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Abstract 

Impaired motor vigor is a defining characteristic of Parkinson's disease (PD), yet the 

underlying brain mechanisms governing motor vigor (MV) remain unclear. Recent studies have 

suggested beta-gamma Phase-Amplitude Coupling (PAC) derived from the resting-state 

electroencephalogram (EEG) is a potential biomarker for PD that is modulated by Deep Brain 

Stimulation (DBS) and L-dopa treatment. Specifically, PAC has been suggested to be a marker of 

transitions between motor movements, as opposed to encoding the vigor of the current movement. 

Here, we comprehensively investigate the potential of various PAC interactions—across different 

frequency pairs—beyond the linear approaches typically employed to predict MV during motor 

tasks in PD and study the effects of dopaminergic medication and non-invasive Galvanic 

Vestibular Stimulation (GVS). We recorded EEG data from 20 PD patients and 22 healthy controls 

executing a simple, overlearned handgrip task. Subjects were tested on and off L-dopa medication 

and with and without GVS (multi-sine either 50-100Hz, 100-150Hz). In a preliminary linear 

(LASSO-based) analysis comparing various PACs and a broad range of commonly used EEG 

features, PAC features were found to be crucial for predicting MV approximately equally in PD 

and HC. Initial findings from the linear analysis showed PAC as a significant indicator for MV in 

both groups, although with variability in cross-validation that implied a complex, non-linear 

relationship between PAC and MV. To extensively investigate the PAC-MV relation, we used a 

deep convolutional neural network (PACNET)—developed based on pre-trained VGG-16 

architecture—to estimate MV from PAC values. In both PD and HCs, delta-beta, theta-, alpha-, 

and beta-gamma PACs were important for MV prediction. In PD subjects, GVS affected delta-

beta, theta- gamma-, and beta-gamma PACs role in MV prediction, which was sensitive to 

different GVS stimulation parameters. These PACs were also relevant for PD patients' MV 

prediction after L-dopa medication. This study supports the hypothesis that EEG PAC across 

multiple frequency pairs, not just beta-gamma, predicts MV and not just motor transitions and can 

be a biomarker for assessing the impact of electrical stimulation and dopaminergic medication in 

PD. Our results suggest that PAC is involved in MV, in addition to a range of previously reported 

cognitive processes, including working and long-term memory, attention, language, and fluid 

intelligence. Non-linear approaches appear important for examining EEG PAC and behavior 

relations.  

 

Keywords: Parkinson’s disease, Phase-amplitude coupling, Deep neural network, Transfer 

learning, Motor vigor, EEG regression, Neurophysiological analysis, biomarker, brain stimulation. 
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Introduction 

Motor vigor (MV) represents a crucial aspect of the motor system, potentially impacted by 

various diseases. It serves as an indicator of an individual's capacity to utilize physical energy 

effectively and efficiently in executing motor tasks (Shadmehr & Ahmed, 2020). MV can be 

modulated by an interplay of neural, physiological, psychological, and environmental influences. 

The basal ganglia appear vital for weighing the effort/reward ratio for performing certain motor 

tasks, but cortical involvement is likely also significant (Uehara et al., 2023). This involvement 

implies that EEG, which primarily measures cortical activity (Constant & Sabourdin, 2012), could 

be an effective tool for monitoring MV.  

In the context of Parkinson's disease (PD), MV gains particular significance. One of PD's 

hallmark symptoms, bradykinesia—the marked slowness of movement—is essentially a 

manifestation of diminished MV. The full underlying brain mechanisms governing impaired vigor 

are not completely understood, but PD bradykinesia has been linked to changes in beta-band (13–

30 Hz) Local Field Potentials (LFPs) within the basal ganglia (Little et al., 2012). LFPs tend to be 

more sensitive than the EEG, but the scalp EEG has also previously been shown to be abnormal 

in PD, with beta-band oscillations over sensorimotor electrodes in PD patients off medication 

having altered morphology (Jackson et al., 2019) and machine learning approaches being able to 

predict overall disease severity (Arasteh et al., 2021). Our prior research has shown that standard 

features derived from EEG data can accurately predict MV in both healthy individuals and those 

with PD (Kazemi et al., 2021). In this study, we further investigate the connection between Motor 

Vigor (MV) and EEG features.    

