations between the cross-validation folds and an AUROC of 0.72. Additionally, the model offers a 248 

balanced trade-off between sensitivity and specificity with values of 0.69 and 0.66, respectively. 249 

Notably, our proposed methodology outperforms both the QCancer calculator [26,27] and the 250 

methods introduced by Hamilton et al. (2005) [28], highlighting the promise NLP and machine 251 
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learning approaches could have for the curation of rich datasets and the development of robust 252 

predictive models in the field of lung cancer risk assessment. 253 

The incorporation of subsumption techniques helped mitigate the challenges posed by sparse 254 

features within our predictive model. By hierarchically organising and abstracting SNOMED-CT 255 

concepts, subsumption allowed us to identify broader, higher-level categories that encapsulate a 256 

range of related clinical terms. This not only alleviated the risk of overfitting and unreliable 257 

performance, a common concern in models trained on sparse data [23,24], but enhanced the 258 

generalisability of our model. However, the introduction of more abstract, top-level features meant 259 

that the final model was rooted in a level of granularity less commonly used in routine clinical 260 

practice. This has important implications for the practical translation and messaging of the model, 261 

highlighting the need for a clear and effective strategy to bridge the gap between the model's 262 

output, which operates at a higher conceptual level, and the clinical realities on the ground, which 263 

makes use of specific and well-established terminology. 264 

The primary function of our model is to evaluate the likelihood of a positive lung cancer diagnosis 265 

when a patient enters the clinical pathway for this purpose. While this is a valuable step in enhancing 266 

early diagnosis and intervention, the success of a diagnostic tool is often measured by its ability to 267 

identify patients even before they enter the diagnostic pathway [29], ultimately achieving a 268 

significant stage shift in the diagnostic process which is associated with improved mortality rates 269 

[30]. The primary limitation of this study is its reliance on secondary care data, which did not provide 270 

sufficient longitudinal information to facilitate such an analysis. It is essential to recognise that most 271 

patient interactions with the healthcare system before a lung cancer diagnosis occur in primary care 272 

facilities, where symptoms are first reported and initial evaluations are made [31–34]. The absence 273 

of primary care data in our study thus limits the real-world applicability of the developed methods 274 

and highlights the need for future efforts to incorporate primary care data to truly impact early 275 

detection and diagnosis in clinical practice. 276 
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A core limitation relates to documentation bias. Although purely data-driven methods were 277 

employed to derive the features predictive of lung cancer, most patients had only one document 278 

before their CXR, a referral letter. Therefore, we must consider the possibility that the referring 279 

clinician may only include symptoms that they perceive to be relevant to the suspected diagnosis for 280 

which the scan is required, omitting other symptoms which may prove predictive. Such a limitation 281 

will often be present in such predictive modelling studies. However, if each patient were to have 282 

more clinical notes before the suspecting of lung cancer the effect of such bias may be reduced. 283 

Clinically, the absence of staging data restricts our insight into the model's capacity to identify lung 284 

cancer at an early stage, which is crucial for understanding the impact of the predictions on patient 285 

outcomes. Additionally, the NER methods employed were not trained to extract genetic variants 286 

from pathology reports, specifically lung-cancer specific risk loci, which could further improve the 287 

performance of the model [35]. Future studies with access to more comprehensive and longitudinal 288 

patient data, including primary care information, genomic data and staging details, could help 289 

address these limitations and further enhance the efficacy and generalisability of the developed 290 

predictive model. 291 

Conclusions 292 

This research highlights the potential of combining natural language processing and machine 293 

learning techniques to enhance diagnostic criteria for lung cancer using unstructured healthcare 294 

data. The study's key findings include the successful identification of discriminating features 295 

associated with lung cancer diagnosis and achieving promising AUROC scores which outperform 296 

other comparable risk assessment tools. Such advancements hold promise for improving patient care 297 

and outcomes, albeit with a need to address certain limitations through the incorporation of primary 298 

care data for more comprehensive and unbiased criteria development. 299 

  300 
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