One feature of abnormal brain oscillations in PD is altered Phase Amplitude Coupling 

(PAC). PAC calculates the relations between the phase of low-frequency oscillations and the 

amplitude of high-frequency oscillations. Under normal conditions, PAC can be modulated by 

visual stimuli (Voytek et al., 2010) and motor imagery (Gwon & Ahn, 2021). In PD subjects, 13-

30 Hz (phase) and 200-500 Hz (amplitude) PAC in the LFPs from the subthalamic nucleus (STN) 

predict response to Deep Brain Stimulation therapy (Yang et al., 2014). In an animal model, delta-

high-gamma PAC in the motor cortex and striatum has been observed by dopamine D2 receptor 

blockade (Reakkamnuan et al., 2023). Altered PAC in PD has been observed at rest in both the 

MEG (Mertiens et al., 2023) and EEG (Miller et al., 2019; Zhang et al., 2021). This has led to 

speculation that PAC might be a valuable biomarker to target neuromodulation strategies (Hwang 

et al., 2020; Salimpour et al., 2022; Yeh et al., 2023).  Altered PAC may also be important for 

freezing of gait in PD (Karimi et al., 2022).  

PAC has been implicated in several cognitive processes (Sacks et al., 2021), likely because 

PAC may facilitate communication between spatially distributed cortical networks (Turi et al., 

2020). Theta–gamma PAC is important for visual and auditory working memory (Axmacher et al., 

2010; Kaminski et al., 2019) and encoding and retrieval in long-term memory (Friese et al., 2013; 
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Köster et al., 2019; Lara et al., 2018). PAC has been associated with verb generation (Doesburg et 

al., 2012), language prediction (Wang et al., 2018), selective attention (Doesburg et al., 2012; 

Saalmann et al., 2012) and possibly fluid intelligence (Pahor & Jaušovec, 2014). Interestingly, 

PAC may be important for non-invasive brain stimulation techniques. After a 2-week course (10 

sessions) of repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal 

cortex to treat depression, PAC was increased at rest. Theta–gamma transcranial alternating 

current stimulation (tACS) has a greater effect on working memory than theta tACS alone 

(Alekseichuk et al., 2016).   

While most studies examining altered PAC in PD have focused on rest, a recent study 

demonstrated that beta-gamma PAC was altered during transitions between different movement 

states, with the speculation that this was related to bradykinesia in PD (Gong et al., 2022). Here, 

we explore an alternate hypothesis, namely that PAC, and not just beta-gamma PAC, is directly 

associated with MV, as opposed to movement transitions. We examine both linear and nonlinear 

approaches to determine if PAC can accurately predict MV, as exhibited in a simple, overlearned 

hand-squeeze task, in PD subjects and controls. We show that EEG-derived PACs at multiple 

frequencies are important features for predicting MV. 

Materials and Methods 

Participants 

All participants provided written, informed consent prior to participating. The research 

protocol was approved by the Clinical Research Ethics Board at the University of British Columbia. 

Participants included 20 healthy controls (HC) and 20 Parkinson’s disease (PD). Data from PD 

patients were collected under two medication conditions: Off (after > 12hr withdrawal of 

dopaminergic medication: PD-off) and On (after taking their regular medication: PD-on). Table 1 

presents the demographic and clinical characteristics of participants included in this study. For 

further details regarding inclusion and exclusion criteria, please check (Lee, 2019; Lee et al., 2019). 

Table 1. Demographic and clinical characteristics of the participants 

 PD (N=20) HC (N=20) 

Age (year) 67.0 ± 7.0 467.5 ± 6.4 

Sex (male/female) 10/10 10/10 

Disease duration (year) 7.6 ± 4.3 - 

UPDRS III 23.5 ± 9.8 - 

UPDRS III item 3.16 (kinetic tremor) 2.3 ± 1.3 - 

UPDRS III item 3.17 (rest tremor) 2.4 ± 2.2 - 

Hoehn and Yahr scale 1 - 2 - 

Levodopa Equivalent Daily Dose (mg) 708.2 ± 389.9 - 
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Behavioral Data Collection 

The experimental paradigm was a simple visuomotor task conducted in different blocks of 

10 trials. In each trial, participants were given a visual fixation for a brief jittered time (1500ms + 

random delay of 0-500ms, uniformly distributed), followed by a “Go” signal. They were instructed 

to squeeze the bulb as quickly and strongly as possible when they saw the “Go” signal on the 

screen (See Figure 1.A).  

Each subject’s behavioral data, including response time (RT) and peak time (PT), were 

recorded. Peak Time is defined as the time it takes for participants to squeeze the bulb to their 

maximum pressure, t3 − t1 (See Figure 1.B). MV was estimated as the inverse of the Peak Time. 

Note that this includes both reaction time (t2-t1) and movement time (t3-t2). 

 

EEG Recording and Preprocessing 

Using a 32-channel EEG cap with electrodes positioned according to the global 10-20 

placement standard and two additional pairs of surface electrodes to monitor vertical and 

horizontal visual stimuli, EEG data were gathered from 27 scalp electrodes. Different 

preprocessing methods, including independent component analysis and filtering, were used for 

 

Figure 1. A- Schematic of a block of the experimental paradigm in which 60 seconds of rest is 

followed by 10 task trials and 120 seconds of break time. In each block, GVS stimulation (Sham, 

GVS1: 50–100 Hz, and GVS2: 100–150 Hz) was delivered during the rest and task period. (B) 

Mock pressure signal of a squeezing bulb. The GO screen appeared at t1; the participant started 

to squeeze the bulb at t2 and reached maximum pressure at t3. Peak time is defined as t3 − t1. 

Some reduced oscillations subsequently occur because of the compliance of the squeeze bulb 

apparatus 
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artifact rejection as described in (Lee et al., 2019). Two-way finite impulse response (FIR) filters 

were used to filter the preprocessed EEG signals into the standard EEG frequency bands. Further 

preprocessing methods are identical to (Lee et al., 2019, 2021). 

Analysis Methods 

Preliminary Analysis. We first predicted MV from PACs using conventional linear 

regression optimized by the LASSO (Tibshirani, 1996) algorithm. We took our previous model 

(Kazemi et al., 2021) as the baseline model, which was a LASSO algorithm performed on 

commonly used EEG features (will be referred to as conventional EEG features) computed based 

on standard EEG subbands (See  (Kazemi et al., 2021) for details). We then extended the prior 

approach by using the LASSO algorithm to predict MV when only PAC features were available 

and when both conventional and PAC features were available. These results were compared 

against our previous model which used only conventional features of EEG (Kazemi et al., 2021). 

Since this step was only a preliminary analysis, we only analyzed MV in the HC and PD groups 

off medication and without stimulation. 

PACNET. To comprehensively examine PAC-MV relations across all sub-bands, we 

utilized a pre-trained deep CNN-based model with transfer learning, which we called PACNET 

which enabled us to extensively examine the potential complex dynamics between PAC and MV 

across different conditions of health status (i.e., HC and PD), stimulation (i.e., Sham, GVS1 and 

GVS2), and L-dopa medication (i.e., on and off). The complete pipeline of analysis carried out is 

shown in Figure 2. Initially, the PAC value (See supplementary Material section 2) for each pair 

of the five standard EEG subbands—Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-16 Hz), Beta (16-

32 Hz), and Gamma (32-45 Hz)—was calculated to create a 2-dimensional representation of PAC 

values using TensorPAC (Combrisson et al., 2020), an open-source Python library for PAC 

investigation of neurophysiological data. Subsequently, we used the VGG-16 architecture 

(Simonyan & Zisserman, 2015) for transfer learning (called PACNET) to train a model to predict 

MV. TensorPAC images were created with dimensions 32 * 64 * 3 (due to VGG16 structure) as 

PACNET inputs. At each training iteration, the initial weights of the model were set to the values 

of a pre-trained model on the ImageNet dataset, which contains over 14 million images belonging 

to 1000 classes (Simonyan & Zisserman, 2015). The architecture of PACNET, based on the VGG-

16 architecture, is described in detail in the Supplementary Material section 3. A single model was 

trained on all conditions (i.e., Health, Stimulation, and Medication). We subsequently evaluated 

the performance of the trained model to be comparable between the conditions (See supplementary 

Material section 4 for performance metrics to evaluate the training). The baseline performance of 

the model in predicting MV using PACs was compared with the linear regression models utilized 

in the preliminary analysis.  

The convolutional layers within PACNET are adept at identifying and learning patterns 

that span the complete frequency range depicted in tensor PAC images. This capability enables 

them to capture local and global features, essential for a nuanced understanding of the complex 
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interactions in neural signals. Consequently, we hypothesized that our model could conduct an 

exhaustive analysis of the spectral characteristics inherent in PACs. This approach is advantageous 

as it avoids the limitations of focusing solely on discrete frequency bins, potentially uncovering 

aspects that might otherwise be overlooked. 

We employed bootstrapping technique (Kazemi et al., 2021) to train PACNET and evaluate its 

saliency maps, which consisted of 40 separate iterations of training and testing. At each iteration, 

80% of randomly selected trials were used for model fitting (i.e., training PACNET or fitting 

Lasso) to predict MV, and the remaining 20% of trials were used to estimate the performance of 

the trained model in predicting MV. 

PAC-MV Relation Analysis. We used a standard method to quantify the informativeness 

of the inputs by examining the last convolutional layer of the trained model (Alqaraawi et al., 2020; 

Gao et al., 2023). We employed Gradient-weighted Class Activation Mapping (Grad-CAM) 

(Simonyan et al., 2013) to highlight the influential critical PACs in MV estimation. The gradients 

of each TensorPAC image entering the PACNET’s final convolution layer (i.e., saliency map) 

identify the importance of different PACs for estimating MV (See Supp Mat section 5 for more 

details).  

To examine the consistency of the patterns in saliency maps across different boot-strapping 

runs, we utilized representational similarity analysis (RSA) (Kiat et al., 2022; Kriegeskorte, 2008). 

The degree to which PACs consistently demonstrated informativeness for MV prediction was 

estimated through pairwise Pearson’s correlation tests between regions of interest in the saliency 

maps. The regions of interest were defined to cover the areas that are corresponding to standard 

PAC frequency pairs (see Figure 2B). Higher similarity scores corresponded to greater consistency 

in the informativeness of a PAC across images (i.e., these regions were more frequently identified 

as informative by the PACNET during the MV prediction process). However, to eliminate the 

effect of areas of the saliency maps that were highly similar because of not being informative—

 

Figure 2. Schematic view of the proposed approach. A more detailed representation of the 

pipeline can be found in the Supplementary Material Section 1. 
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having low values—we only included PAC regions in which their mean and median were higher 

than the mean and median of the whole saliency map. Additionally, we controlled all the similarity 

scores based on the variability in the TensorPAC images. Since we were looking for consistent 

and cross-condition informativeness, we reasoned that PACs with less variability in the 

TensorPAC images and large variability in the saliency maps are more likely captured by the 

PACNET to account for variabilities between trials of the same condition rather than consistent 

effects of conditions across trials. Consequently, we excluded similarity scores for subregions with 

statistically less variability in the TensorPAC images compared to the same region in the saliency 

maps based on a one-sample t-test on the difference between their similarity scores. 

Results 

Behavioral Performance 

We used a mixed ANOVA model (See Figure 3) to compare MV between HC and PD 

across different stimulations. We found a main effect of stimulation, F2, 66 = 50.98, p < 0.001, such 

that the average MV in the sham condition was significantly lower (M = 1.39e-3, SD = 1.74e-4) 

than the average MV in both GVS1 (M = 1.54e-3, SD = 1.93e-4), t(34) = 7.21, p = 0.001, and 

GVS2 (M = 1.54e-3, SD = 1.94e-4), t(34) = 7.14, p < 0.001. We found no other main or interaction 

effects (ps > 0.156). 

 

 

 

Figure 3. Motor Vigor distribution for each condition. *indicates that the Bonferroni corrected 

p-value was significant (<0.05). Error bars indicate the standard error around the mean. 
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Preliminary Analysis and PACNET Baseline Performance 

PACNET successfully trained on the training sets in all 40 iterations (details of the training 

metrics are provided in the Supplementary Material, Section 6). The performance (based on the 

correlation between actual MV and the predicted MV) of the LASSO linear regression on 

predicting MV from different feature subsets (only PAC features, only conventional EEG features, 

and both) along with PACNET’s performance is shown in Figure 4.  

 

The LASSO algorithm on only PAC features did not converge to one model in more than 

50% of our boot-strapped simulation runs and exceeded the maximum number of iterations (N = 

1000). Comparing the variance of model performance in different iterations between models using 

an F-test demonstrated that PACNET had the least variance of performance across different 

iterations in both PD and healthy controls (ps < 0.001). This effect was confirmed by Levene’s test 

to account for the violation of normality assumption, F7, 312 = 11.36, p < 0.001. Investigating the 

features picked by LASSO when the feature pool included both PACs and conventional EEG 

features, showed that PAC features were the second most picked features after harmonic 

 

Figure 4. Comparing the predicted vs. actual MV for PACNET and LASSO with different 

feature pools of conventional EEG features, PAC features, and both. *indicates that the 

Bonferroni corrected p-value was significant (<0.05). 
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parameters. Notably, the average beta values assigned to PAC features in LASSO regressions were 

significantly positive only in PD group t(37) = 9.87, p < 0.001. 

PAC Informativeness 

Subregions of the saliency map corresponding to PACs of delta-beta, theta-alpha, theta-

gamma, alpha-beta, alpha-gamma and beta-gamma showed significantly higher average than the 

overall mean (ps_bonf <0.003) and median (ps_bonf < 0.045) of the saliency map across all 

conditions. As a result, in the subsequent analyses, we excluded the delta-theta, delta-alpha, delta-

gamma, and theta-beta PACs since their informativeness across the saliency maps were low. 

The spatial distribution of the consistency of informativeness for delta-beta, theta-gamma, 

alpha-gamma, and beta-gamma PACs is shown in Figure 5. The head plots demonstrate the scaled 

values of the similarity score average for each channel computed within PAC regions on the 

PACNET saliency maps. These values are controlled for their variability in the TensorPAC inputs. 

The warmer the color of the channels, the more consistent and informative they were for the 

PACNET across different trials. Since alpha-beta and theta-alpha PACs showed no difference 

between their similarity scores in saliency maps and TensorPAC images—their statistical masks 

were either negative or zero (See Figure 5.B and D)—suggesting that they were not providing 

consistent information to the PACNET, hence removed from the subsequent analyses. 

Delta-beta PAC across both HC and PD groups was found to be informative across all 

channels (Figure 5.A). In HC, MV-associated theta-gamma PAC was predominantly localized 

over the left frontal (F3), left parietal (P3), and left parieto-occipital (P6) regions. Conversely, in 

individuals with PD, theta-gamma PAC was observed in different regions, including the frontal 

midline (Fz), right frontal (F4), left central (C3), and left parietal (P3) areas (Figure 5.C).  In HC, 

alpha-gamma PAC was predominantly localized over the left frontal (F3) and right parietal (CP6) 

regions. In PD, alpha-gamma PAC was observed in different regions, including the right frontal 

(FP2) and right central (FC6) areas (Figure 5.D).  In HC, beta-gamma PAC (the most important 

PAC for PD) was predominantly localized over several frontal and central regions, including FPz, 

F3, FC5, C3, CP5, CP6, and O2. In PD, Beta-gamma PAC was observed in some overlapping 

regions, including FPz, FC5, C3, CP6 and Oz (Figure 5.E). 

To compare the overall informativeness of different PACs, we ran a 2 (Health: HC vs. PD) 

by 4 (PACs: delta-beta, theta-gamma, alpha-gamma, and beta-gamma) mixed ANOVA on the Z-

transformed average of the similarity scores across channels with non-negative consistency of 

informativeness. We found a main effect of health F1, 78 = 89.73, p < 0.001, such that PACs 

informativeness was more consistent in PD groups than HC, t(78) = -9.47, p < 0.001. We also 

found a significant main effect of PACs, F3, 234 = 916.33, p < 0.001 which was confirmed by a 

significant interaction between health and PACs, F3, 234 = 9.32, p < 0.001, such that 

informativeness between PACs from the most consistent to the least one can be ranked as alpha-

gamma, theta-gamma, beta-gamma, and delta-beta (See Figure 6). 
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Stimulation and Medication Effects 

This analysis aims to explore whether GVS and L-dopa medication influence the specific types of 

PAC that are most informative for predicting motor vigor (MV). We will also examine whether 

these effects differ between PD-on, PD-off and healthy controls. Within each PAC on the Fisher 

Z transformed value of the similarity scores, we conducted a 2 (Health: HC and PD-off) by 3 

(Stimulation: Sham, GVS1, and GVS2) mixed ANOVA to investigate the effect of stimulation on 

the informativeness of each PAC between PD and healthy controls and a 2 (Health: PD-Off and 

 

Figure 5. Spatial distribution of the consistency of informativeness for different PACs. Red 

areas are corresponded to statistically significant consistency of informativeness (p<0.05). 

 

A) B) 

 
Delta-Beta PAC 

 
Theta-Alpha PAC 

C) D) 

 
Theta-Gamma PAC 

 
Alpha-Beta PAC 

D) E) 

 
Alpha-Gamma PAC 

 
Beta-Gamma PAC 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2024. ; https://doi.org/10.1101/2024.02.20.24303077doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.20.24303077
http://creativecommons.org/licenses/by-nc-nd/4.0/


EEG Phase Amplitude Coupling in Parkinson’s Disease     10 

PD-On) by 3 (Stimulation: Sham, GVS1, and GVS2) mixed ANOVA to investigate the effect of 

stimulation on the informativeness of each PAC within PD groups with or without medication. 

Figure 7 shows the mean value of the similarity scores of different PACs across the iterations. 

 

 

We observed higher similarity scores for PD subjects off medication than HC across delta-

beta, theta-gamma, alpha-gamma, and beta-gamma (ps < 0.001). We also found a main effect of 

L-dopa medication across delta-beta, theta-gamma, alpha-gamma, and beta-gamma (ps < 0.034). 

Within the HC group, alpha-gamma differentiated all three stimulation conditions (ps < 0.002), 

and theta-gamma differentiated between GVS1 and Sham (p = 0.002). Within the PD-off group, 

all stimulation conditions could be reliably dissociated based on delta-beta (ps < 0.001), beta-

gamma (ps < 0.004), and theta-gamma (ps < 0.016) PACs while alpha-gamma could only reliably 

dissociate Sham from GVS1 and GVS2 (ps < 0.001). Within the PD-on group, delta-beta was only 

informative for GVS1 (ps < 0.002), while theta-gamma reliably dissociated Sham from both GVS1 

and GVS2 (ps < 0.024), and finally, beta-gamma reliably dissociated the GVS1 and GVS2 (p = 

0.001). Details of the ANOVA tests and their corresponding post-hoc t-tests are provided in the 

supplementary material section 7. 

  

Figure 6. The mean value of the similarity scores in sham and no medication conditions for 

healthy and PD groups. *indicates that the Bonferroni corrected p-value was significant 

(<0.05). Error bars indicate the standard deviation around the mean. 
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Discussion 

In this study, we explored the relation between motor vigor, Parkinson's disease (PD), and 

electroencephalogram (EEG) signals using a comprehensive analytical approach that involved 

phase-amplitude coupling (PAC) analysis. Our analysis focused on PACs within different EEG 

frequency bands, including delta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma, 

 

 

Figure 7. The mean value of the similarity scores across the iterations for each PAC across 

populations for 3 different Stim conditions. Error bars indicate the standard deviation around 

the mean. 
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and their potential informativeness in predicting motor vigor. For this purpose, we employed a 

deep neural network (DNN) model, PACNET, which allowed us to capture complex, non-linear 

interactions among PACs. The results of our study offer valuable insights into several critical 

aspects. 

Interpretation of the Results 

Prior works on PAC in PD have focused on rest, but a recent study demonstrated that beta-

gamma PAC was altered during transitions between different movement states (Gong et al., 2022). 

Our results show that PAC, at multiple frequency combinations, is directly related to MV, even in 

a single, overlearned task which would not necessarily involve switching between movement states. 

While PAC appears directly related to MV in healthy controls, different PACs are sensitive to the 

development of PD, the effects of dopaminergic medication and the effects of non-invasive brain 

stimulation in PD in a stimulus-sensitive manner.  

We observed that delta-beta PAC exhibited a strong association with motor vigor in the 

PD-off group. Prior studies have investigated the relationship between the phase of cortical delta 

oscillations and reaction time. In one study (Stefanics et al., 2010), an auditory target detection 

paradigm was used to investigate the effect of expectancy on delta activity in the EEG. The phase 

of delta oscillations significantly entrained to the target onset preceding stimulus processing, with 

increasing accuracy at higher expectancy levels. Stefanics et al., (2010) further showed that the 

reaction times correlated significantly with the delta phase at target onset, with the fastest reactions 

observed when the delta phase at the target onset fell on the rising slope of delta oscillations. In a 

rat model, during a two-alternative forced-choice task, neurons in the motor thalamus that were 

correlated with movement speed were entrained to delta oscillations and were associated with 

power fluctuations in beta/low gamma bands (Gaidica et al., 2020). It is unclear why delta-beta 

PAC would be particularly relevant for PD subjects during GVS stimulation (Figure 7).  The 

ventrolateral nuclei of the thalamus (ventral anterior, VA; ventral lateral, VL) project to the 

primary motor and premotor cortices, suggesting that this circuit may represent a major vestibular 

motor pathway (Wijesinghe et al., 2015). We speculate the importance of GVS’s effects on delta-

beta PAC in PD is related to GVS's effects on the motor thalamus, as we have previously 

demonstrated (Lee et al., 2023).  

Theta-gamma PAC was important for predicting MV, particularly in the PD-off group. 

However, theta-gamma PAC is typically associated with working memory, perception, attention, 

and learning, not MV (Papaioannou et al., 2022). An fMRI study investigating working memory 

impairment in PD found increased activation in parietal, limbic and cerebellar regions, possibly as 

a compensatory strategy (Rottschy et al., 2013). Bradykinesia and working memory are correlated 

in PD (Ekman et al., 2012), likely because they are both part of a dopamine-sensitive fronto-striatal 

network (Kehagia et al., 2012).  This suggests a correlative, as opposed to a causal connection 

between theta-gamma PAC and MV in PD. 
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Alpha-gamma PAC, although showing less differentiation between PD and controls, 

highlighted potential interactions between medication and stimulation in predicting MV, 

particularly in the GVS1 condition. This suggests that this PAC may be sensitive to the combined 

effects of medication and non-invasive stimulation. Unsurprisingly, beta-gamma PAC’s 

association with MV differed between PD-off and HC, indicating its potential as a marker of motor 

dysfunction in PD. Gamma oscillations appear intricately related to motor vigor, as they appear at 

movement onset and are distributed around the motor network of the primary motor cortex, the 

basal ganglia and motor thalamus (Fischer, 2021). 

Clinical Implications 

The identification of informative PACs holds promising clinical implications, as they may 

serve as potential biomarkers for assessing motor function in PD patients, aiding in the diagnosis 

and monitoring of disease progression. Furthermore, our results suggest that specific PACs may 

respond differently to medication and stimulation, opening the door to personalized treatment 

strategies. Tailoring interventions based on individual PAC profiles could enhance the efficacy of 

therapeutic approaches toward precision stimulus strategy. 

In conclusion, our study employs a novel approach to examine the relationship between 

PACs in EEG signals and motor vigor in Parkinson's disease. We identified specific PACs, such 

as delta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma, demonstrating consistent 

informativeness in predicting motor function. These findings provide new insights into the neural 

mechanisms underlying motor dysfunction and offer promising biomarkers for clinical 

applications. 

One of the critical limitations of this work is the relatively small number of subjects. The 

proposed model will be required to be validated utilizing a richer EEG database that includes 

information on a larger PD population before it can be made into a helpful Computer-Aided 

Diagnostics known as CAD tool for PD. 

The approaches used in this paper cannot infer causal linkages between PACs and MV, 

only associations. However, given that PAC waveforms can be integrated into brain stimulation 

paradigms (Alekseichuk et al., 2016), a potential causal connection could later be explored. 
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